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Distinct SARS‑CoV‑2 antibody 
reactivity patterns in coronavirus 
convalescent plasma revealed 
by a coronavirus antigen 
microarray
Rafael Assis1, Aarti Jain1, Rie Nakajima1, Algis Jasinskas1, Saahir Khan2, Huw Davies1, 
Laurence Corash3, Larry J. Dumont4,5,6, Kathleen Kelly5, Graham Simmons7, Mars Stone7, 
Clara Di Germanio7, Michael Busch7,8 & Philip L. Felgner1* 

A coronavirus antigen microarray (COVAM) was constructed containing 11 SARS‑CoV‑2, 5 SARS‑
1, 5 MERS, and 12 seasonal coronavirus recombinant proteins. The array is designed to measure 
immunoglobulin isotype and subtype levels in serum or plasma samples against each of the individual 
antigens printed on the array. We probed the COVAM with COVID‑19 convalescent plasma (CCP) 
collected from 99 donors who recovered from a PCR+ confirmed SARS‑CoV‑2 infection. The results 
were analyzed using two computational approaches, a generalized linear model (glm) and random 
forest (RF) prediction model, to classify individual specimens as either Reactive or non‑reactive against 
the SARS‑CoV‑2 antigens. A training set of 88 pre‑COVID‑19 specimens (PreCoV) collected in August 
2019 and102 positive specimens from SARS‑CoV‑2 PCR+ confirmed COVID‑19 cases was used for 
these analyses. Results compared with an FDA emergency use authorized (EUA) SARS‑CoV2 S1‑based 
total Ig chemiluminescence immunoassay (Ortho Clinical Diagnostics VITROS Anti‑SARS‑CoV‑2 Total, 
CoV2T) and with a SARS‑CoV‑2 S1‑S2 spike‑based pseudovirus micro neutralization assay (SARS‑
CoV‑2 reporter viral particle neutralization titration (RVPNT) showed high concordance between the 
three assays. Three CCP specimens that were negative by the VITROS CoV2T immunoassay were also 
negative by both COVAM and the RVPNT assay. Concordance between VITROS CoV2T and COVAM 
was 96%, VITROS CoV2T and RVPNT 93%, and RVPNT and COVAM 91%. The discordances were all 
weakly reactive samples near the cutoff threshold of the VITROS CoV2T immunoassay. The multiplex 
COVAM allows CCP to be grouped according to antibody reactivity patterns against 11 SARS‑CoV‑2 
antigens. Unsupervised K‑means analysis, via the gap statistics, as well as hierarchical clustering 
analysis revealed three main clusters with distinct reactivity intensities and patterns. These patterns 
were not recapitulated by adjusting the VITROS CoV2T or RVPNT assay thresholds. Plasma classified 
by COVAM reactivity patterns offers potential to improve CCP therapeutic efficacy CoV2T alone. The 
use of a SARS‑CoV‑2 antigen array can qualify CCP for administration as a treatment for acute COVID‑
19, and interrogate vaccine immunogenicity and performance in preclinical, clinical studies, and 
routine vaccination to identify antibody responses predictive of protection from infection and disease.

Following exposure and recovery from SARS-CoV-2 infection, convalescent patients develop antigen specific 
adaptive T- and B-cell immune responses including binding and neutralizing antibodies (Ab). The antibody 
levels, in response to SARTS-CoV-2, rise in the first 2 weeks, with serum levels of SARS-CoV-2 specific IgM 
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rising within the first week after infection and about a week later for IgG with the seroconversion times around 
10–14 days  respectively1,2. Although it is not perfectly clear how long a protective antibody response will typically 
last, it has been reported that the antibody titers seem to wane down as soon as 12 weeks after symptom onset 
reaching with baseline levels after 52  weeks1.

The genome of SARS-CoV-2, is composed of a single strand RNA that expresses structural and non structural 
proteins. As shown on previous studies, the structural proteins Spike (S) and nucleocapsid (NP) are able to elicit 
specific antibody production and are often targets for serological diagnostic  tests3. The S protein is composed 
of two subunits (S1 and S2) cleaved during the infection as a necessary step for infection. The receptor binding 
domain (RBD) is a critical domain of the S1 subunit, responsible for binding to the host cell ACE receptor and 
is the main target for neutralizing  antibodies4.

These immune responses may prevent reinfection or blunt the clinical consequences of future infectious 
exposures to the virus. Administration of COVID-19 convalescent plasma (CCP) from recovered patients is being 
employed for therapeutic use based on the belief that factors, including neutralizing Ab against SARS-CoV-2, 
present in the plasma may inhibit virus replication and improve patient outcomes. As the use of CCP evolved, 
it became apparent that not all CCP contained effective neutralizing efficacy, and anti-SARS CoV2 activity cor-
related with clinical  outcomes5,6.

