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Abstract
Genetics of gene expression (eQTLs or expressionQTLs) has proved an indispensable tool for understanding biological pathways
and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We
performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-
effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological
pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We
found eQTLs for about 85%of analysed genes, and 18%of geneswere trans-regulated. Local eSNPswere enrichedup to a distance
of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated
genes of GWAS-related eSNPs supported functional relevance of identified eQTLs.We demonstrate that nearest genes of GWAS-
SNPsmight frequently bemisleading functional candidates.We identified novel trans-clusters of potential functional relevance
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for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes.
We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable
transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest
that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a
prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study
substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of
gene expression, pathways and disease-related processes.

Introduction
Expression quantitative trait loci (eQTLs) are pairs of genomic
variants and genes for which there is an association of the gen-
omic variantwith themRNAexpression of the gene (1). If the gen-
omic variant is an SNP, we call it ‘eSNP’ (2,3). Corresponding
genes are referred to as ‘regulated genes’. Analysis of eQTLs is
considered an important avenue for the mechanistic under-
standing of genotype–phenotype associations (4), especially in
the context of genome-wide association studies (GWAS) analys-
ing the genetics of complex traits. Genes regulated by a GWAS-
SNP are promising candidates for follow-up functional studies
and may point towards novel and relevant regulatory mechan-
isms (5). Observed enrichment of GWAS-SNPs within eSNPs cor-
roborates this approach (6). Consequently, an increasing number
of eQTL-studies in humans in different tissues have been
performed (3,4,7–27).

Commonly, eQTLs are differentiated in cis- (i.e. local) and
trans- (i.e. distant) eQTLs. Cis-eSNPs are typically defined to be lo-
cated within the transcribed region of a regulated gene or within
amaximumdistance of 1 Mb to the transcribed region. Ifmultiple
genes are regulated by a single trans-eSNP, the term eQTL hot-
spot or trans-cluster is used (12,13,21,28). Published eQTL studies
have shown that there are numerous cis-eSNPs with high effect
size on corresponding transcript levels. Conversely, trans-effects
are usually small in size requiring larger studies for detection and
confirmation.

Here, we performed a comprehensive genome-wide eQTL
analysis of gene expression in peripheral blood mononuclear
cells (PBMCs). We studied a large cohort of 2112 individuals al-
lowing us to detect small effects which are common for trans-
eQTLs. Exploiting the high power of our study, we also perform
extensive replication analysis of published eQTLs including a
large recentmeta-analysis (23). From this, we find a good replica-
tion rate of previously published eQTLs in our data and conclude
that about one-third of eQTLs identified in our study are novel.
Going beyond pure univariate analysis of SNP-transcript pairs,
we analyse pleiotropic effects of gene-expression regulation by
studying eQTL hot spots where we discover novel trans-clusters
of regulated genes.We demonstrate that these genes can provide
meaningful mechanistic hypotheses. Additionally, we estimate
the polygenetic effects of expression regulation by calculating
chip-wise (CW) heritability (29). We propose to contrast these
estimates with the combined correlation adjusted explained
variances (30) of all significantly associated eSNPs for cis- and
trans-regulation. This allows us to approximate the gap between
the heritability already explained by the discovered cis- and trans-
eQTLs and the heritability accessible with our SNP microarray
technology in even larger studies. Finally, we perform a compre-
hensive analysis of annotated genomic elements including novel
classes of non-protein coding loci. Our results support a promin-
ent role for loci of non-coding RNAs (ncRNAs) and loci of pseudo-
genes in the regulation of expression of coding genes in humans.
This result may facilitate further research regarding eQTL

identification and regulatory mechanisms. Throughout the
manuscript, we discuss implications for our functional under-
standing of gene-expression regulations and SNP–phenotype as-
sociations by contrasting our results with GWAS-SNPs or by
pathway enrichment analyses.

Results
The power of the study allows detection of small
genetic effects on gene expression

We studied the genetics of gene expression in PBMCs of 2112 indi-
viduals from the LIFE-Heart Study (31). We assessed the power
of our study in comparisonwith previously published eQTL studies
(Supplementary Material, Fig. S1). Exemplarily, we had 80% power
to detect an eSNP that explains 1.8% variance of a trans-regulated
transcript or 0.7% variance of a cis-regulated transcript. This is con-
siderablymore than the power todetect the same effects in a study
comprising 1500 individuals (44.8 and 59.4%, respectively), what
was the largest single study published so far (21).

