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A healthy microenvironment of the intervertebral disc tissue is characterized by hypoxia owing to its sparse vascular distribution.
Oxidative stress plays a pivotal role in the pathological development of intervertebral disc degeneration (IVDD). We found that
the expression of prolyl endopeptidase (PREP) increased in degenerative nucleus pulposus (NP) tissues. The purpose of this study
was to determine whether PREP is involved in oxidative-stress-induced IVDD. Tertbutyl hydroperoxide can inhibit the expression
of PREP by activating the PI3K/AKT signaling pathway at low concentrations in NP cells. Knockdown of PREP protected NP cells
from apoptosis induced by oxidative stress, whereas overexpression of PREP exacerbated the apoptosis of NP cells. We also
investigated the connection between the PI3K/AKT signaling pathway and PREP and found that the activation of the PI3K/
AKT signaling pathway downregulated the expression of PREP by inhibiting p53. As a crucial transcription factor, p53 binds
to the PREP promoter region and promotes its transcription. Overexpression of PREP also impairs protein secretion in the
extracellular matrix of NP cells. Furthermore, the in vivo knockout of PREP could attenuate puncture-induced IVDD. These
findings suggested that the downregulation of PREP might maintain the viability of NP cells and attenuate IVDD under
oxidative stress.

1. Introduction

Intervertebral disc degeneration (IVDD) is the leading cause
of low back pain (LBP), which not only limits the patient’s
activities but also creates a huge social and economic burden
[1–4]. A healthy intervertebral disc is mainly composed of
the central nucleus pulposus (NP) and annulus fibrosus,
which is wrapped around the NP. NP cells originate from
the embryonic notochord and play an irreplaceable role in
maintaining intervertebral disc homeostasis [5, 6]. Studies
have shown that NP cells are similar to chondrocytes in
terms of morphology and function. Type II collagen and

proteoglycans secreted by NP cells maintain the elasticity
of intervertebral discs [7, 8].

IVDD often occurs initially in NP cells. Owing to the
altered normal physiological processes of NP cells, the
components of the extracellular matrix (ECM) also change
accordingly [9]. During IVDD, NP cells are gradually
replaced by fibrocartilage-like cells. This also results in
reduced secretion of the normal ECM, which contains pro-
teoglycans and type II collagen; however, the secretion of
the fibrotic matrix increases pathologically. Eventually, the
structure of the intervertebral disc changes and loses its orig-
inal elasticity. There are many causes of disc degeneration,
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including trauma, strain, inflammation, stress, age, and
genetics [10–12].

Recent research has found that oxidative stress is a crit-
ical factor in IVDD [13]. The microenvironment of healthy
intervertebral disc tissue is hypoxic, and the generation and
scavenging of intracellular reactive oxide species (ROS) are
dynamically balanced under physiological conditions [14].
Oxidative stress occurs when this equilibrium is disturbed
[15, 16] and causes increased intervertebral disc apoptosis
and senescence, as well as decreased autophagy; it also
induces damage to the matrix structure and promotes degra-
dation of the intervertebral disc tissue matrix [17–19]. As a
result, the elasticity of the intervertebral disc is significantly
reduced, while the stiffness is significantly increased, impair-
ing the mechanical function of the intervertebral disc and
thereby triggering disc degeneration.

Prolyl endopeptidase (PREP), also known as prolyl
oligopeptidase, is a member of serine proteases [20]. PREP
can hydrolyze the C-terminus of proline residues of prolyl-
containing peptides smaller than 3 kDa [21]. Furthermore,
PREP plays an essential role in many physiological pro-
cesses, such as the regulation of peptides and hormones.
Emerging evidence suggests that PREP is closely related
to diseases such as Alzheimer’s disease, schizophrenia,
and diabetes [22, 23]. N-Ac-PGP generated from PREP
promotes the inflammatory response in degenerative discs,
indicating a potential association between PREP and
IVDD [24, 25]. However, the function of PREP in IVDD
has not been investigated.