Numerous clinical trials are underway aimed at understanding how best to administer CCP and to test the 
hypothesis that it is an effective treatment. A significant clinical trial involving more than 35,000 CCP treated 
COVID-19 patients has shown an efficacy signal from plasma with elevated Ab levels in patients treated within 
a few days after symptom  onset7. Previous efforts to use convalescent plasma for treatment of infectious dis-
eases without knowledge of  activity8 have produced mixed results, possibly associated with differences in the 
antibody profile from different donors. Differences in the breadth and level of SARS-CoV-2-specific Ab in CCP 
may correlate with therapeutic efficacy. Consequently, we investigated the performance of a coronavirus antigen 
microarray (COVAM) in order to characterize and classify Ab reactivity in CCP to optimize therapy before it 
is administered to patients.

COVAM is a multiplex assay platform for high-throughput serological studies. The microarrays are produced 
by printing validated and purified recombinant antigens on nitrocellulose-coated slides. The COVAM has 11 
SARS-CoV-2 antigens, 5 SARS-1, 5 MERS and 12 seasonal coronavirus antigens, as well as 35 antigens from 5 
other viruses that cause acute respiratory  infections9,10. A complete list of the COVAM antigens can be found 
in Supplementary Table 1. The arrays are designed to determine the Ab profile in serum or plasma samples to 
confirm prior exposure following suspected infection with the viruses and to monitor Ab changes over time. The 
arrays are designed for high throughput and low-cost testing and hence are suitable for epidemiology studies 
as a serologic surveillance tool to determine the prevalence and levels of Abs indicating viral exposure within 
individuals over the course of an epidemic; and to monitor post-vaccination immune response to guide recipi-
ent risk behavior.

Here we probed the COVAM with CCP collected from 99 donors between 4/18/2020 and 5/6/2020 from 8 
regions across the US. Although the donors were all recovered SARS-CoV-2 PCR+ COVID-19 cases, their Ab 
response profiles against 11 SARS-CoV-2 fell into distinct groups with different Ab levels and breadth of the 
responses particularly to 4 SARS-CoV-2 antigens. If these classification groups correlate with CCP efficacy, a 
SARS-CoV-2 antigen microarray may be useful to qualify and select CCP for treatment of acute COVID-19.

Results
COVAM, RVPNT and VITROS CoV2T chemiluminescent immunoassay assay concord‑
ance. The COVAM has 11 SARS-CoV-2 antigens, 5 SARS-1, 5 MERS and 12 seasonal coronavirus antigens. 
The complete list of the COVAM antigens, in the order displayed in the figures, is available in Supplementary 
Table 1. We probed COVAM with CCP collected from 99 US PCR confirmed COVID-19 plasma donors who 
recovered from the infection 1–2 months prior to CCP collection. The multiplex COVAM results were analyzed 
using two computational approaches, either a generalized linear model (glm) or random forest (RF) to classify 
individual specimens as either reactive or non-reactive against the SARS-CoV-2 antigens. The binary predic-
tion results were compared with the FDA EUA VITROS CoV2T chemiluminescence immunoassay from Ortho 
(reactive: S/C ≥ 1.0) and with an RVPNT assay (reactive: neutralization titer with > 5) inhibition of infection 
[NT50] > 40) developed at Vitalant and tabulated in Table 1.

Compared to the VITROS CoV2T assay, there is 93%, and 91% concordance with the RVPNT, and COVAM 
predictions, respectively. Three specimens that were negative by the VITROS CoV2T assay were also negative by 
RVPNT and two of these for COVAM assays. Ninety percent of the specimens are completely concordant among 
all comparisons, including 88 seropositive by all tests and two seronegative by all tests. All of the discordances are 
found in ten samples that showed low positive titer on the VITROS CoV2T immunoassay. Among these, eight 
were considered non-reactive on the RVPNT test and three considered non-reactive on the COVAM prediction 
(using a 60% RF probability cutoff).

The COVAM data are summarized in the heatmap in Fig. 1. There are 99 specimen IDs along the x-axis and 
65 antigens along the y-axis (Supplementary Table 1). The antigens are grouped according to the virus from 
which they are expressed. The top 11 antigens are from SARS-CoV-2 and the quantitative COVAM IgG Ab 
results from these antigens were used to cluster the specimens into 3 groups as shown in the dendrogram on 
top of the heatmap (Fig. 1).