Summary information of identified eQTLs

Controlling the false-discovery rate at 5% separately for cis- and
trans-eQTLs, we identified a total of 1 840 232 eQTLs involving
11 410 (85.5%) genes. After pruning of eSNPs, in order to account
reporting for linkage disequilibrium (LD), this number corre-
sponds to ∼151 277 eQTLs. A genome-wide eQTL-plot displaying
positions of eSNPs against those of corresponding regulated
genes is shown in Supplementary Material, Figure S2. In our
data, 17.6% of all genes expressed in mononuclear blood cells
were associated with a trans-eSNP and 83.2% of all genes were as-
sociated with a cis-eSNP. Conversely, 779 042 (29.7%) of all SNPs
were associated with a gene in cis, whereas 38 034 (1.4%) were as-
sociated with a gene in trans. After pruning, these observations
corresponded to 81 148 (28.4%) cis- and 3800 (1.3%) trans-acting
SNPs, respectively. Note that the smallest identified effect sizes
with study-wide significance are different for cis- and trans-
eQTLs (0.4 and 1.3% explained variance of gene-expression levels,
respectively). All eQTLs are individually reported in Supplemen-
tary Material, Table S1 and are available as custom track for
the UCSC genome browser (30) in Supplementary Material,
Table S2. A summary information of all identified eQTLs is pro-
vided in Table 1.

Replication analysis and estimation of novel eQTLs

We next investigated novelty of identified eQTLs. Therefore, we
compared our results with 22 published eQTL studies (3,7–27)
subsequently referred to as ‘published studies’ (Supplementary
Material, Table S3). Sample numbers in previously published sin-
gle studies ranged from N = 52 to N = 1490, the meta-study in-
cluded 5311 individuals. Many of these studies were carried out
in blood or blood-derived cell lines, but some studies used tissues
derived from other organs such as liver, skin and brain.

Human Molecular Genetics, 2015, Vol. 24, No. 16 | 4747

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1


About 590 228 (34.3%) of all cis-eQTLs and 46 115 (46.4%) of all
trans-eQTLs detected in our study were not previously reported
in these 22 studies and are further on termed ‘novel eQTLs’.
After pruning, novel eQTLs corresponded to 75 790 unique cis-
associations and 4375 unique trans-associations. Vice versa,
65.4% (7122) of our cis-regulated genes, and 64.7% (1494) of our
trans-regulated genes were replicated/reported with the same
or linked eSNP in these 22 studies.

Reported regulated genes were enriched in our results [92.0
versus 91.1%, odds ratio (OR) 1.1, 95% confidence interval (95%
CI) 1.02–1.22, P = 0.02]. As expected, previously reported eQTLs
had higher effect sizes than novel eQTLs in our data (reported:
R2
median = 1.11%, novel: R2

median = 0.98%).
For a more detailed comparison, we investigated whether we

can replicate eQTLs of published genome-wide studies including
more than 1000 individuals as well as eQTLs of the meta-study.

In order tominimize the influence of technical differences,we
limited replication analysis to SNP–gene pairs available in our
study. Replication rates of cis-regulated genes were 72% for Fehr-
mann et al. (12), 84% for the meta-study (23) and 95% for Zeller
et al. (21), while replication rate of trans-regulated genes were
26, 25 and 61%, respectively (Supplementary Material, Fig. S3).
These rates are good in comparisonwith previously reported rep-
lication rates (12,13,21). The lowest cis-replication rate was ob-
served for results from Fehrmann et al. (12). A reason might be
that the cohort of Fehrmann et al. (12) comprised several distinct
sub-cohorts with different diseases and leveraged two different
gene-expression analysis platforms thereby increasing variance
of gene expression. This reasoning might also be partly relevant
for the meta-study. Additionally, the meta-study includes a con-
siderable proportion of eQTLs with small effect size which re-
duces power for replication analysis. High trans-replication of
Zeller et al. (21) in comparison to the other studies might mainly
reflect higher effect sizes of trans-eQTLs due to the stricter
Bonferroni-based significance level adopted there. Additionally,
similar to our study, Zeller et al. (21) investigated a homogenous
cohort and used as tissue a purified cell-population from blood
(monocytes). Monocytes are also enriched in PBMCs, which
might have positively affected replication rate of tissue-specific
trans-eQTLs. Furthermore, we analysed vice-versa replication of
our results (FDR ≤ 0.05) in Westra et al. (FDR ≤ 0.5). Here, we
found replication rates on a similar level: we could replicate
80.5% of our cis-regulated genes and 48.5% of our trans-regulated
genes for which at least one overlapping eSNP is available in
Westra et al. (23).