In this study, PREP was upregulated in degenerated disc
tissues, which was verified by sequencing analysis. The
expression of PREP was also significantly reduced by stimu-
lation with tert-butyl hydroperoxide (TBHP) at low concen-
trations. Further studies proved that this reduction was
caused by the activation of the PI3K/AKT signaling pathway
in NP cells. Moreover, PREP was found to be related to the
apoptosis of NPs induced by TBHP. In degenerated interver-
tebral disc tissues, the expression of PREP was consistent
with that of p53. We found that p53, which is also a tran-
scription factor downstream of the PI3K/AKT pathway,
modulated the transcription of PREP in NP cells. In a mouse
model of puncture-induced disc degeneration, the PREP-
knockout (PREP-KO) group showed slight disc degenera-
tion compared to that in the wild-type (WT) group. This
study demonstrates that PREP is an unrecognized target
for the treatment of IVDD.

2. Materials and Methods

2.1. Clinical Tissue Collection. The Ethics Committee of
Xinhua Hospital, affiliated with the Shanghai Jiaotong
University School of Medicine, reviewed and approved this
study. All patients read and signed an informed consent
form before surgery. Degenerative disc tissues were collected
from patients undergoing lumbar spine surgery for lumbar
disc herniation and spinal stenosis (13 males and 12 females,
27–69 years old). Normal disc tissues were collected from
patients with congenital hemivertebrae deformity (one
female and two males, 14–22 years old). All patients under-

went magnetic resonance imaging, and the grade of disc
degeneration was determined based on the Pfirrmann classi-
fication system (I–V).

2.2. NP Cell Isolation and Culture. After collecting the NP
specimens during surgery, we transferred the tissue to a
clean bench using a sterile centrifuge tube and rinsed it three
times with phosphate-buffered saline (PBS, Cytiva). Next,
the NP tissue was digested with type II collagenase (0.2%,
Sigma-Aldrich) for 4 h at 37°C. After centrifugation, the
supernatant was removed, and the tissue was resuspended
and cultured in DMEM/F12 medium (Corning) with 10%
fetal bovine serum (FBS, SANTACRUZ). Adherent NP cells
were observed under a microscope after five days of culture
without replacing the medium. When the cell density
reached 80–90%, we passaged the NP cells using Trypsin-
EDTA (Biosharp), and the passaged NP cells were the first
passage. Only NP cells within four passages were used for
in vitro studies.

2.3. In Vitro Oxidative Stress Model. Excess of TBHP can
cause an increase in ROS in NP cells, triggering oxidative
stress [18]. The in vitro oxidative stress model was estab-
lished by treating NP cells with 400μM TBHP for 6 h when
the cell density reached 70–80%. The cells were collected for
further studies.

2.4. Immunohistochemistry Staining. NP tissues were fixed
with 4% paraformaldehyde and embedded in paraffin. After
the embedded tissues were cut into sections, xylene and alco-
hol were deparaffinized and rehydrated. Endogenous perox-
idase activity was blocked with methanol-diluted hydrogen
peroxide. After antigen retrieval with pepsin (MKBio), 5%
bovine serum albumin (BSA) was used to block nonspecific
binding sites on the sections. Next, the tissues were incu-
bated with the primary antibody overnight at 4°C. PBS was
used to remove unbound primary antibodies, and the target
antigen was detected using an HRP-DAB kit (Maxvision™2).
Images were obtained using an Olympus microscope.

2.5. Immunofluorescence Staining. The cells were washed
with PBS, which was followed by formaldehyde fixation.
The cell membranes were then ruptured using Triton X-100
(Beyotime) and blocked with 5% BSA for 1 h. The NP cells
were incubated with the primary antibody overnight at 4°C.
TBST was used to remove the unbound primary antibodies.
A secondary antibody with a fluorescent label (Beyotime)
was added to detect the target antigens bound by the primary
antibodies. DAPI (Beyotime) and FITC-conjugated phalloi-
din (MKBio) were used to stain the nuclei and cytoskeletons.
Images were obtained using an Olympus microscope.