The normalized signal intensity on the COVAM for each antigen was compared with either the VITROS 
CoV2T S/C levels or the RVPNT NT50 titers. The antibody reactivity to SARS-CoV-2 S1 and RBD containing 
antigens present on the COVAM correlates with the VITROS CoV2T or the RVPNT titers. Most notably, the 
SARS.CoV.2.S1.HisTag antigen correlates to the VITROS CoV2T S/Cs and to the RVPNT NT50 titers with 
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Spearman’s r = 0.65 and r = 0.655, respectively (Fig. 2a). The results of correlation analysis for the S1 Spike anti-
gen in the COVAM array, are shown in Fig. 2. A summary of Spearman r values for each of the 11 SARS-CoV-2 
COVAM are plotted in Fig. 2b. Overall, antigens that contain the RBD domain and lack the S2 domain show a 
high correlation between the assays, and the COVAM reactivity against the nucleocapsid protein NP and the S2 
domain of spike show low correlation with the VITROS S1 based CoV2T or the RVPNT assays. This observation 
is not surprising due to S1 specificity of the VITROS CoV2T assay and the Ab-mediated neutralization of virus 
entry which is primarily based on blocking interactions between the RBD domain of S1 and ACE-2 receptors 
expressed on target cells in the assay.

CCP specimens cluster into 3 distinct groups according to Ab levels against SARS‑CoV‑2 
antigens. Although concordance was observed in the binary predictions of the three assays, the multiplex 
COVAM assay allows for a multivariant cluster analysis metric to classify CCP into different groups based on 
their reactivity patterns against several antigens. The VITROS CoV2T or RVPNT assays produce a single value 
for each specimen and a binary (reactive or non-reactive) result when that value is above or below a reactiv-
ity threshold, with quantitation of Ab intensity above the S/C = 1.0 and NT50 = 40 categorical thresholds. The 
COVAM interrogates IgG levels against 11 SARS-CoV-2 antigens and uses a computational algorithm to deter-
mine a binary outcome by comparing the results to the training set of COVID positive and negative controls.

Unsupervised cluster analysis can sort the specimens according COVAM antigen specific IgG reactivity pat-
terns into at least three distinct groups based on the level of antibodies against a collection of NP, Spike, S1, S2 
and RBD antigens (Fig. 1). Group 1 specimens have high Ab levels against many of the SARS-CoV-2 antigens, 
most markedly high reactivity to nucleocapsid protein (NP), S1 domain of spike protein, and the full spike S1+S2 
protein. Group 3 specimens have very low antibody levels to NP and S1 compared to the Group 1 specimens. 
The Group 2 specimens show an intermediate reactivity level against spike antigens. The horizontal bars on top 
of the heatmap indicate reactive (red) and non-reactive (blue) predictions for each specimen for the VITROS 
CoV2T, RVPNT and COVAM assays. All of the predicted non-reactive specimens from all three assays are in 
group 3. All of the group 1 and 2 specimens are reactive and concordant by all three assays.

The results in Fig. 3a show the IgG heatmap clustered (k-means), using the reactivity of the SARS-CoV-2 
antigens. These can also be visualized in the PCA analysis (Fig. 3c) which shows 3 distinct groups. The Ab levels 
against each antigen for each group is shown on Fig. 3b. The heatmap and its dendrogram (Fig. 3) indicate that 
the specimens in each group can be further split into subgroups. Figure 4 separates Group 1 specimens into 2 
subgroups (1.1 and 1.2) evident from the heatmap (Fig. 4a) and confirmed by the PCA (Fig. 4c). The bar graph 

Table 1.  Reactivity classification of the CCP samples. CCP samples were analyzed by the COVAM array as 
well as the VITROS CoV2T chemiluminescence and RVPNT assays. The results from the two computational 
methods as well as VITROS and RVPNT assays show high concordance, especially for the high titer samples. A 
higher concordance (96%) was observed between the VITROS assay and COVAM array.