Local eSNPs are enriched within 5 Mb
to the regulated gene

We were interested in estimating the genomic range in which
local regulation is observable. On average, 85.3% of all eSNPs of
a given chromosomewere located outside the transcribed region
of the regulated gene. More than half of all eSNPs of a regulated
gene were located within a margin of 140 kb. When restricting
to the strongest eSNP per gene (called ‘top eSNP’), this margin
is reduced to 82 kb. Note that in our data, the top-eSNP accounted
onmedian for about 40% of the total variance explained by all cis-
eSNPs located on the same chromosome. Consistent with previ-
ous studies (32,33), we observed approximately symmetric
enrichment of eSNPs at the transcript start site (TSS) and tran-
script end site (TES, Fig. 1). Note that the enrichment peak in Fig-
ure 1 seen at the TES most likely results from exon-specific QTLs
and the known 3′ bias of Illumina probes (34). The decline of eQTL
effect sizes with increasing distance to the transcript is shown in
Supplementary Material, Figure S4.

Only 62.3% of all cis-regulated genes were immediately adja-
cent to the top-eSNP. This means, a considerable amount of cis-
regulations bridges at least one gene not regulated by the SNP
considered (Supplementary Material, Fig. S5).

To go further, we were interested in eQTL enrichment in de-
pendence on the distance to the regulated gene. Remarkably,
even when excluding known long-range LD-regions, enrichment
of eQTLs was observed up to 5 Mb to the TSS /TES. At this dis-
tance, the density of local eQTLs approximately met the density
of inter-chromosomal trans-eQTLs (6.9 eQTLs/Mb, Supplemen-
tary Material, Fig. S6, lower panel). When restricting this analysis
to the top-eSNP in order to account for LD, enrichment was still
observed up to a distance of 2 Mb to the TSS/TES (Supplementary
Material, Fig. S6, upper panel). This challenges the current com-
monly adopted limit of 1 Mb to define cis-regulations.

Pathway analysis demonstrates relevance of identified
eQTLs for GWAS-related disease phenotypes and traits

To explore relevance of identified regulated genes, we investi-
gated enrichment of KEGG pathways (35) among genes regulated
byeSNPs that are in LDwith aGWAS-SNP (R2≥ 0.5). Thiswas done
for each GWAS-trait separately. In Table 2, we show the KEGG
pathway that was strongest enriched within regulated genes
found for a certain GWAS trait. This table is restricted to GWAS-
traits with regulated genes outside of theHLA-locus, an extended
table including all data is shown as Supplementary Material,

Table 1. Distribution of eQTLs (FDR ≤ 5%) at different significance cut-offs

max. P-value min. R2 cis-eQTLs cis-eSNPs (%) cis-eSNPs
pruned (%)

cis-regulated
genes (%)

trans-eQTLs trans-eSNPs (%) trans-eSNPs
pruned (%)

trans-regulated
genes (%)

0.00285 >0.0042 1,739 991 779 042 (30) 81 148 (28) 11 098 (83)
<10−5 >0.0092 940 389 483 797 (18) 40 314 (14) 6 718 (50)
<1.02 × 10−7 >0.013 709 956 393 740 (15) 30 225 (11) 5788 (43) 100 241 38 034 (1.4) 3800 (1.3) 2354 (18)
<10−10 >0.02 519 833 311 001 (12) 22 045 (8) 4884 (37) 58 072 23 809 (0.91) 1356 (0.47) 600 (4.5)
<10−15 >0.03 360 548 231 440 (8.8) 14 939 (5) 3977 (30) 31 660 15 732 (0.6) 820 (0.28) 374 (2.8)
<10−20 >0.04 274 719 184 139 (7) 11 093 (4) 3366 (25) 20 943 11 629 (0.44) 553 (0.19) 269 (2)
<10−50 >0.1 103 318 77 368 (2.9) 3705 (1.3) 1747 (13) 5772 3846 (0.15) 131 (0.045) 77 (0.58)
<10−100 >0.19 41 375 32 415 (1.2) 1309 (0.46) 924 (6.9) 1864 1579 (0.06) 38 (0.013) 28 (0.21)
<10−200 >0.35 14 257 10 995 (0.42) 420 (0.15) 396 (3) 955 869 (0.033) 9 (0.003) 11 (0.082)
<10−300 >0.48 6971 5606 (0.21) 221 (0.08) 223 (1.7) 821 754 (0.029) 5 (0.002) 7 (0.052)

