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Introduction
In China, about 3.9 million new cancer cases were reported in 
2015,1 of which lung cancer ranks the first place and accounts 
for nearly 20% of total cases. Lung adenocarcinoma (LUAD), 
a subtype of non-small cell lung carcinoma (NSCLC), accounts 
for 40% of all lung cancers.2,3 LUAD patients are usually diag-
nosed at a relatively late stage and suffer poor survivals.4 
Therefore, it is of great value to further improve the long-term 
survival rate of LUAD,5,6 which can be achieved by developing 
individual therapy based on prognostic signatures.

There have been several efforts to identify prognostic signa-
tures for lung cancer in the genomics era since 2002.7-13 In 
recent years, Shukla et  al14 developed a 4-gene signature set 
based on the univariate Cox analysis on an LUAD cohort from 
The Cancer Genome Atlas (TCGA). A 20-gene-based signa-
ture set was identified from differentially expressed genes in 
LUAD compared with adjacent normal lung tissues in Zhao 
et  al.15 Chen et  al16 constructed a multistep bioinformatics 

analysis pipeline and identified 27 genes that are significantly 
related to overall survival in LUAD patients. Songyang et al17 
identified a set of robust prognostic signatures containing 25 
genes by the meta-analysis-based Cox analysis on 10 gene 
expression data sets. However, these studies are all based on 
single-omics data set, namely, genetic expression data set. As 
the multi-omics data sets of lung cancer are available in TCGA, 
it is possible to explore prognostic signatures by integrating 
different types of omics data sets. In some applications of 
machine learning, combining different types of features will 
result in better prediction performance.18

The patterns of the somatic mutations in NSCLC have 
been extensively studied to reveal mutation characteristics from 
different aspects, such as the distinct genetic mutations in 
LUAD and other subtypes of NSCLC,19 in different races 
with LUAD,20,21 in younger patients compared with elderly,22,23 
and in never-smoking patients.24-26 Thus, it is necessary to 
identify prognostic signatures from the mutation profiles of 
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LUAD patients. Till to now, there have been several studies 
that try to combine genetic expression and mutation profiles to 
improve the outcome prediction of some diseases, including 
myelodysplastic syndromes.27 To our knowledge, the study by 
Song et al28 is the first trail of survival prediction of LUAD by 
integrating genetic mutation and expression profiles. It has 
been verified that the predictive accuracy was improved by the 
contributions of genetic mutations.

In this article, a novel set of prognostic signatures of LUAD 
was identified by integrating genetic mutation and expression 
profiles. An LUAD cohort from TCGA was downloaded and 
used to identify prognostic signatures. The patients of the cohort 
were separated into the high-risk and low-risk groups according 
to their overall survivals. Differential analysis between the 2 
groups produced 20 prognostic genes, including 13 differentially 
expressed genes (DEGs) and 7 differentially mutated genes 
(DMGs). A prognostic model based on the support vector 
machine (SVM) algorithm was then built by combining the 
expression values of the DEGs and the mutation times of the 
DMGs. When training the prognostic model, the 10-fold cross-
validation strategy was used to find the optimal hyper-parame-
ters. The validation results in the testing set have showed that 
the identified prognostic signatures are effective for the stratifi-
cation of LUAD samples, and the prediction performance has 
been improved by the contributions of the DMGs. The main 
contribution of this article is the identification of DMGs 
between the high-risk and low-risk groups, and the combination 
of the features of the DEGs and DMGs, which can be applied 
to the survival prediction of other types of cancers.

Materials and Methods
The pipeline of the proposed method is showed in Figure 1. 
First, 272 samples of the TCGA LUAD cohort were selected 
according to the overall survival and were partitioned into the 
training set and testing set. Then, DEGs and DMGs were 
determined from the training set, and the features of them 
were combined to train a prognostic model based on the SVM 
algorithm. The 10-fold cross validation was used to find the 
best hyper-parameters. Finally, this model was used to stratify 
the samples in the testing set to evaluate its performance.