CCP #
VITROS CoV2T 
S/C ratio

VITROS CoV2T 
interpretation RVPN NT50

RVPNT 
interpretation

COVAM RF 
probability

COVAM RF 
interpretation

Concordance

CoV2T vs 
RVPNT

CoV2T vs 
COVAM rf

RVPNT vs 
COVAM rf

1 0.01 Non-Reactive  < 40 Non-reactive 0.796 Reactive 1 0 0

2 0.02 Non-Reactive  < 40 Non-reactive 0.21 Non-reactive 1 1 1

3 0.31 Non-Reactive  < 40 Non-reactive 0.38 Non-reactive 1 1 1

4 1.39 Reactive 279.5 Reactive 0.996 Reactive 1 1 1

5 1.45 Reactive 145.5 Reactive 0.402 Non-reactive 1 0 0

6 2.14 Reactive 302.4 Reactive 0.996 Reactive 1 1 1

7 2.77 Reactive 4171 Reactive 1 Reactive 1 1 1

8 4.24 Reactive  < 40 Non-reactive 0.86 Reactive 0 1 0

9 4.48 Reactive  < 40 Non-reactive 0.836 Reactive 0 1 0

10 5.21 Reactive 617 Reactive 1 Reactive 1 1 1

11 5.36 Reactive 132.2 Reactive 0.402 Non-reactive 1 0 0

12 5.62 Reactive 3583 Reactive 1 Reactive 1 1 1

13 6.22 Reactive 97.58 Reactive 0.868 Reactive 1 1 1

14 7.54 Reactive  < 40 Non-reactive 0.848 Reactive 0 1 0

15 9.37 Reactive  < 40 Non-reactive 0.372 Non-reactive 0 0 1

16 9.45 Reactive  < 40 Non-reactive 0.966 Reactive 0 1 0

17 9.8 Reactive 132.8 Reactive 0.984 Reactive 1 1 1

18 10.3 Reactive  < 40 Non-reactive 0.602 Reactive 0 1 0

19 11 Reactive 6910 Reactive 1 Reactive 1 1 1

20 12.4 Reactive  < 40 Non-reactive 0.95 Reactive 0 1 0

21–99 12.9–436 Reactive  > 131 Reactive 0.8—1 Reactive 79 79 79

% concordance 93% 96% 91%
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(Fig. 4b) highlights a significant difference between subgroups 1.1 and 1.2 in reactivity against antigen S2 which 
is elevated in Group 1.2. Figure 5 separates Group 2 specimens into 2 subgroups (2.1 and 2.2) evident from the 
heatmap (Fig. 5a) and confirmed by PCA (Fig. 5c). The bar graph (Fig. 5b) highlights a significant difference 
between subgroups 2.1 and 2.2 against the nucleocapsid protein and S2 which are both elevated in Group 2.2). 
Figure 6 separates Group 3 specimens into two groups (3.1 and 3.2) evident from the heatmap (Fig. 6a) and bar 
graph (Fig. 6b) and confirmed by PCA (Fig. 6c). From the bar graph and heat map it is evident that the reactiv-
ity of group 3 specimens is less than that of the other two groups, but the subgroup 3.2 is particularly lacking in 
antibodies to SARS-CoV-2 antigens.

Multiplex antigen classification of CCP. The efficacy of CCP may vary depending on the donor, and 
there are different ways to classify the plasma before it is administered. One criterion is whether the donor was 
a PCR+ confirmed case. Factors such as clinical disease severity and the time from symptom onset or recovery 
to collection of CCP units may contribute to the classification. Antibody level is a measurement that can be 
used to qualify CCP and antibodies against different antigen targets including the total spike S1/S2, S1, S2, RBD 
and NP proteins can be considered. Virus neutralization assay titers are another metric and pseudoviruses have 
been developed for this purpose to make it more convenient than live SARS-CoV-2 virus neutralization assays 
for routine use. In order to use these quantitative measurements to qualify CCP for clinical administration, a 
threshold can be established, to qualify a unit of plasma as acceptable for clinical use or rejected.

A multiplex antigen classification of CCP can also be considered as a criterion to qualify and accept or reject 
donor plasma for transfusion to COVID-19 patients. For example, all of the highly reactive COVAM Group 1 
specimens (Fig. 3) could be accepted and all of the low reactive Group 3 specimens rejected. Or subsets of any 
of the groups (Figs. 4, 5, 6) could be accepted or rejected based on knowledge of the clinical efficacy of each 
major group or subgroup.

The results plotted in Fig. 7 show how multiplex antigen classification differs from criteria based on changing 
the binary threshold of a single assay. In Fig. 7A the RVPN titer threshold was moved from the canonical standard 
40, to 160, 320 and 640. Group 3 specimens increasingly fall below the cutoff as the threshold increases. Group 
2 specimens are mostly above threshold at the 160 threshold and increasingly fall below the threshold as it is 
increased. Interestingly, all but one of the Group 1 specimens are below the highest RVPNT threshold of 640.

Figure 1.  IgG COVAM reactivity heatmaps of 99 sera from recovered coronavirus convalescent cases. The 
heatmaps show the IgG reactivity levels of patients to antigens printed onto the COVAM array. Each column is 
the representation of a specific specimen while each row is represented as the mean reactivity of 4 replicates of 
each antigen. The COVAM array shows clear IgG reactivity to SARS-CoV-2 antigens that are clustered into three 
groups. A complete list of the antigens, in the order displayed, is available in the Supplemental Table 1. This 
figure was generated using the R programing language, version 4.0.2 (https:// www.r- proje ct. org/).

https://www.r-project.org/


5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7554  | https://doi.org/10.1038/s41598-021-87137-7

www.nature.com/scientificreports/

The VITROS CoV2T assay threshold can also be adjusted to select the specimens with higher signals (Fig. 7B). 
Moving the S/C threshold from 1 to 10 preferentially removes a high proportion of the low-level reactive Group 
3 specimens. At the highest threshold of 150 all of the Group 3 specimens are removed while 40% and 30% of 
the Group 1 and 2 specimens, respectively, are above the threshold.