2.6. Western Blotting. NP cells were lysed with RIPA buffer
(Genecome) supplemented with phenylmethanesulfonyl
fluoride (SANTACRUZ) at 4°C after washing with PBS.
After centrifugation and aspiration of the supernatant, the
protein and loading buffer were mixed and boiled for
10min. After electrophoretic separation, the proteins on
the SDS-PAGE polyacrylamide gels were transferred to
PVDF membranes (Beyotime). After blocking with nonfat
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milk (5%) for 1 h at room temperature, the membranes were
incubated with primary antibodies against PREP (Protein-
tech, 11536-1-AP), Bcl-2 (Cell Signaling Technology,
3498), Bax (Cell Signaling Technology, 14796), P53 (Cell
Signaling Technology, 2527), MMP-3 (Proteintech, 17873-
1-AP), and aggrecan (Abcam, ab3778) overnight at 4°C.
After washing three times with TBST to remove the
unbound primary antibodies, the membranes were incu-
bated with horseradish peroxidase-conjugated secondary
antibodies (Epizyme). Finally, antibody–antigen complexes
were detected using an ECL reagent (Epizyme).

2.7. Quantitative RT-PCR. After lysis with TRIzol (Beyo-
time), the lysates were mixed with chloroform. Next, the
samples were centrifuged, and the upper RNA-containing
transparent liquid was extracted. After mixing with an equal
volume of isopropanol, the samples were centrifuged to
obtain RNA pellets. RNA was washed with 75% ethanol
and reverse-transcribed into cDNA using PrimeScript™ RT
Master Mix (TAKARA) after centrifugation. Real-time poly-
merase chain reaction (RT-PCR) was carried out using PCR
Master Mix (Yeasen). GAPDH was used to normalize the
expression of target genes. Primers used for PCR are shown
in Table 1.

2.8. Chromatin Immunoprecipitation (ChIP) Assay. First, 1%
formaldehyde (Beyotime) was used to crosslink the NP cells,
which was stopped by glycine. NP cells were collected and
resuspended in lysis buffer (Beyotime) on ice after washing
with PBS. Next, the lysates were sonicated to obtain DNA
fragments. The debris was pelleted and removed by centrifu-
gation, and the supernatant was collected. Chromatin
samples were diluted, and protein A+G Agarose/Salmon
Sperm DNA was used to reduce nonspecific binding. After
centrifugation, the supernatant was collected and part of it
was stored as input. Then, the primary antibody was incu-
bated with the supernatant at 4°C overnight. Protein A+G
Agarose was added to the supernatant, the mixture was
centrifuged, and the supernatant was removed. Elution
buffer was added to the precipitate, and the supernatant
was collected. After decrosslinking the DNA-protein
complex with NaCl, we added ribonuclease A. Proteinase
K, ethylenediaminetetraacetic acid, and Tris-HCl were
added and incubated with samples at 45°C for 1 h. The puri-
fied DNA was then prepared for the study. Primer sequences
for ChIP are shown as follows:

ChIP-F: CACGAGGTGGGAACTGGAAT
ChIP-R: GCCTCACCCTTAGTTCACCA

2.9. In Vitro Transfection of Lentivirus or siRNA. Cells were
seeded at a density of 30% in a six-well plate before the len-
tivirus transfection. Lentivirus encoding PREP or P53 was
added to serum-free DMEM/F12 medium of NP cells in
the presence of polybrene. One day after transduction, the
culture medium was replaced with a normal DMEM/F12
medium supplemented with 10% FBS. Cells were selected
using puromycin (Beyotime) 48 h after transfection. Overex-
pression lentivirus was constructed using pGMLV-CMV
vector plasmid. For the siRNA transfection, cells were plated

in a six-well plate at 30–50% density. Lipofectamine 2000
(Thermo Fisher Scientific) and siRNA were diluted in
serum-free DMEM/F12 medium. Five minutes later, siRNA
and Lipofectamine 2000 diluent were mixed and allowed to
stand at room temperature for 20min. The mixture was then
added to NP cells for transfection. The culture medium was
replaced with a normal DMEM/F12 medium with 10% FBS
one day later. The siRNA sequences are shown as follows:

siRNA1: CCAUGCUUGGACCACUGAUUA
siRNA2: CGCUAUGUCUUGUUAUCAAUA
siRNA3: CCCAACAUACUGUCUGACGAU

2.10. Flow Cytometry Analysis. The NP cells were collected
after digestion with 0.25% trypsin. After washing with
PBS, the cells were pelleted via centrifugation and resus-
pended in 100μl binding buffer. Then, 5μl annexin V-
FITC (Beyotime) and 10μl propidium iodide (PI, Beyo-
time) were added and incubated with the cells for 20min
in the dark. The cells were immediately analyzed via flow
cytometry (Beckman CytoFLEX).

2.11. Dual-Luciferase Reporter Assay. P53 binding sequence
was predicted in 803 bp to 809 bp upstream of the PREP pro-
moter regions. The binding sequence in PREP promoter
regions was mutated from TATGCCC to GCGTAAA.
Wild-type or mutant PREP promotor plasmids were con-
structed with the pGL3-Basic vector. Renilla-containing
pRL-TK plasmid was used to normalize transfection effi-
ciency. Lipofectamine 3000 (Thermo Fisher Scientific) was
used for the transfection. The NP cells were collected and
plated in 96-well plates 24 h after transfection. Luciferase
activity in NP cells was detected using a dual-luciferase
reporter assay kit (Promega) 24 h after treatment.

2.12. Animals. The Ethics Committee of the Xinhua Hospital
reviewed and approved the animal experiments. Female WT
C57BL/6J and PREP-KO mice (aged 12 weeks, 20–25g) were
obtained from Shanghai Model Organisms Center, Inc. The
gene knockout mouse was constructed with CRISPR/Cas9
technology. The shifting of open reading frame in PREP
causes its disfunctiondysfunction. The PREP KO mice used
in this study carry a partial deletion of exon 3 of the PREP
gene. All mice were housed in pathogen-free facilities under

Table 1

Gene Primer Sequence

PREP
F GTTTTCCGAGAGGTGACCGT

R TGGATATGTTGAAGCCGCCA

Bax
F TCATGGGCTGGACATTGGAC

R GCGTCCCAAAGTAGGAGAGG

Bcl-2
F CTTTGAGTTCGGTGGGGTCA

R GGGCCGTACAGTTCCACAAA

GAPDH
F AATGGGCAGCCGTTAGGAAA

R GCGCCCAATACGACCAAATC

P53
F ACCTATGGAAACTACTTCCTGAAA

R CTGGCATTCTGGGAGCTTCA
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a 12 -h light and 12 -h dark cycle. Twelve mice were ran-
domly divided into two groups of six, and six PREP-KO
mice were grouped individually. The mice were anesthetized
with 1% pentobarbital sodium (0.1mg/kg). The mice in the
control group were only punctured with a needle on the skin
of the tail, without damaging the intervertebral disc. The
mice in the WT or PREP-KO groups were punctured with
a 23G syringe needle at the coccygeal 4-5 disc level. The
needle was inserted into the center of the NP, rotated 360°,
and held for 30 s. The mice were euthanized six weeks after
surgery, and the tissues were collected for further use. The
primer sequences for identifying WT and PREP-KO mice
are as follows: Primer1: TACCGCTACCCCTGCTTCA;
Primer2: GCTATGTCGGCTCCAACCA; Primer3: AGCT
ACTTCCTGCCCCCTCTTAC; Primer4: GGAATCCCCAA
CACTGACACAAA.

2.13. Bioinformatics Analysis. GSE146904 and GSE167931
were obtained from the GEO database. The limma package
was used for data analysis.

2.14. Statistical Analysis. Data are presented as mean ± SD.
Differences were analyzed by a two-tailed Student’s t-test for
comparisons between two groups, and one-way analysis of
variance was used for comparisons between multiple groups.
Least significance difference was used for post hoc test. Differ-
ences were considered statistically significant at P < 0:05.