R2 corresponds to the variance of the transcription levels explained by corresponding eSNPs. Note that a gene can be both, cis- and trans-associated. After all pre-

processing and filtering steps, we analysed a total of 2 625 374 autosomal SNPs and 18 738 expression probes within 2112 individuals. Pruning was done separately for

cis- and trans-eQTLs.
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Table S4. From these tables, the discrepancy between position-
based identification of candidate genes (nearest gene to GWAS-
SNP) and functional identification by eQTL analysis becomes
highly apparent: only in a single GWAS-trait (’Comprehensive
strength and appendicular lean mass’), position-based and
eQTL-analysis based genes were identical. For all other traits,
almost all genes were different. This was observed for cis- as
well as trans-regulated genes. Still, identified enriched pathways
are meaningful for the corresponding GWAS-trait: this includes
obvious examples like ‘Bitter taste perception’ showing enrich-
ment for pathway ‘Taste transduction’, or ‘Asthma and hay
fever’ showing enrichment for ‘Cytokine–cytokine receptor inter-
action’. Further examples are the KEGG ‘PPAR signalling pathway’
found to be enriched in the GWAS trait ‘acute lymphoblastic leu-
kaemia’. Involvement of this pathway in this diseasewas debated
(36). Similarly, KEGG pathway ‘Glutathione metabolism’ was
enrichedwithin GWAS-trait ‘Stearic acid (18:0) plasma levels’: evi-
dence of binding of stearic acid (18:0) to glutathione S-transferase
was described (37). Furthermore, roles of Helicobacter pylori infec-
tion in autoimmune diseases were discussed (38) providing a rea-
soning for the identified relation of the GWAS-trait ‘Helicobacter
pylori serologic status’ the KEGG-pathway ‘Rheumatoid arthritis’.
The relation between ‘Mean platelet volume’ and ‘Platelet counts’
with KEGG pathways ‘ECM-receptor interaction’ and ‘Focal adhe-
sion’, respectively, is mainly driven by trans-clusters and discussed
in the following section named ‘Examples of GWAS-trait-related
trans-clusters provide meaningful mechanistic hypotheses’.

Summary information on trans-clusters

We defined trans-clusters as trans-eSNPs associated with at least
two trans-regulated genes. Within our data, we identified 14 953
trans-clusters. After pruning, this number corresponded to 849
unique SNPs or ∼175 genomic loci, i.e. 11.9% of all loci that in-
cluded a trans-eSNP were associated with more than one trans-
regulated gene. Our data confirm previously reported large

trans-clusters related to HLA-SNPs on chromosome 6 and the
large trans-cluster on chromosome 3 related to rs12485738 (Sup-
plementary Material, Fig. S2). The latter corresponds to an SNP
known to be associated with mean platelet volume (39). Most of
our trans-cluster loci were found on chromosomes 6 (9.7%) and
chromosome 2 (9.7%).

Analysis of trans-clusters is especially appealing for eSNPs
that are in LD with known GWAS-SNPs, as further hypotheses
about pathomechanisms of the disease-associated SNP can be
generated. Therefore, we contrasted trans-clusters where the
eSNPs is in LD (R2≥ 0.5) with a GWAS-SNP to trans-clusters unre-
lated to GWAS-SNPs. Indeed, trans-cluster eSNPs that were in LD
with GWAS-SNPs appeared to regulate more genes (on average
1.6 times more genes, Quasi-Poisson-fit P<10−15). They also
showed stronger associations with regulated transcripts (i.e. the
median of the MANOVA-log10 P-values for association was
shifted by 20.9, Wilcoxon test P < 10−15). Interestingly, trans-
cluster eSNPs in LD with GWAS-SNPs were less frequently asso-
ciated with an additional cis-regulated transcript, (92.6 versus
95.4%, Fisher-test P < 10−15). However, if an additional cis-regula-
tionwas present, cis-effect sizeswere stronger (median difference
of explained varianceof transcript levelswas 0.11%,Wilcoxon test
P < 10−15). Finally, we compared the average decrease of the corre-
lations among trans-regulated genes when expression levels of
these genes were adjusted to the trans-cluster eSNP. A decrease
is supportive for a causal effect of the eSNP on expression levels
of trans-genes. The decrease of the correlation was stronger for
GWAS-related trans-clusters than for non-GWAS related trans-
clusters (on median −11 versus −8%, Wilcoxon test P < 10−15).

Examples of GWAS-trait-related trans-clusters provide
meaningful mechanistic hypotheses

Outstanding trans-clusters with implication for GWAS-SNPs are
shown in Table 3. This table is restricted to trans-clusters that

Figure 1. Distances between eSNPs and regulated genes. Histogram of the distance in kilobase between eSNPs and transcription start sites (show at the left side) and

between eSNPs and transcription end sites of corresponding genes (shown at the right sight). Dark grey bars represent start and end of transcribed regions. Vertical

lines and adjacent numbers are percentiles of all upstream and downstream distances found within 5 Mb 3′ from TSS and 5′ from TES. The upper panels show all

eSNPs at FDR≤ 5%, the lower panels are restricted to the strongest eSNP per regulated gene.
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Table 2. Enrichment of KEGG pathways within regulated genes of GWAS-traits