These assay-dependent and threshold-dependent differences in the classification of plasma specimens is fur-
ther evident from the results in Fig. 8. Here the group 1, 2 and 3 specimens were separately sorted by the RVPNT 
titer (Fig. 8A). The Titer Cutoff lines on Fig. 8A shows how most of the Group 1 samples are above the threshold 
even at the highest 640 titer. The Group 2 and Group 3 specimen classifications are affected more by increasing 
the Cutoff titer. Similarly, the VITROS CoV2T data is plotted in Fig. 8B and three different assay cutoff values 
are shown. Random forest probabilities (for classification as “Reactive”) are plotted in Fig. 8C and three different 

Figure 2.  Correlation of the RVPNT assay NT50 values or VITROS CoV2T assay S/C values with the COVAM 
reactivity (RF values) to SARS-CoV-2 antigens. (A) Scatterplots representative of the correlation between the 
vsn normalized COVAM reactivities and the RVPNT or VITROS CoV2T assays to the S1 (HisTag) antigen. (B) 
The Spearman correlation (r) of the vsn normalized COVAM reactivities and RVPNT or VITROS CoV2T Assay 
to the COVAM SARS-CoV-2 antigens. This figure was generated using the R programing language, version 4.0.2 
(https:// www.r- proje ct. org/).

https://www.r-project.org/
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assay and 0.6 (60%) as well as 0.8 (80%) cutoff values are shown as horizontal lines. On Fig. 8C, it is evident that 
the random forest prediction is capable of correctly classifying all samples from the groups 1 and 2 (higher and 
medium reactivity levels, however, as the reactivity level falls (Group 3) the random forest prediction, as well as 
the other methods, loses sensitivity. It is evident that the VITROS CoV2T intensity is not well correlated to the 
RVPNT titer, and scatterplots (not show) give  R2 = 0.037. Increasing the VITROS CoV2T threshold cuts through 
all the groups. These results indicate that RVPNT titer, VITROS CoV2T titer, and the COVAM multiplex cluster 
analysis patterns select different collections of plasma specimens.

Discussion
Passive antibody transfer using convalescent plasma has previously been used to treat infectious diseases that 
involve the respiratory system including  influenza11,12. Prior experience in epidemics with convalescent plasma 
(CP) containing antibodies to viruses has demonstrated variable indications of therapeutic efficacy against 

Figure 3.  Clustering analysis of the IgG reactivity to the COVAM SARS-CoV-2 antigens. On (A), heatmap 
showing the reactivity to the SARS-CoV-2 antigens. Samples were clustered using the hierarchical Clustering 
analysis. The dendrogram was cut (and color coded) to a final cluster number equal 3. On (B), a bar graph 
showing the mean reactivity and the standard error of each cluster to each individual SARS-CoV-2 antigen. On 
(C), principle component analysis (PCA) showing the spatial distribution of the samples for the first and second 
principal components that explain, combined, over 74% of the variance. This figure was generated using the R 
programing language, version 4.0.2 (https:// www.r- proje ct. org/).

Figure 4.  Group 1 Cluster Analysis and PCA demonstrates two subgroups. (A) Heatmap showing the reactivity 
to the SARS-CoV-2 antigens. Samples were clustered using the hierarchical clustering analysis. The dendrogram 
was cut (and color coded) to a final cluster number equal 3. On (B), a bar graph showing the mean reactivity 
and the standard error of each cluster to each individual SARS-CoV-2 antigen. (C) PCA analysis showing the 
spatial distribution of the samples classified as 1.1 and 1.2 for the first and second principal components. This 
figure was generated using the R programing language, version 4.0.2 (https:// www.r- proje ct. org/).

https://www.r-project.org/
https://www.r-project.org/
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Influenza, Argentine Hemorrhagic Fever, and SARS. The variation in efficacy was impacted by lack of ability to 
assess antibody  properties13,14. Characterizing antibody titers in plasma to viruses has indicated a correlation 
with therapeutic efficacy. An expanded access protocol (EAP) clinical trial led by the Mayo Clinic has been 
completed resulting in > 65,000 units of apheresis plasma collected from convalescent COVID-19 patients and 
treating > 35,000 acutely infected COVID-19 in-patients. Anti-SARS-CoV-2 antibody levels in donor plasma 
were variable, and a small statistically significant (p < 0.05) improvement in the clinical outcome was reported 
in a subset of patients who were treated early after symptom onset and received the plasmas with higher Ab 
titers compared to patients who received plasma later in the disease course. The results indicated that the SARS-
CoV-2 specific Ab content of CCP may be associated with improved clinical outcomes in the appropriate patient 
subset. Definitive safety and efficacy of CCP for the treatment of COVID-19 is awaiting completion of placebo 
controlled, prospective and randomized clinical trials (RCTs).