Data collection and grouping

A cohort of LUAD from TCGA was used in this article. The 
genetic mutation and expression profiles, and their correspond-
ing clinical profiles, were downloaded on October 2019, includ-
ing 522 samples.29 Table 1 lists the clinical information of them. 
The overall survival is the only considered factor to group these 
samples into 3 subgroups. A total of 137 samples were parti-
tioned into the low-risk group as their overall survivals are 
larger than 36 months. For the high-risk group, a more rigorous 
standard was used, and a sample was determined to be high risk 
if its vital status is dead and its overall survival is less than 

36 months; 135 patients were grouped into the high-risk group. 
The remaining samples were classified into the unknown group 
as the days to last follow-up are less than 36 months and the 

Figure 1. Pipeline of the proposed method.
DEG indicates differentially expressed genes; DMG, differentially mutated genes; 
LUAD, lung adenocarcinoma; SVM, support vector machine; TCGA, The Cancer 
Genome Atlas.

Table 1. Clinical information of 522 LUAD samples from TCGA.

STATiSTiCS N

Sex

 Male 242

 Female 280

Stage

 i 279

 ii 124

 iii 85

 iV 26

 Not available 8

Vital status

 Alive 334

 Dead 188

Overall survival

 >36 months 137

 ⩽36 months 135

 Unknown 242

 Not available 8

Abbreviations: LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.
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vital status was alive; their exact overall survivals cannot be 
determined. Totally, 272 of 522 samples were selected and ran-
domly separated into the training set (75%) and testing set 
(25%). The training set contains 200 samples, comprising 100 
high-risk and 100 low-risk samples, respectively. The remaining 
samples were used as the testing set. The training set was used 
to identify the prognostic signatures and to build the prognostic 
model, and the testing set was used to evaluate them.

Identif ication of differentially expressed genes

GDCRNATools30 was used to identify the DEGs in the high-
risk samples compared with the low-risk samples. The profiles 
of message RNA (mRNA) were used for this analysis. The 
gdcDEAnalysis function of GDCRNATools with the limma 
method selected was used to determine the DEGs. The criteria 
are false discovery rate (FDR)-adjusted P value <.05 and the 
absolute value of log2-based fold change >1.

Identif ication of differentially mutated genes

The MafCompare function in Maftools package31 was used to 
detect the DMGs between the high-risk and low-risk samples. 
The parameter “minMut” was set to be 10, meaning that the 
number of samples with a DMG mutated in one group must 
be at least 10 more than that in another group.

External validation of the DEGs and DMGs

The prognostic values of the DEGs and DMGs were validated 
by Kaplan-Meier (KM) plot32 and International Cancer 

Genome Consortium (ICGA) Data Portal (https://dcc.icgc.
org/), respectively. When using KM plot, the Jetset was used to 
select the optimal probe set for each prognostic gene.

Prognostic prediction model

First, a feature matrix was established by combining the fea-
tures of the DEGs and DMGs. The expression values of the 
DEGs and the mutation times of the DMGs of all the samples 
in the training set were integrated as a combined feature matrix. 
The risk of a sample was used as its label.

Then, a prognostic model based on the SVM algorithm was 
built; the principle of the SVM algorithm can be found in 
Maldonado et  al.33 The feature matrix and the labels of the 
training set were inputted into the SVM model. The 10-fold 
cross validation was used to determine the optimal hyper-
parameters. In this article, the e1071 package in R was used to 
build and train this model.

Results
Differentially expressed genes

By performing the gdcDEAnalysis function with defined cri-
teria in the GDCRNATools package,5 13 DEGs were identi-
fied and are listed in Table 2 and Supplementary File 1. Among 
these genes, FAM83A-AS1 and AC005077.4 belong to long 
noncoding RNA and pseudogene, respectively, and the rest are 
protein-coding genes, as depicted in Figure 2A. Three DEGs, 
SFTA3, KLRG2, and BMP5, are downregulated in the high-
risk samples compared with the low-risk samples, while other 
10 genes are all upregulated, as depicted in Figure 2B.