GWAS trait GWAS-P-value range KEGG-Term Found in
trait (%)

Enrich-ment
factor

P-value Genes fond in pathway

Acute lymphoblastic leukaemia
(childhood)

6 × 10−46–9 × 10−06 PPAR signaling pathway 4 (8.5) 19 4.1 × 10−05 cis: ACSL3*+, LPL+, NR1H3+, PCK2*+; trans: NR1H3+

Asthma and hay fever 5 × 10−12–2 × 10−06 Cytokine–cytokine receptor interaction 10 (6.0) 9 2.8 × 10−08 cis: IL18R1+, IL18RAP+; trans: CCL20*+, CCL3*+,
CCL3L3*+, CCL4*+, IL1A*+, IL1B*+, IL8*+, TNF*+

Bitter taste perception 2 × 10−62–3 × 10−08 Taste transduction 3 (13.6) 112 1.3 × 10−06 cis: TAS2R14+, TAS2R20+, TAS2R43+
Blood pressure measurement

(cold pressor test)
4 × 10−09–3 × 10−06 RNA polymerase 2 (8.7) 178 3.0 × 10−05 cis: POLR2J+, POLR2J2+

Comprehensive strength and
appendicular lean mass

2 × 10−07–8 × 10−07 Biosynthesis of unsaturated fatty acids 2 (10.5) 216 2.0 × 10−05 cis: FADS1, FADS2

Economic and political preferences
(immigration/crime)

2 × 10−06–6 × 10−06 Steroid hormone biosynthesis 3 (14.3) 195 1.2 × 10−07 cis: AKR1C2+, AKR1C3+, AKR1C4*+

Helicobacter pylori serologic status 1 × 10−18–2 × 10−08 Rheumatoid arthritis 7 (9.9) 18 4.8 × 10−08 trans: CCL20*+, CCL3*+, CCL3L3*+, IL1A*+, IL1B*+,
IL8*+, TNF*+

Lipoprotein-associated phospholipase
A2 activity and mass

2 × 10−23–5 × 10−06 Drug metabolism: cytochrome P450 3 (9.7) 40 4.5 × 10−05 cis: GSTM1*+, GSTM2*+, GSTM4+

Mean platelet volume 1 × 10−103–7 × 10−06 ECM-receptor interaction 11 (20.0) 6 9.1 × 10−07 cis: CD36; trans: COL6A3+, GP1BA+, GP1BB+, GP6+,
GP9+, ITGA2B+, ITGB1+, ITGB3+, ITGB5+, VWF

Metabolite levels (HVA-5-HIAA
Factor score)

2 × 10−06–6 × 10−06 Fatty acid elongation in mitochondria 2 (28.6) 585 2.5 × 10−06 cis: HADHA+, HADHB+

Platelet counts 3 × 10−54–7 × 10−06 Focal adhesion 17 (12.0) 3 3.9 × 10−05 cis: PRKCB+, VASP+; trans: ACTN1+, COL6A3+, EGF+,
ILK+, ITGA2B, ITGB1+, ITGB3+, ITGB5+, MYL9+,
PARVB+, PTK2+, RAP1B*+, TLN1+, VCL+, VWF

Serum uric acid levels 1 × 10−80–3 × 10−06 Systemic lupus erythematosus 10 (11.8) 44 9.3 × 10−17 cis: HIST1H2AB*+, HIST1H2AC+, HIST1H2AE*+,
HIST1H2BB+, HIST1H2BD+, HIST1H4A+,
HIST1H4B*+, HIST1H4C+, HIST1H4D*+, HIST1H4H+

Stearic acid (18:0) plasma levels 1 × 10−20–5 × 10−06 Glutathione metabolism 4 (10.0) 37 2.4 × 10−06 cis: GGT7*+, GSTM1+, GSTM2+, GSTM4+
Type 1 diabetes autoantibodies 2 × 10−111–2 × 10−06 Sulphur metabolism 3 (42.9) 47 2.3 × 10−05 cis: SULT1A1+, SULT1A2+, SUOX+

Found in trait (%): Number of genes belonging to the KEGG-Term that are also regulated by an eSNP. The percentage relates to all genes belonging to the KEGG-Term. Enrichment: Found genes versus the genes expected without any

enrichment. P-value: nominal enrichment P-value. Asterisks indicate novel identified eQTLS, the ‘+’ sign indicates that the respective gene was not mentioned as ‘reported gene’ or ‘mapped gene’ in the GWAS-catalogue.