Figure 5.  Group 2 Cluster Analysis and PCA demonstrates two subgroups. (A) Heatmap showing the reactivity 
to the SARS-CoV-2 antigens. Samples were clustered using the hierarchical clustering analysis. The dendrogram 
was cut (and color coded) to a final cluster number equal 3. (B) A bar graph showing the mean reactivity and 
the standard error of each cluster to each individual SARS-CoV-2 antigen. (C) PCA analysis showing the spatial 
distribution of the samples categorized as subgroups 2.1 and 2.2 for the first and second principal components. 
This figure was generated using the R programing language, version 4.0.2 (https:// www.r- proje ct. org/).

Figure 6.  Group 3 Cluster Analysis and PCA demonstrates two subgroups. (A) Heatmap showing the reactivity 
to the SARS-CoV-2 antigens. Samples were clustered using the hierarchical clustering analysis. The dendrogram 
was cut (and color coded) to a final cluster number equal 3. (B) A bar graph showing the mean reactivity and 
the standard error of each cluster to each individual SARS-CoV-2 antigen. (C) PCA analysis showing the spatial 
distribution of the samples categorized as subgroups 3.1 and 3.2 for the first and second principal components. 
This figure was generated using the R programing language, version 4.0.2 (https:// www.r- proje ct. org/).

https://www.r-project.org/
https://www.r-project.org/
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Clinical serodiagnostic tests usually measure antibody levels against a single antigen or epitope and a single 
Ig isotype. The output of current EUA SARS-CoV-2 Ab assays are a binary positive/negative, above or below a 
threshold with or without reporting intensity of reactivity levels above the threshold. The assay cutoff threshold 
is determined by probing a well-characterized collection of positive and negative control samples. Some tests of 
this type mix multiple antigens together and use secondary Abs that recognize multiple isotypes to produce an 
aggregate value with a binary positive/negative result.

Methodologies like COVAM that quantitatively interrogate multiple specific signal intensity levels inde-
pendently to classify specimens were called “chemometrics” in the pre-genomic period. Modern multivariant 
statistical approaches that interrogate and classify a “fingerprint” of individual genomic measurements have been 
developed to classify genome sequence and expression data, and these computational methods can also be applied 
to clinical diagnostics. The test results from the COVAM assay described here take advantage of multivariant 
machine learning, pattern recognition, and clustering to classify plasma samples that have many antibodies at 
different levels against numerous SARS-CoV-2 antigens.

The COVAM was constructed to independently measure immunoglobulin isotype and subtype levels in 
serum or plasma samples against each of the individual antigens printed on the array. We use two computational 
approaches, either a generalized linear model (glm) or a random forest (RF) prediction model to classify indi-
vidual specimens as either reactive or non-reactive against the SARS-CoV-2 antigens. We use a training set of 88 
PreCoV specimens collected in July–September 2019 and positive specimens from PCR+ confirmed COVID-19 
cases. We evaluated 99 coded CCP plasma samples and produced binary positive/negative results that were 96% 
concordant with the FDA EUA Ortho VITROS CoV2T immunoassay and 93% with the RVPNT assay. All of the 
discordances were weak responders around the threshold of the comparators.

Although the binary classification of COVAM, VITROS CoV2T and RVPNT assays are highly concordant, 
multivariant COVAM analysis of quantitative results reveals distinct differences among the 99 CCP specimens 
analyzed in this study. Unsupervised K-means analysis, as well as hierarchical clustering reveal three main 
clusters with distinct reactivity intensities and patterns. The dendrogram analysis reveals at least two additional 
subgroups within each of the major groups that separate based on reactivity patterns against the antigens on the 
array. We could not recapitulate these group classifications by simply moving the reactivity thresholds of either 
the VITROS CoV2T or RVPNT assays.

The variable reactivity patterns between individuals observed in this study is suggestive of polyclonal immune 
responses with different antibody specificities which should be examined in light of clinical outcomes in recipi-
ents of CCP transfusions; if predictive, the COVAM assay could be employed to qualify CCP for administration 
as a treatment for acute COVID. An analysis to identify antibody patterns associated with treatment efficacy can 
be done retrospectively on aliquots from plasma that have already been used for treatment in ongoing clinical 
trials of CCP and vaccines.