3. Results

3.1. Upregulation of PREP in Degenerated Intervertebral Disc
Tissues. Ten intervertebral disc specimens were collected for
sequencing, and patients with spondylolisthesis were
included in the control group (GSE146904). Bioinformatics
analysis showed that PREP was upregulated in patients with
disc herniation and downregulated in patients with spondy-
lolisthesis, as shown in the heat map (Figure 1(a)). KEGG
pathway analysis indicated that the PI3K/AKT signaling
pathway varied between the two groups, while GO enrich-
ment analysis revealed that the serine kinase activity was
altered (Figures 1(b) and 1(c)). Moreover, mRNA from five
degenerated and four normal human NP cells was collected
for further study (GSE167931). PREP was highly expressed
in the degenerated group, which was consistent with the
sequencing results of GSE146904 (Figure 1(d)). Changes in
the PI3K/AKT signaling pathway and serine kinase activity
were also involved in IVDD, as demonstrated by KEGG
and GO enrichment analyses (Figures 1(e) and 1(f)). We
performed qRT-PCR to verify the sequencing results. We
collected intervertebral disc tissues with different grades of
degeneration and found that the expression of PREP gradu-
ally increased as the degree of IVDD worsened (Figures 1(g)
and 1(h)). Western blotting and immunohistochemistry
intensity for PREP expression showed similar trends to the
qRT-PCR assay (Figures 1(i)–1(k)).

3.2. Low-Concentration TBHP Stimulation Inhibits PREP
Expression by Activating PI3K Signaling Pathway in NPs.
NP cells were exposed to low concentrations of TBHP for
6 h to simulate increased ROS production under normal

physiological conditions. The qRT-PCR and western blot-
ting results indicated that a low concentration of TBHP
decreased the expression of PREP in NP cells in a
concentration-dependent manner (Figures 2(a) and 2(b)).
Moreover, the expression of p-PI3K and p-AKT was
increased in NP cells exposed to TBHP, indicating the acti-
vation of the PI3K/AKT pathway (Figures 2(b) and 2(c)).
Next, we used a PI3K inhibitor to investigate whether
changes in PREP were related to the PI3K/AKT signaling
pathway. The presence of LY294002 significantly promoted
the expression of PREP in NPs, as verified by immunofluo-
rescence analysis. Western blotting showed that LY294002
rescued the decrease in the expression of PREP induced by
TBHP (Figures 2(e) and 2(f)). Activation of the PI3K/AKT
signaling pathway with the PI3K agonist 740 Y-P signifi-
cantly decreased the expression of PREP (Figure 2(g)).
Taken together, these assays indicated that low concentra-
tions of TBHP downregulated the expression of PREP by
activating the PI3K/AKT signaling pathway.

3.3. PREP Promotes Apoptosis of NP Cells. To investigate
whether PREP was involved in the apoptosis of NP cells
induced by oxidative stress, we constructed a small interfer-
ing RNA (siRNA) to suppress the expression of PREP, and
the interference efficiency was verified via western blotting
and PCR (Figures 3(a) and 3(b)). The effect of PREP silenc-
ing on apoptosis-related genes in NP cells was analyzed via
PCR and western blotting (Figures 3(c) and 3(d)). It has
been proved that high-concentration H2O2 inhibited PI3K/
AKT pathway and caused increased apoptotic cells. We then
examined whether high-concentration TBHP promotes
PREP expression as the PI3K/AKT pathway was suppressed.
TBHP (400μM) promoted the expression of Bax and
suppressed that of BCL-2, which was attenuated in NP cells
with decreased PREP expression (Figure 3(e)). Flow cyto-
metric analysis indicated that the increase in the proportion
of apoptotic cells induced by TBHP was rescued by PREP
silencing (Figure 3(f)). Moreover, we constructed a lentiviral
vector to overexpress PREP and studied its effect on NP
cells. With the increased expression of PREP in NP cells,
the expression of Bcl-2 decreased while that of Bax increased
(Figures 3(g)–3(j)). Also, the overexpression of PREP signif-
icantly promoted the apoptosis of NP cells (Figure 3(k)).