4750
|

H
um

an
M
olecular

G
enetics,2015,V

ol.24,N
o.16



Table 3. Trans-clusters that are correlated with GWAS SNPs

eSNP Chr GWAS phenotype GWAS SNP R2 GWAS reported
genes

P-value trans-
regulated
genes
novel, %

n trans-
regulated
genes

trans-regulated genes cis-regulated genes Mean
correl.
Change, %

rs34856868 1 Obesity-related traits rs34856868 1 BTBD8 1.1 × 10−45 100 7 CDC42BPB*, ZAK*, KCNK13*,
C6orf192*, PGA5*, FOLR2*,
ACOX2*

FAM69A* −4.4

rs17616434 4 Alcohol
consumption,
Allergic
sensitization,
Asthma and hay
fever, Helicobacter
pylori serologic
status, Self-
reported allergy

rs10004195, rs17616434,
rs2101521, rs4543123,
rs4833095

0.88–1 FAM114A1,
Intergenic, KLF3,
MIR574, TLR1,
TLR10, TLR6

9.8 × 10−59 100 38 CCL3*, NFKBIA*, TNF*, CCL3L3*,
CCL20*, IL1B*, SLC25A24*,
IL1A*, MAFF*, CCL4*, CYP4B1*,
IER2*, ZC3H12A*, IL8*,
NFKBIZ*, CD83*, PPP1R15A*,
PNRC1*, GADD45B*, FFAR2*,
G0S2*, CDKN1A*, LOC338758*,
FTH1*, ZFP36*, IER5*,
TNFAIP3*, PIM3*, KLF10*,
RAD1*, OTUD1*, BTG2*, JUNB*,
IGFBPL1*

TLR1, KLHL5*,
C4orf34*, KLHL5

−4.8

rs9275698 6 Asthma rs9275698 1 HLA-DQA2 4.3 × 10−25 80 5 BTN3A2, HLA-G*, VARS2*,
DEF8*, KPNA2*

HLA-DPB1, HLA-
DRB1, PSMB9,
HLA-DQA1, RDBP*,
SKIV2L*,
HLADMA, HLA-
DOB, HLA-DOA*,
C2*

−6.3

rs3132468 6 Dengue shock
syndrome

rs3132468 1 MICB 3.1 × 10−52 80 6 HLA-DRB1, LIMS1*, HLA-A*,
XRCC6*, TMEM154*

ATP6V1G2, HLA-C,
LST1, HSPA1B,
DDAH2, SKIV2L,
ABCF1*, AIF1,
AIF1*, LY6G5C,
TUBB*

−11

rs2858870 6 Nodular sclerosis
Hodgkin
lymphoma

rs204999, rs2858870,
rs6903608, rs9268528,
rs9268542

1 HLA-DQB1, HLA-
DRB1

3.8 × 10−122 87.5 9 EXOC1*, ZNF672*, TMEM154*,
SSRP1*, HLA-C*, HLA-C,
TRIM56*, XRCC6*,
ARHGAP24*

HLA-DRB1, SKIV2L,
HLA-DQA1,
HSPA1L, PSMB9*,
TAP2*, AGPAT1,
HLA-DOB*,
HLADRA, FKBPL,
C6orf48*

−2.3

rs2293889 8 HDL cholesterol rs2293889 1 TRPS1 7.1 × 10−28 100 5 EMR1*, EMR3*, MBOAT7*, MYB*,
ADAM8*

TRPS1* −5.2

rs5016282 11 Attention-deficit
hyperactivity
disorder

rs5016282 1 GRM5 4.1 × 10−18 100 3 ACP2*, NR1H3*, DDB2* −5.2
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are in LD with GWAS-SNPs and that have at least three trans-
regulated genes from which at least 75% had to be novel. Add-
itionally, correlation of expression levels of regulated genes was
required to decrease when adjusting expression levels on the
corresponding trans-cluster eSNP.

The first trans-cluster in Table 3 is rs34856868 on chromosome
1. This SNP is also associated with obesity-related traits. Identi-
fied trans-regulated gene ACOX2 (Acyl-CoA Oxidase 2, Branched
Chain) is functionally plausible as it has a prominent role in
lipid metabolism (Supplementary Material, Fig. S7). Consistently,
this gene is also included in theGO-Term ‘fatty acid beta-oxidation
using acyl-CoA oxidase’ (Supplementary Material, Table S5).

The second trans-cluster rs17616434 on chromosome 4 is as-
sociated with several GWAS-phenotypes, mainly immunity and
Helicobacter-related phenotypes. In line with this, many novel
identified trans-regulated genes can be found in plausible
GO- and KEGG pathways, e.g. ‘Cytokine–cytokine receptor inter-
action’, ‘response to molecule of bacterial origin’ or ‘Toll-like
receptor signaling pathway’ (Supplementary Material, Table S5).