Table 2. information of identified DEGs (sorted by the value of logFC).

SYMBOL GROUP LOGFC AVEEXPR P VALUE FDR

SFTA3 protein_coding –1.269826599 5.417458 .000265 0.04701

KLRG2 protein_coding –1.157861235 –0.04149 5.26E–05 0.028722

BMP5 protein_coding –1.157194445 2.649085 .000175 0.042865

FAM83A-AS1 long_non_coding 1.044754193 1.091472 .00015 0.040683

TFAP2A protein_coding 1.047712916 3.277663 3.06E-05 0.023603

PKP2 protein_coding 1.068768408 3.276142 .000192 0.042865

FAM83A protein_coding 1.141982369 6.422601 3.12E-05 0.023603

CCL20 protein_coding 1.159603789 3.570545 .000284 0.048067

AC005077.4 pseudogene 1.180426431 1.043103 2.27E-05 0.023603

RHOV protein_coding 1.3313045 3.822388 9.23E-06 0.020341

DNER protein_coding 1.462348178 1.156925 1.27E-05 0.021316

TNS4 protein_coding 1.521092422 3.270374 8.69E-05 0.03118

ABCC2 protein_coding 1.537791588 1.063846 .000242 0.045465

Abbreviations: DEG, differentially expressed genes; FDR, false discovery rate.

https://dcc.icgc.org/
https://dcc.icgc.org/
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Differentially mutated genes

By performing the MafCompare function in the Maftools 
package,31 7 DMGs were identified and are listed in 

Supplementary File 1. Three samples in the training set do 
not contain genetic mutation profiles, so 0197 samples were 
included in this analysis. Figures 3 and 4 depict the forest and 

Figure 2. (A) Bar plot of identified DEGs and (B) volcanic plot of identified DEGs, in which FDR represents FDR-adjusted P values.
DEG indicates differentially expressed genes; FDR, false discovery rate.

Figure 3. Forest plot of 7 DMGs.
DMG indicates differentially mutated genes.
**P < .01. ***P < .001.
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co-onco plots of the DMGs. Six DMGs are mutated more 
frequently in the low-risk samples. One gene, GRIN2B, is 
mutated in 19% of the high-risk samples, while only 6% of 
the low-risk samples have mutations of this gene. The loca-
tions of the somatic mutations of the DMGs are showed in 
Supplemental Figure S1 to S7.

The expression levels of the DMGs between patients in the 
high-risk and low-risk groups were then analyzed, as showed 
in Figure 5. Based on the P values of the DMGs, there are not 
significant differences between the 2 groups. However, it is 
found that the mutations of DMXL1, FAT2, GRIN2B, and 
THSD7A may impact their mRNA levels because their P val-
ues are smaller than that of other genes. Compared with the 
expression levels of the high-risk samples, DMXL1 and FAT2 
are downregulated in the low-risk samples with them mutated, 
while THSD7A is upregulated.

External validation of the DEGs and DMGs

Figures 6 and 7 show the results of the univariate Cox regres-
sion analysis of the DEGs and DMGs. Three DEGs and one 
DMG are not found in KM plot and ICGA Data Portal. In 
Figure 6, it is found that 9 DEGs, except DENR and LARC, 
are significantly related to the overall survival of LUAD sam-
ples; the relationships between their expression levels and the 
survival rate of LUAD samples are consistent with the results 
of this article. The validation results of DNER and LARC are 

not so promising. SFTA3 and BMP5 could be tumor suppres-
sor genes because high expression levels of them relate to better 
survival, while others could be oncogenes.