3.4. p53 Is the Relay Baton Connecting the PI3K/AKT
Signaling Pathway and PREP. As an important transcription
factor downstream of the PI3K/AKT signaling pathway [26],
the expression of p53 increased with the aggravation of
IVDD, which was verified via western blotting
(Figure 4(a)). The mRNA expression of PREP and p53
showed excellent concordance in degenerated discs
(Figure 4(b)). The overexpression of p53 also promoted
PREP expression, indicating that p53 may modulate the
expression of PREP (Figure 4(c)). High concentration of
TBHP (400μM) increased the ration of apoptotic cells.
Moreover, the overexpression of p53 impaired the apoptosis
of NP rescued by 740 Y-P (Figure 4(d)). We predicted p53-
binding sites within the PREP promoter region in JASPAR:
http://jaspar.genereg.net. Furthermore, we performed a
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Figure 1: PREP is upregulated in degenerated intervertebral disc tissues. (a) Heat map of the associated genes in GSE146904. Red represents
upregulation. Green represents downregulation. (b) KEGG pathway analysis showed the changed function of PI3K-AKT pathway in
GSE146904. (c) Go enrichment analysis of GSE146904. (d) Heat map of the associated genes in GSE167931. Red represents upregulation
while green represents downregulation. (e) KEGG pathway analysis of GSE167931. (f) Go enrichment analysis of GSE167931. (g)
Representative MRI of human spine graded by the Pfirrmann system. (h) The expression of PREP in human NP tissues was analyzed by
qRT-PCR. Results are shown as mean ± SD, n = 5, ∗∗∗P < 0:001. (i) Immunohistochemical staining of PREP in human NP tissues with
different degrees of degeneration. Scale bar, 50 μm. (j) Quantitative of PREP positive cells. (k) Western blotting analysis of PREP in
human NP tissues with different degrees of degeneration.
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Figure 2: Continued.
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ChIP assay to confirm that PREP transcription was regu-
lated by p53 in NP cells. Specifically, p53 was increasingly
bound to the PREP promoter site in NP cells overexpressing
p53 but decreasingly bound under the suppression of p53
(Figure 4(e)). The promoter region of PREP was introduced
into the luciferase reporter plasmids. We then constructed
mutations in the predicted p53-binding region of the PREP
promoter, and the luciferase reporter assay showed that the
mutation decreased the activity of luciferase (Figure 4(f)).

3.5. PREP Impairs Protein Secretion in the ECM of NPs. To
study the role of PREP in ECM secretion, we suppressed
the expression of PREP using siRNA. TBHP (400μM) treat-
ment significantly increased the fluorescence intensity of
MMP3 in NP cells. However, this increase was greatly atten-
uated by the siRNA-mediated downregulation of PREP

silenced by siRNA (Figure 5(a)). Western blotting indicated
that TBHP suppressed the expression of Col2a1 and
aggrecan while promoting the expression of MMP3, which
was consistent with the immunofluorescence assay
(Figure 5(b)). The expression of Col2a1 and aggrecan tended
to be normal when PREP was downregulated. Furthermore,
overexpression of PREP resulted in decreased expression of
Col2a1 and aggrecan, which was verified by immunofluores-
cence and western blotting (Figures 5(c) and 5(d)).

3.6. PREP Knockout Protects against Puncture-Induced
IVDD. To further study the role of PREP in vivo, we pro-
duced PREP knockout mice. We established a mouse model
of IVDD by puncturing the intervertebral discs. Compared
to the WT group, the PREP-KO group had better histologi-
cal morphology six weeks after the establishment of the
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Figure 3: Continued.
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IVDD model, as proved by Safranine O/fast green staining
and HE staining (Figures 6(a) and 6(b)). Immunohisto-
chemical results showed that the intensity of MMP3 in the
intervertebral disc tissue of mice in the PREP-KO group
was reduced compared to that in the WT group
(Figure 6(c)). An X-ray examination was performed to
detect the height of the punctured intervertebral disc
(Figure 6(d)). The disc height index (DHI) was significantly
increased in the PREP-KO group compared to that in the
WT group (Figures 6(e) and 6(f)). Furthermore, MRI exam-
ination indicated that the Pfirrmann score of the PREP-KO
group was significantly lower than that of the WT group,
indicating less severe IVDD (Figures 6(g) and 6(h)). West-
ern blotting showed that PREP knockout in mice promoted
the expression of Col2a1 and aggrecan and decreased the
expression of MMP-3 (Figure 6(i)).