Plausible trans-regulated genes were also found for the trans-
clusters on chromosome 6. Exemplarily, for rs2858870 associated
with GWAS-trait ‘Nodular sclerosis Hodgkin lymphoma’, we
found novel trans-regulated gene SSRP1 located on chromosome
11. This gene is known to be part of the heterodimer FACT that is
critically involved in the anticancer mechanism of cisplatin (40).
For trans-cluster rs9275698 associated with GWAS-trait ‘Asthma’,
novel trans-regulated geneKPNA2 located on chromosome 17was
reported to be related to V(D)J recombination (41), thereby provid-
ing a link to immunity.

The trans-cluster rs10876864 on chromosome 12 is linkedwith
type 1 diabetes and vitiligo. For this SNP, we also confirm the pre-
viously reported cis-regulated gene RPS26. Importantly, RPS26
was excluded as causal gene involved in type I diabetes (42,43).
Our novel trans-regulated genes provide alternative pathomecha-
nistic hypotheses to understand downstream effect of this SNP.
Gene-Ontology categories that include novel trans-regulated
genes show possibly hints to proteins targeting to membrane
and purine nucleoside triphosphate biosynthesis (Supplemen-
tary Material, Table S5). Note that correlations among genes of
this trans-cluster changed on average for −42% when expression
levels were adjusted to rs10876864, which was the largest value
for trans-clusters reported in Table 3.

For trans-cluster rs11651199 on chromosome 17 related to Par-
kinson’s disease, the GO-terms ‘proteasomal protein catabolic
process’ and ‘ubiquitin-dependent protein catabolic process’
include novel trans-regulated gene RNF187 and the confirmed
reported cis-regulated gene AURKB (Supplementary Material,
Table S5). Fittingly, involvement of the ubiquitin proteasome sys-
tem is known to be related to Parkinson’s disease. Therefore, our
findings may be useful to improve understanding of this system
as cause or consequence of early pathological alterations in Par-
kinson’s disease (44). Note that, in this example, a cis- as well as a
trans-regulated gene are included in the same enriched pathway,
which further supports a functional relevance (45).

For trans-cluster rs10512472 on chromosome 17 related to the
GWAS-traits ‘platelet count’ and ‘mean platelet volume’, we
found several relevant GO-terms as well as KEGG-terms nomin-
ally enriched (Supplementary Material, Table S5). This includes
the KEGG-term ‘Hematopoietic cell lineage’ which includes
novel trans-regulated genes ITGA2B and ITGB3. As shown in Sup-
plementary Material, Figure S8, both genes are implicated in
formation of platelets thereby providing a clear link to the
GWAS-trait ‘platelet count’. Similarly, Supplementary Material,
Figure S9 showsKEGG-pathway ‘Regulation of actin cytoskeleton’T
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that includes novel trans-regulated genes ITGA2B, ITGB3 and
MYL9. According to this pathway, these genes are involved in
actomyosin assembly contraction which is a reasonable func-
tional link with GWAS-trait ‘mean platelet volume’.

Evidence for a mechanistic relevance of novel trans-regulated
genes canalso bederived frompreviously reportedSNP-association
studies. Exemplarily, for trans-cluster rs2293889 on chromosome
8 related to HDL cholesterol (46), we found a novel cis-regulated
gene TRPS1 and five novel trans-regulated genes. For most of
these five novel trans-regulated genes, genetic association stud-
ies with conceptually related phenotypes can be found: SNPs in
ADAM8were reported to be involved in advanced atherosclerotic
lesion areas andmyocardial infarction (47), for SNPs in EMR1 and
EMR3 nominal associations for heart failure and blood pressure
determination, respectively, were reported in the Phenotype–
Genotype Integrator (rs3895916 in EMR1 in dbGaP:phs000226
and rs45508602 in EMR3 in dbGaP:ph00221 as well as dbGaP:
phs000501, accessed 11/19/13) (48). Variants in MYB were asso-
ciated with coronary artery disease (27) and levels of ghrelin
(49), a peptide hormone that stimulates food intake and
growth-hormone release. Ghrelin in turn is known to interact
with HDL (50). As it is known that TRPS1 is a transcriptional re-
pressor with GATA-type zinc finger binding sites (51), we ana-
lysed chromatin immunoprecipitation data (52) for enrichment
of binding of transcription factors near the five trans-regulated
genes. Indeed, GATA1 binding sites were the most prominently
enriched human binding sites in the genes of the cluster [due
to genes EMR1, EMR3 andMYB (P = 0.004)]. A trend towards enrich-
ment of GATA3 binding sites was found forMBOAT7 (P = 0.12). This
is in line with observed expression levels: when we grouped indi-
viduals according to genotypes of rs2293889, we observed that ex-
pression levels of the trans-regulated genes increased (i.e. highest
for genotype TT, lowest for genotype GG), whereas for the same
genotypes, expression levels of TRPS1 decreased (i.e. lowest for
genotype TT, highest for genotype GG, Supplementary Material,
Fig. S10). This opposing behaviour is unlikely due to chance (P <
0.05) and supportive for a GATA-mediated control of the trans-
regulated genes. A possible mechanism might be an effect of
rs2293889 on RNA stability: RNA immunoprecipitation data reveal
binding of ELAVL1 at the same chromosomal location where
rs2293889 is located (53). ELAVL1 is an RNA-binding protein that
can stabilize RNA in order to counteract RNA degradation.

