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Mediastinal radiation-induced severe calcific valve disease carries increased operative mortality. Transcatheter therapies

are also challenging and potentially hazardous. We used a unique constellation of imaging and planning technologies to

successfully plan, simulate, and perform novel combined transcatheter aortic valve replacement and valve in mitral

annular calcification in a high-risk patient. (Level of Difficulty: Advanced.) (J Am Coll Cardiol Case Rep 2020;2:1443–7)

© 2020TheAuthors. Published by Elsevier on behalf of the AmericanCollege of Cardiology Foundation. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LEARNING OBJECTIVES

� To discuss the potential long-term cardiore-
spiratory sequelae of mediastinal radiation.

� To understand the technical challenges to
valve intervention imposed by extensive
calcific valve disease, particularly involving
the aortomitral continuity.

� To understand the potential role of pre-
procedural modeling informed by multi-
modality imaging to mitigate these hazards
and plan transcatheter interventions.
HISTORY OF PRESENTATION

We present a 61-year-old woman with New York Heart
Association functional class II to III dyspnea after
undergoing lifesaving mantle field radiotherapy and
chemotherapy for Hodgkin lymphoma 20 years ago.
Notable past medical history included paroxysmal
atrial fibrillation. Heart rate was 90 beats/min, blood
pressure was 121/60 mm Hg, respiratory rate was 17
breaths/min, and oxygen saturations was 99% on
room air. Echocardiography demonstrated good left
ventricular function, critical aortic stenosis (mean
gradient¼ 50mmHg, valve area¼ 0.5 cm2), and severe
mitral stenosis (mean gradient ¼ 18 mm Hg, valve
area ¼ 0.9 cm2). Dedicated multiphase cardiac
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ABBR EV I A T I ON S

AND ACRONYMS

CEP = cerebral embolic

protection

CTA = computed tomographic

angiography

FEM = finite element modeling

LVOT = left ventricular outflow

tract

THV = transcatheter heart

valve
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aortomitral continuity with severely calci-
fied aortic valve leaflets and circumferential
mitral annular calcification (Figures 1A to 1C).
Coronary angiography indicated eccentric,
angiographically mild, biostial left main
stem and right coronary artery disease,
likely reflecting the underlying radiation-
induced pathology.

Despite relatively lowperioperative risk scores
(European System for Cardiac Operative Risk
Evaluation II ¼ 1.8% and Society of Thoracic
Surgeons score¼ 3.6%), the extensively calcified anatomy
posed high surgical risk. The consensus across heart teams
in multiple international centers was that conventional
dual-valve replacement was not technically feasible, and
they proposed the “Commando” procedure to reconstruct
the aortomitral continuity after mitral annular decalcifi-
cation in conjunction with mitral and aortic valve
replacement (1). The patient declined, citing unacceptable
operative risk, thereby prompting consideration of trans-
catheter options.

DIFFERENTIAL DIAGNOSIS

� Radiation-induced, severe calcific valve disease;
� Degenerative valve disease;
� Noncardiac dyspnea (e.g., pulmonary fibrosis).

INVESTIGATIONS

Extensive planning was performed to predict the
procedural outcome. CTA indicated borderline nar-
row sinuses of Valsalva (27 � 30 � 30 mm) but suffi-
cient coronary heights (left main stem ¼ 16 mm, right
coronary artery ¼ 17 mm) to suggest a low risk of
coronary obstruction. From the CTA, we performed
computer-simulated finite element modeling (FEM)
(FEops, Ghent, Belgium) to simulate mitral trans-
catheter heart valve (THV) implantation to derive a
neo-left ventricular outflow tract (LVOT) area and
predict the likelihood of paravalvular regurgitation
(Figure 1D, Video 1) (2). Subsequent computational
fluid dynamics modeled the pressure gradient
within the neo-LVOT and predicted an acceptable,
unobstructed outcome (Figures 1E and 1F, Videos 2A
and 2B) (3). Finally, a 3-dimensional–printed
bespoke heart model aided pre-procedural implant
simulation (Mimics Innovation Suite and HeartPrint
Flex, Materialise, Leuven, Belgium) (Figure 1G,
Supplemental Figures 1 and 2).