4. Discussion

LBP has become a common disease that affects the physical
and mental health of elderly people, causing a great
economic burden on society [27, 28]. IVDD is a primary

cause of LBP [29]. Although the molecular mechanism of
IVDD remains unknown, the loss of collagen and water in
NP is related to degeneration. Elaborating on the molecular
mechanisms of apoptosis in NP cells will help develop new
preventive and therapeutic measures for IVDD.

PREP has been studied as an important therapeutic
target in many diseases. Becker et al. showed that
Alzheimer-associated cerebrospinal fluid fragments of neu-
rogranin are associated with PREP [30]. D’Agostino et al.
proved that PREP deficiency impairs spatial learning and
memory [31]. Kim et al. reported that hypothalamic PREP
regulates pancreatic insulin and glucagon secretion in mice
[32]. Moreover, PREP has been associated with many phys-
iological processes. Myöhänen et al. reported PREP-induced
angiogenesis [33]. Kilpeläinen et al. showed that PREP is
related to autophagy [34]. As a cytoplasmic enzyme, PREP
combined with MMPs can convert collagen into proline–
glycine–proline fragments [21]. Therefore, we investigated
the association between IVDD and PREP and found that
the expression of PREP was significantly increased in degen-
erated disc tissues. The results were also confirmed by bioin-
formatic analysis of GSE146904 and GSE167931.
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Figure 3: PREP promotes apoptosis of NPs. (a) The qRT-PCR measured the interference efficiency of PREP in NP cells. Results are shown
as mean ± SD, n = 5, ∗∗P < 0:01, ∗∗∗P < 0:001. (b) Western blotting for the protein levels of PREP. (c, d) The qRT-PCR showed messenger
RNA expression of Bcl-2 and Bax in NP cells. Results are shown asmean ± SD, n = 5, ∗∗∗P < 0:001. (e) Western blotting for the protein levels
of Bcl-2 and Bax. (f) Flow cytometric analysis of apoptosis in NP cells, n = 3. (g–i) The qRT-PCR showed messenger RNA expression of
PREP, Bcl-2, and Bax in NP cells with PREP overexpression. Results are shown as mean ± SD, n = 5, ∗∗P < 0:01, ∗∗∗P < 0:001. (j)
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The bioinformatics analysis also suggested that the
PI3K/AKT signaling pathway was altered between normal
disc tissues and degenerated disc tissues. The PI3K/AKT
signaling pathway is closely related to IVDD [35–37]. Acti-
vation of the PI3K/AKT signaling pathway in the NP further
protects NP cells from apoptosis [38]. Wang et al. reported
that the activation of the PI3K/AKT signaling pathway
extended the degeneration of NP [37].

ROS act as critical mediators in regulating the ECM,
autophagy, and apoptosis in NP cells [10]. The antioxidant
capacity of the intervertebral disc is reduced as the antioxi-
dant proteins in the degenerated intervertebral disc tissue
decrease, leading to an imbalance of redox in the disc
cells [16].

Etelainen reported that PREP inhibition could reduce
oxidative stress by reducing the activity of NADPH oxidase;
this indicates a connection between PREP and oxidative
stress [39]. Next, we investigated the changes in the PREP
and PI3K/AKT signaling pathways under TBHP stimula-
tion. Stimulation with low concentrations of TBHP activated
the PI3K/AKT signaling pathway and downregulated the
expression of PREP. To determine whether PREP is directly
related to the PI3K/AKT signaling pathway, we added the
PI3K inhibitor LY294002 or agonist 740 Y-P to the NP cell
culture medium. The expression of PREP in NP cells was
significantly increased under LY294002 stimulation but sup-
pressed under 740 Y-P stimulation. PCR results indicated
that blocking of the PI3K/AKT signaling pathway with
LY294002 restored PREP to a higher level under TBHP
stimulation. This suggested that stimulation with TBHP
may downregulate the expression of PREP through activa-
tion of the PI3K/AKT signaling pathway.