In Figure 7, it can be found that the mutations of GRIN2B 
are significantly associated with the survival rate of LUAD 
samples, which is consistent with the results of this article. The 
patients with mutations of GRIN2B show worse outcomes 
compared with these who do not have mutations of GRIN2B. 
Therefore, GRIN2B could be a tumor suppressor gene as the 
risk of a patient with it mutated is higher.

Validation of the prognostic model

A combined feature matrix was constructed by integrating the 
normalized expression values of the DEGs and the mutation 
times of the DMGs. The dimension of the feature matrix is 
200 × 20, in which each column represents an LUAD sample 
of the training set. Then, the prognostic model based on the 
SVM algorithm was trained using the 10-fold cross validation, 
and the optimal hyper-parameters were obtained.

Sensitivity, specificity, and the area under the ROC (receiver 
operating characteristic) curve (AUC) were used to evaluate 
the prognostic performance. They are defined by 4 terms, 
namely, true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). TP is the number of the high-
risk samples that are predicted as high risk, while FP is the 
number of the high-risk samples but predicted as low risk 

Figure 4. Co-oncoplot of 7 DMGs.
DMG indicates differentially mutated genes.
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incorrectly; TN is the number of the low-risk samples that are 
predicted as low risk, while FP is the number of low-risk sam-
ples but predicted as high risk. Sensitivity, specificity, and AUC 
are defined as follows:

 se ty  TP
TP FN

nsitivi =
+

,  (1)

 specificity TN
TN FP

=
+

,  (2)

and

 AUC sensitivity specificity= × +( )0 5. .  (3)

Sensitivity mainly evaluates the ability to recognize high-
risk samples, whereas specificity mainly focuses on the predic-
tion performance of the low-risk samples. The greater values of 
these criteria indicate better classification result.

The prediction performance of the DEGs and DMGs with 
patients in different stages was first evaluated by the prognostic 
model. The values of sensitivity, specificity, and AUC of stage I 
to IV are listed in Table 3. The prognostic genes worked the 
best with the patients in stage III, where 7 of 8 high-risk 
patients were stratified correctly. There are only 2 high-risk 
patients in stage IV, so the specificity is not available.

The values of sensitivity, specificity, and AUC by using sin-
gle (DEGs) and integrated (DEGs and DMGs) features are 
listed Table 4. It can be found that by integrating the features 

of the DEGs and DMGs, the performance of the proposed 
prognostic model was significantly improved, with the specific-
ity and AUC increasing from 0.543 to 0.743 and from 0.537 to 
0.637 respectively.

The proposed signature set was then compared with 4 most 
recent sets of prognostic signatures for LUAD, which are all 
based on genetic expression profiles. The prediction experi-
ments of all the signature sets were performed on the same 
training and testing sets used in this article. In the training set, 
the expression values of genes in each prognostic signature set 
were selected and used to train the SVM model. The 10-fold 
cross validation was also used in the training progress of them. 
Finally, the trained model was evaluated by the testing set and 
the prediction results are listed in Table 4. It can be found that 
the proposed signatures achieved the greatest values of speci-
ficity and AUC. Figure 8 depicts the ROC curves of the strati-
fication results of the samples in the testing set by different 
prognostic signature sets and their corresponding prognostic 
models; it can be found that the proposed prognostic signa-
tures stood out on top compared with others.

Discussion
This study aims to integrate the genetic mutation and expres-
sion profiles to predict overall survival (OS) of LUAD using a 
TCGA data set. Patients in this data set were separated into 
the high-risk and low-risk groups according to the overall sur-
vival. Differential analysis between the 2 groups produced a 

Figure 5. Expression levels of 7 DMGs of the high-risk and the low-risk samples: (A) DMXL1, (B) CHD6, (C) THSD7A, (D) FAT2, (E) SPATA31A6, (F) 

GRIN2B, and (G) ADGRL3.
DMG indicates differentially mutated genes.
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novel set of prognostic genes, containing 13 DEGs and 7 
DMGs. Finally, a prognostic model was constructed using the 
integrated features of the DEGs and DMGs. The validation 
results have showed the prognostic value of the DEGs and 
DMGs and have showed the power of the DMGs on the sur-
vival prediction. The most significant contribution of this arti-
cle is the integration of the genetic mutation and expression 
profiles to determine prognostic genes for LUAD patients. If 
genetic expression and mutation profiles are available, the pipe-
line of determining DEGs and DMGs in this article can be 
applied to other types of cancers.