MANAGEMENT

After placement of a cerebral embolic protection
(CEP) device (Sentinel, Boston Scientific, Quincy,
Massachusetts) via the right radial artery and sys-
temic heparinization guided by the activated clotting
time, a 23-mm Sapien 3 (Edwards Lifesciences, Irvine,
California) transcatheter aortic valve replacement
was performed via the left femoral artery without
complication (Figure 2A, Video 3). Atrial transseptal
puncture was performed with an electrified Brock-
enbrough needle via an SL0 sheath (Swart, Abbott
Vascular, Santa Clara, California) from the right
femoral vein using computed tomography–simulated
fluoroscopic guidance (Figure 2B) (4). After 18-mm
atrial balloon septostomy (Figure 2C) (VACS-II,
Osypka, Longmont, California), a Safari wire (Boston
Scientific, Quincy, Massachusetts) was positioned in
the left ventricle via an Agilis steerable sheath
(Abbott Vascular). Correct positioning of the 29-mm
Sapien 3 valve within the mitral annulus required
snaring of the Safari wire into the aorta via the left
femoral artery to provide additional support
(Figures 2D and 2E, Videos 4A and 4B). After suc-
cessful deployment under rapid left ventricular pac-
ing (120 beats/min), completion of the left
ventriculogram demonstrated a well-functioning
mitral prosthesis (Figure 2F, Video 5) confirmed on
Doppler, 4-dimensional imaging, and blood speckle
imaging echocardiography (Figures 2G to 2I, Video 6).
Hemodynamics improved dramatically, and the pa-
tient has remained well.

DISCUSSION

Depending on the precise definition used, clinically sig-
nificant calcific valve disease may develop in up to 37% of
patients after mediastinal radiation (5,6). The incidence is
dose dependent, and, as in this case, extensive field radi-
ation (e.g., Mantle) and co-administration of chemothera-
peutic agents are recognized risk factors (7). Moreover, as
survival from malignancies such as Hodgkin lymphoma
continues to improve (20-year survival now >80%), the
incidence of remote cardiac complications is expected to
increase (8).

Patients with radiation-induced valve disease un-
dergoing conventional cardiac surgery are at
increased risk of perioperative complications in a
manner not reflected in traditional risk stratification
models. The potential sequelae of radiation exposure
including mediastinal fibrosis/adhesions; pulmonary
fibrosis; pericardial constriction; and coronary, car-
diac, and aortic calcification confer an increased risk
of perioperative bleeding, cardiorespiratory failure,
rhythm disturbance, embolic stroke, and death (9,10).

As present in this case, extensive calcification of
the aortomitral continuity presents a particularly
formidable surgical challenge, with the attendant
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FIGURE 1 Pre-Operative Planning: Fusion Imaging, Finite Element Modeling and Computational Fluid Dynamics

(A to C) Dedicated multiphase cardiac CTA with echocardiographic fusion imaging indicating severe calcific valve disease, with calcification

extending throughout the aortomitral continuity (asterisk). (D) Mitral THV implant simulation via finite element modeling predicting a safe

neo-LVOT area with a 60:40 implant position. (E and F) Computational fluid dynamic modeling after virtual mitral THV implant predicting a

safe neo-LVOT pressure gradient (maximum ¼ 3 mm Hg). (G) Three-dimensional–printed bespoke heart model for implantation rehearsal and

planning. CTA ¼ commuted tomographic angiography; LVOT ¼ left ventricular outflow tract; THV ¼ transcatheter heart valve.
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risks of intractable hemorrhage, atrioventricular
disruption, coronary artery injury, and ventricular
rupture. Decalcification followed by reconstruction of
the intervalvular fibrous body with either
glutaraldehyde-fixed bovine pericardium or Dacron
polyester fabric during aortic and mitral valve
replacement was first described in this setting over 20
years ago (1), although it remains restricted to a few
expert centers worldwide, with technical failures,
complications, and operative mortality (>10%) still
relatively high, even in experienced hands (11).

In the face of prohibitive or unacceptable surgical
risk, transcatheter techniques may offer an alter-
native, although the treatment of dual radiation-
induced valve pathology demonstrated here has
not previously been systematically described
(12–14). In particular, complex, calcified mitral valve
anatomy poses numerous challenges to treatment
with a round THV without an anchoring mecha-
nism, with potential complications including para-
valvular regurgitation, valve migration, and
principally LVOT obstruction through distortion of
the subvalvular apparatus. Thus, despite technical
advancements, 30-day mortality for transcatheter
valve in mitral annular calcification remains unac-
ceptably high (25% to 30%) (15,16). Appropriate
patient selection is key to minimizing risk, with
cardiac computed tomography to measure the ex-
pected neo-LVOT area considered mandatory.
However, this approach does not permit modeling
of the dynamic interaction of the valve with the
host and vice versa (e.g., mitral annulus calcifica-
tion deformation under conditions of radial stress).
As such, the evaluation based on geometric mea-
surements alone is likely insufficient to accurately
predict outcome.