In summary, the COVAM antigen array have multiple applications that allow for the interrogation of the 
antibody response toSARS-CoV-2 and is a strategic tool that can be used to characterize the antibody profile 

Figure 7.  SARS-CoV-2 Reactivity Classification. In both (A) (comparison to RVPNT NT50 thresholds) and 
(B) (comparison to VITROS CoV2T S/C thresholds), the bars across the top represent the classification for each 
given sample. The color red represents samples classified as reactive and the color blue, samples classified as 
non-reactive. The top 2 bars represent the COVAM reactivity predictions with the top bars the prediction based 
on the random forest model and the second bars the prediction from the logistic regression model. The bar 
graphs represent the % of samples classified as reactive on each cutoff value. This figure was generated using the 
R programing language, version 4.0.2 (https:// www.r- proje ct. org/) and MICROSOFT Excel version 2016, www. 
micro soft. com).

https://www.r-project.org/
http://www.microsoft.com
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to qualify CCP samples as well as immunogenicity and performance of vaccine preclinical and clinical studies, 
evaluate exposure, study vaccine breakthrough infections as well as guide recipient social behavior, and the need 
for additional immunizations.

Figure 8.  SARS-CoV-2 RVPNT and VITROS-CoV2T titers. In both (A) (RVPNT NT50 titers) and (B) 
(VITROS CoV2T S/C titers), the samples were sorted by their cluster classification and the RVPNT titers. The 
red, horizontal lines represent different cutoffs being, for RVPNT 1:40; 1:160; 1:320 and 1:640; for VITROS 
CoV2T S/C > 1, 10, 50 and 150 and for the random forest prediction probability 0.6 and 0.8. This figure was 
generated using the R programing language, version 4.0.2 (https:// www.r- proje ct. org/).

https://www.r-project.org/
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Methods
Specimen testing on coronavirus antigen microarray. COVID-19 convalescent plasma (CCP) were 
collected by Vitalant April 18 through May 5 2020. Donors were qualified following FDA guidance. Evidence 
of COVID-19 was required in the form of a documented positive SARS-CoV-2 molecular or serologic test, and 
either complete resolution of symptoms at least 28 days prior to donation or complete resolution 14 days prior to 
donation with negative molecular test result. Donors were required to meet traditional allogeneic blood donor 
criteria per the Code of Federal Regulations (21 CFR 630.10 and 630.15). At time of plasma collection, donors 
consented to use of de-identified donor information and test results for research purposes. Apheresis plasma 
collection was performed with the Alyx (Fresenius Kabi USA LLC, Lake Zurich, IL, USA) and Trima (Ter-
umo BCT, Lakewood, CO, USA) apheresis systems following manufacturers’ recommendations. Donor serum 
was prepared at the time of donation, frozen < − 18 °C, and maintained in the sample repository. Prospective 
CCP release criteria using the spike specific Ortho VITROS CoV2T SARS-CoV-2 antibody detection assay was 
implemented after 5/13/2020. Serum samples for this study were selected from the central Vitalant Research 
Institute’s repository without regard to any previous test results, donor medical history, collection location or 
other criteria representing collections from 7 regional collection sites across the United States.

The SARS-CoV-2 positive controls and negative controls are composed by 102 specimens collected from 
PCR positive individuals, collected from different sources and 88 specimens collected from healthy individuals 
prior to November 2019, before the beginning of the pandemic, as future research use authorized specimens 
from blood banks. A complete description of the control samples (here referred as reference or training set) can 
be found at Assis et al.15.

The COVAM  slides9,10 were probed with human plasma and analyzed as described  elsewhere16–18. Briefly, the 
specimens were diluted 1:100 in 1X Protein Array Blocking Buffer (GVS Life Sciences, Sanford, ME), transferred 
to the slides and incubated overnight at 4 °C. The slides were then washed 3 times for 5 min each with t-TBS 
buffer (20 mM Tris–HCl, 150 mM NaCl, 0.05% Tween-20 in  ddH2O adjusted to pH 7.5 and filtered) at room 
temperature (RT). Then, anti-human IgG and anti-human IgA Secondary Ab were added to each pad at a dilution 
of 1:100 (in Protein Array blocking Buffer) and incubated for 2 h at RT under agitation. Pads were then washed 
with t-TBS 3 times for 5 min each and dried. The slides were imaged using ArrayCam imager (Grace Bio-Labs, 
Bend, OR, USA). In order to measure non-specific binding of the secondary Ab, pads were incubated without 
the previous addition of human sera. The data acquisition and spot quantification were performed using the 
Scan ArrayExpress (V 3.0, PerkinElmer)  software16–18.

Specimen sources and prior characterization. All CCP subjects have consented to the use of blood 
donor Information, blood, and blood samples in research. This was determined as exempt by ADVARRA, 
Columbia, MD. samples were collected in accordance to the January 19, 2017 Final Common Rule, Federal 
Policy for the Protection of Human Subjects. All methods and protocols were approved by the University of 
California Irvine Human Research Protections (IRB/HRP). Informed consent was obtained from all participants 
and all samples were unidentified.