The functions of the DEGs and DMGs were searched from 
https://www.uniprot.org/ and are listed in Supplementary File 
2. The DEGs and DMGs were also searched on PubMed 
using the gene name and lung cancer. The number of related 
papers and functions of the DEGs and DMGs in lung cancer 
are listed in Supplementary File 2. SFAT3, BMP5, FAM83A, 

TSN4, ABCC2, and FAT2 have been suggested to be biomark-
ers in lung cancer.34-39 The other genes were identified as bio-
markers for lung cancer for the first time in this article. In 
addition, there is no related study about KLRG2, DMXL1, 
CHD6, ADGRL3, and SPATA31A6, suggesting that they act 
independently as biomarkers in lung cancer.

The relationships between the DEGs and DMGs and some 
known driver genes of lung cancer were analyzed. FAM83A has 
been indicated as a proto-oncogene that functions in the epi-
dermal growth factor receptor (EGFR) signaling pathway.40 
EGFR is a well-known driver gene in lung cancer, and it has 
been suggested that FAM83A lies downstream of EGFR/PI3K 
and upstream of MEK. In breast cancer cells, it has been 
revealed that downmodulation of FAM83A led to decreased 
proliferation and invasiveness in cell cultures as well as to 
decreased tumor growth in vivo.40 In lung cancer, several stud-
ies about FAM83A have been published in recent years. 

Figure 6. KM curves of 10 DEGs on 1926 LUAD patients, who were separated into the high-expression and low-expression groups. SFTA3 and BMP5 

could be tumor suppressor genes because higher expression levels of them relate to better survival, while others could be oncogenes: (A) SFTA3, (B) 

BMP5, (C) FAM83A, (D) TFAP2A, (E) PKP2, (F) CCL20, (G) RHOV, (H) DNER, (i) TNS4, and (J) ABCC2.
DEG indicates differentially expressed genes; KM, Kaplan-Meier; LUAD, lung adenocarcinoma.

https://www.uniprot.org/
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Overexpression of FAM83A has been indicated to be related to 
poor clinical outcomes in LUAD,41-44 and FAM83A promotes 
the progression and tumorigenicity in non-small cell lung can-
cer by regulating Wnt and Hippo signaling pathways.44,45 
Therefore, FAM83A is an effective prognostic biomarker and a 
potential new therapeutic target in lung cancer.36,46 In this arti-
cle, it is found that FAM83A is overexpressed in the high-risk 
samples compared with the low-risk samples.

Enrichment analysis of the gene set, comprising the DEGs, 
DMGs, EGFR, and KRAS, was performed using KEGG path-
ways database in this article. The results illustrated that GRIN2B 
and EGFR were enriched into Rap1 signaling pathway (P = .002) 
and Ras signaling pathway (P = .003), suggesting a potential rela-
tionship between them. The 2 genes were then searched in 
PubMed and only one paper was obtained,47 in which both 
GRIN2B and EGFR were determined as biomarkers for gastric 

Table 4. Evaluation metrics of stratification results based on different signature sets with the best metrics written in bold.

SHUKLA ET AL14 CHEN ET AL16 ZHAO ET AL15 SONGYANG ET AL17 DEGS DEGS + DMGS

Sensitivity 0.629 0.543 0.657 1 0.531 0.531

Specificity 0.5 0.594 0.594 0 0.543 0.743

AUC 0.564 0.568 0.625 0.451 0.537 0.637

Abbreviations: AUC, area under the ROC curve; DEG, differentially expressed genes; DMG, differentially mutated genes; ROC, receiver operating characteristic.
Statistically significant values were represented in bold.