It has been proved that ROS mediated the expression
level of AKT. Under moderate increase in ROS levels, AKT
protein is activated. When ROS levels are high, AKT protein
is inactivated [40]. Mistry et al. had reported that 10μM
H2O2 promoted the expression of p-AKT [41]. Dimozi
et al. showed that p-AKT protein was decreased with the
treatment of 500μM H2O2 for 6 hours [42]. In our study,

the PI3K/AKT pathway is activated to counteract moderate
increased ROS levels. With the activation of PI3K/AKT
pathway, the expression of PREP was reduced. However,
when the intracellular ROS content exceeds its own clear-
ance limit, oxidative stress occurs, and the PI3K/AKT path-
way is inhibited which causing the increased expression of
PREP. Since the PI3K/AKT pathway responded differently
to low and high concentrations of TBHP, PREP changes
correspondingly.

To understand how the PI3K/AKT signaling pathway
inhibits the expression of PREP, we reviewed the candidate
protein downstream of AKT. P53 is considered a critical
transcription factor that can also be suppressed by the
PI3K/AKT signaling pathway [26]. The expression of p53
in intervertebral disc tissues was positively correlated with
that of PREP. Moreover, the overexpression of P53 increased
the expression of PREP, indicating that p53 may promote
the transcription of PREP. Luciferase reporter experiments
after the ChIP assay verified the binding and transcriptional
activity of P53 in the PREP promoter regions.

In addition, we studied the effect of PREP on apoptosis
in NP cells. Knockdown of PREP attenuated high concentra-
tions of TBHP-promoted apoptosis in NP cells, whereas
overexpression of PREP increased the rate of apoptosis.
Moreover, ECM secretion by NP cells was inhibited by oxi-
dative stress and restored after PREP silencing.

In vitro experiments confirmed that the overexpression
of PREP promotes apoptosis in NP cells, whereas knock-
down of PREP protects NP cells from apoptosis induced
by oxidative stress. In addition, in vivo experiments demon-
strated that the degree of puncture-induced IVDD in PREP-
KO mice was greater than that in WT mice.

The present study has several limitations. PREP-KO
mice are not conditional knockout mice, which may have
unknown effects on the in vivo experimental results. More-
over, whether p53 is the most important gene between the
PI3K/AKT signaling pathway and PREP remains unclear.
Finally, the bioinformatics analysis may be limited by the
version of the packages used in R studio.
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Figure 6: PREP knockout protects against puncture-induced IVDD. (a, b) HE and Safranine O/fast green staining showed the severity of
IVDD changes at 6 weeks after puncture. Scale bar, 200μm. (c) Immunohistochemical staining of MMP-3 in mouse intervertebral disc
samples. Scale bar, 200 μm. (d) X-ray examination of mouse caudal vertebrae. (e) Schematic diagram of disc height index (DHI). DHI = ðD
+ E + FÞ/ðA + B + C + G +H + IÞ. (f) The DHI of mice in different groups. Results are shown as mean ± SD, n = 5, ∗∗P < 0:01, ∗∗∗P < 0:001.
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5. Conclusion

The mechanisms underlying IVDD remain unknown and
require further study. Our study confirmed that the increased
expression of PREP during disc degeneration and changes in
the expression of PREP in NP cells under oxidative stress
may be related to the PI3K/AKT signaling pathway. We
demonstrated that the silencing of PREP protects NP cells
from oxidative-stress-induced apoptosis. The in vivo knock-
out of PREP attenuates puncture-induced disc degeneration,
indicating that PREP may have significant value in the treat-
ment of IVDD.
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