In order to build the prediction models, available data from samples with known exposure status to SARS-
CoV-2 was used as a training  set10,19. This data set was built from 88 PreCoV specimens derived from frozen 
plasma components collected by Vitalant in July–September 2019, and 102 specimens from PCR confirmed 
cases was used for these analyses. These confirmed positive cases include 45 serum samples from the University 
of California Irvine collected between 7 and 25 days after the symptom onset; 30 samples from the University 
of California San Francisco collected between 2 and 38 days after the symptoms onset; 13 samples from Basel 
collected between 13 and 50 days after the symptoms onset and 14 samples from Ortho Clinical Diagnostics 
collected between 7 and 22 days after the symptoms onset. The CCP samples were a collection of 99 SARS-
CoV-2 convalescent plasma samples from the Vitalant system collected between 4/18/2020 and 5/6/2020 from 
8 regions across the US.

Neutralization titers were measured as 50% neutralization (NT-50) by endpoint titration using a recombinant 
viral-particle neutralization test (RVPNT) and a cutoff equal to 1:40. The VITROS CoV2T chemiluminescent 
immunoassay assay was performed using either serum or plasma samples from Vitalant Research Institute (San 
Francisco, CA, USA) according to the manufacturer  instructions10. The test targets the spike protein and applies 
a predefined threshold value of 1.0 signal-to-cutoff (S/C) for IgG seropositivity but has a broad dynamic range 
with S/C values as high as 1000.

Data analysis and normalization. All data analysis was performed and figures generated in the R pro-
graming environment (Version 4.0.2, https:// www.r- proje ct. org/). Figure 7 was generated both using the R pro-
graming environment and MICROSOFT EXCEL (Version 2016, https:// www. micro soft. com).

After data acquisition, data normalization was performed by the Quantile Normalization method using the 
“normalize.quantiles.use.target” function of the “preprocessCore” package (Version 1.50.0). As reference for nor-
malization, a collection of known positive and known negative samples (training set comprised of serial samples 
from recovered COVID-19 patients and plasma collected in the July–September 2019, respectively) was used.

For vsn normalization, first a model was created with the training set using the function “vsn” then, this 
model was used to normalize the CCP samples (package vsn version 3.56.0).

Cluster analysis. To investigate the different reactivity profiles, the data were clustered and divided based 
on the reactivity to the 11 SARS-CoV-2 antigens. For the clustering, first the optimal number of clusters was 
estimated by the gap statistics on the K-means clustering analysis (“fviz_nbclust” function from the factoextra 
package (version 1.0.7). Then, a Hierarchical Clustering analysis (“hclust” function, method “ward.D2”, from the 

https://www.r-project.org/
https://www.microsoft.com
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“stats” package, version 4.0.2) was performed and the dendrogram cut in order to obtain a number of cluster 
defined by the previous calculated gap statistics. The assigned groups were obtained by cutting the dendrogram 
to obtain K = n groups, where n is the optimal number of clusters obtained from the gap statistics analysis.

Principal component analysis (PCA) was also performed (“prcomp” function from the “stats” package version 
4.0.0 as well as the “fviz_nbclust” function from the “factoextra” package, version 1.0.7).

Reactivity classification. With goal of predicting exposure to SARS-CoV-2, the samples were first clas-
sified based on their overall reactivity profile. The prediction was performed using two main computational 
methods, a logistic regression model and a random forest prediction model.

For the logistic regression, a generalized linear model (“logit” family) was first generated (“glm” function from 
the “stats” package version 4.0.2) using the training set of. Then a receiver operating characteristic curve (ROC) 
was generated in order to obtain all the curve coordinates. This allows estimation of the specificity and sensitivity 
for each point of the curve and therefore defines an optimal cutoff point of the regression analysis fitted values. 
For the predictions described in this work, the model was built using four antigens: SARS-CoV-2 S1, SARS-
CoV-2 S1.HisTag, SARS-CoV-2.S1.RBD, SARS.CoV.2.S1+S2. The test samples are then submitted to the logistic 
regression analysis and the fitted values compared to the defined cutoff for classification (positive or negative).

For the random forest analysis, like the logistic regression method, a model fit is generated (random forest ver-
sion 4.6-14). For the random forest model, seven antigens were used: SARS-CoV-2 NP, SARS-CoV-2 S1.HisTag, 
SARS-CoV-2 Spike.RBD.rFc, SARS.CoV.2.S1.mFcTag, SARS.CoV.2.S1.RBD, SARS.CoV.2.S1+S2, SARS.CoV.2.S2.

Data availability
Source microarray data are provided as supplementary files.

Code availability
The complete custom R scripts used for data analysis will be made publicly available at GitHub.
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