The patient-specific computer simulation used
here enabled virtual implantation of a THV using FEM
in which the geometric and mechanical properties of
the valve and host are integrated. Simulating defor-
mation of the device after deployment and other in-
teractions of the device with neighboring anatomy
improved the predictive power of geometric mea-
surement to permit comprehensive assessment of the
likelihood of LVOT obstruction and paravalvular
regurgitation. To our knowledge, the only system that



FIGURE 2 Procedural Guidance: Computed Tomography Fluoroscopic Landmark Fusion Imaging

(A) Successful deployment of a 23-mm balloon-expandable valve in the aortic position under rapid LV pacing. (B) Transseptal puncture assisted by both simulation and

landmark computed tomography–fluoroscopic fusion imaging, indicating left atrial and mitral anatomy, and puncture position target, respectively. (C) An 18-mm

balloon septostomy. (D and E) The stiff Safari wire was snared (arrowheads) to increase delivery support, aiding correct positioning and deployment of the 29-mm

balloon-expandable mitral THV between the preplanned landmarks indicated on computed tomographic–fluoroscopic fusion imaging. (F) Completion imaging

demonstrating a well-functioning valve with (G) appropriate reduction in transvalvular gradient on continuous wave Doppler. (H and I) Corresponding pre- and post-

intervention blood speckle imaging echocardiography demonstrating improved flow characteristics. LV ¼ left ventricular; THV ¼ transcatheter heart valve.
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is available for performing FEM in this fashion is the
platform used here. Computational fluid dynamics
further enabled patient-specific modeling of a physi-
ological response to mitral THV implantation to pre-
dict the pressure gradient within the neo-LVOT after
deployment (17). As a final safety assurance, a
3-dimensional–printed bespoke heart model was
manufactured to aid the operator in procedural
planning. Further integration of these detailed im-
aging analyses into periprocedural computed tomog-
raphy simulation fluoroscopic and computed
tomography–transoesophageal echocardiogram
fusion imaging guidance with blood speckle imaging
flow characterization enhanced the safety and
technical success of the procedure.

The dual-filter CEP system (Sentinel) deployed in
this case is licensed by the Food and Drug Adminis-
tration for embolic protection during transcatheter
procedures. The aggregate data support a positive
effect on clinical stroke reduction, although an
appropriately powered randomized efficacy trial is
awaited (18). Our institutional practice is to evaluate
the requirement for cerebral protection on an
individual case basis. The consensus of the heart
team discussion was that this young, high-
functioning patient had a number of risk factors to
increase embolic potential, including known atrial
fibrillation, extreme valvular/LVOT calcification, and
procedural complexity/time, which supported the use
of CEP in this case.

We selected a balloon-expandable prosthesis for
the mitral position, reflecting the majority of experi-
ence worldwide in this setting (15). We also opted for
a balloon-expandable prosthesis in the aortic position
because, although there is a degree of clinical equi-
poise in the setting of LVOT calcification, in our
experience a carefully sized balloon prosthesis can
achieve excellent results at low risk. Moreover, in the
presence of high procedural complexity and
increased risk, we have found that selecting the de-
vice with which we have the greatest experience has,
as in this case, enhanced procedural safety. The low-
profile, intra-annular nature of the device could also
have the added benefit of permitting more routine
coronary reaccess. The durability of THVs remains an
area of active research in need of further long-term
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data. Accepting the patient’s young age, the potential
requirement for subsequent reintervention was
considered. Based on the patient’s anatomy and size
and position of the prostheses, we were able to first
simulate and then implant; we were satisfied that a
redo transcatheter procedure(s) would be technically
feasible in the future.

FOLLOW-UP

The patient underwent an uneventful postprocedure
recovery and was discharged after 24 h. She was re-
established on long-term warfarin anticoagulation
and has progressed remarkably well through the 30-
day and 6-month follow-ups, enjoying an excellent
symptomatic improvement.

CONCLUSIONS

Transcatheter heart interventions continue to pro-
vide new treatment options for patients unsuitable/
high risk for conventional surgery. The unique
constellation of imaging and planning technologies
used to orchestrate a successful outcome in this case
illustrate a potential framework to enhance safety
and provide greater certainty for procedures that
otherwise may be deemed unfeasible.
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