Figure 7. KM curves of 6 DMGs on 195 LUAD patients, who were separated into the mutated and not mutated groups. GRIN2B is significantly associated 

with the survival rate of LUAD patients and it could be a tumor suppressor as the risk of patients with it mutated is higher: (A) DMXL1, (B) CHD6, (C) 

THSD7A, (D) FAT2, (E) SPATA31A6, and (F) GRIN2B.
DMG indicates differentially mutated genes; KM, Kaplan-Meier; LUAD, lung adenocarcinoma.

Table 3. Evaluation metrics of stratification results based on DEGs and DMGs of the training set with different stages.

STAGE i STAGE ii STAGE iii STAGE iV OVERALL

Sensitivity 0.69 0.58 0.875 0.5 0.531

Specificity 0.55 0.66 0 – 0.743

AUC 0.62 0.62 0.438 – 0.637

Abbreviations: AUC, area under the ROC curve; DEG, differentially expressed genes; DMG, differentially mutated genes; ROC, receiver operating characteristic.
Statistically significant values were represented in bold.
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Figure 8. ROC curves of proposed prognosis model by using our 

signatures and others.
DEG indicates differentially expressed genes; DMG, differentially mutated genes; 
ROC, receiver operating characteristic.

cancer but the relationship between them was not discussed. 
Therefore, it is a promising study to explore the relationship 
between GRIN2B and EGFR in lung cancer.

Genetic mutations can affect gene expressions.27 However, 
the interactive mechanism between the genetic mutation and 
expression is still not well understood.28 It is found that 
DMXL1 and FAT2 are downregulated in the low-risk patients 
with these genes mutated, while THSD7A is upregulated. To 
reveal how the DMGs impact their expression levels is one of 
our future works. From the KM plots of the DMGs, GRIN2B 
is a potential tumor suppressor gene in LUAD, which has been 
confirmed in some types of cancer, such as diffuse large B-cell 
lymphoma,48 gastric cancer,47 and LUAD.49

There are 2 main limitations of this study. First, in the vali-
dation results of DMGs, only GRIN2B showed a promising 
prognostic performance. The reason is that the DMGs only 
mutated in a small portion of whole samples. For example, only 
19% of the high-risk samples have mutations of GRIN2B. 
Second, the performance of stratification is far from satisfac-
tory. Although several prognostic models can be used to predict 
the overall survival of LUAD,15,17 the AUC values are only 
0.615 and 0.637 in Zhao et al15 and in this article, respectively. 
New signatures, such as microbial biomarkers,50,51 and prog-
nostic models based on advanced machine learning algorithms, 
such as deep learning methods,52 are needed to further improve 
the performance of the survival prediction.

Conclusion
In this article, 13 DEGs and 7 DMGs were identified in an 
LUAD cohort, and a prognostic model was constructed by com-
bining the features of the DEGs and DMGs. The validation 
results on the testing set have showed the superiority of the 

proposed prognostic signatures and model compared with others. 
The main contribution of this article is that the prognostic signa-
tures are determined by a new manner, in which patients with 
LUAD were partitioned into the high-risk and low-risk groups. 
Differential analysis of the expression and mutation profiles 
between the 2 groups identified a new set of prognostic signatures. 
This pipeline can be applied to other types of cancers to determine 
novel prognostic signatures and potential therapeutic targets.

There are several promising extensions of this study. First, 
the overall survival of LUAD patients is only considered when 
identifying DEGs and DMGs in this article. In future study, 
more factors, such as the therapy, should be included to deter-
mine prognostic signatures. Second, with multi-omics data sets 
available, it is a practical manner to improve the prognostic 
prediction performance by combining the features from the 
genetic to epigenomic profiles of cancer samples.
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