The majority of common cis-eSNPs of strongly heritable
genes seems to be identified, but themajority of common
trans-acting eSNPs remains to be discovered

We were interested in polygenetic effects on gene expression.
More precisely, we examined the CW heritability (29,54), which
corresponds to the variance of gene-expression levels explained
by all SNPs present on the chip. In our study, CW-heritability can
be used to estimate howmuch of the genetics of gene expression
is attributable to common genetic variants covered by our
technology.

We contrasted the CW-heritability with the variance of gene-
expression levels explained by all eQTLs identified in this study.
To quantify the latter, we combined the explained variances of all
identified eSNPs (FDR≤ 5%) for each transcript using correlation
adjusted scores. This approach fully accounts for the LD-
structure between SNPs (30). We refer to this measure as the
‘explained variance of combined eSNPs’. The observed differ-
ences between CW-heritabilities and ‘explained variance of com-
bined eSNPs’ allows a rough quantification of how many novel
eQTLs can be still discovered in even larger studies or meta-
analyses applying similar technology.

Within our data, 2556 (14.2%) of all autosomal transcripts cor-
responding to 2260 (17.6%) of all genes showed a CW-heritability
significantly greater than zero. These genes are further on termed
‘strongly heritable genes’ and the analysis further on is restricted
to those genes. Smallest CW-heritability of these genes was
21.3%. Respective standard errors ranged from 0.094 to 0.155 (me-
dian 0.143). Still, we found correlation of our estimates with re-
ported twin-based heritability of 0.5 or larger (P = 0.004, r = 0.39,
95%CI 0.13–0.60, see also Supplementary Material, Fig. S11). On
median, all SNPs located on the chromosome where the regu-
lated gene is located contributed for 36.9% of the genome-wide
CW-heritability. We call this the ‘cis-attributable component of
CW-heritability’. All SNPs located on different chromosomes
contributed on median to 65.2% of the genome-wide CW herit-
ability (Supplementary Material, Fig. S12). We call this the
‘trans-attributable component of CW-heritability’. These num-
bers suggest that for strongly heritable genes, most common
variant-related heritability is hidden in trans-regulations.

For 2115 (93.6%) of all strongly heritable genes, one or more
eSNPs was identified in our study (Fig. 2). For 99% of genes with

Figure 2. Estimating the gap between explained and predicted heritability of gene expression. To estimate the gap between explained and predicted heritability of gene

expression, we compared the explained variance of gene expression of combined eSNPs versus the genetic variance of gene-expression levels resulting from all imputed

SNPs (CW-heritability). This is shown at the left side for all SNPs, in the middle for all SNPs found on the chromosome, where the regulated transcript is located (cis-

regulation), and at the right side for all SNPs found on all chromosomes, where the regulated transcript is not located (trans-regulation). Triangles indicate transcripts

with significant genome-wide CW-heritability (P ≤ 0.05). For each graph, a loess-estimator including confidence bounds is shown. Note that, for convenience, the

ordinate in (C) is log10-transformed. Transcripts with an explained variance of combined trans-eSNPs of zero are shown at the bottom of the graph.
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a significant cis-attributable component of CW-heritability, we
found one or more cis-eQTLs in our study. Only for 23% of these
genes, the explained variance of combined cis-eSNPswas smaller
than the corresponding cis-CW-heritability. Therefore, our data
suggest that for strongly heritable genes, the vast majority of
common cis-eSNPs accessible with our technology seems to be
identified.

In contrast, for only 19% of genes with a significant trans-
attributable component of CW-heritability, we found one or
more trans-eQTLs. On median, the explained variance of com-
bined trans-eSNPs explained only 7% of the corresponding
trans-CW-heritability (Fig. 2, right). Therefore, we conclude that
most common cis-eSNPs are discovered, but themajority of com-
mon trans-acting eSNPs remains to be identified.

Note that explained variance of combined trans-eSNPs tends
to be large only when explained variance of combined cis-
eSNPs of the gene is small (Supplementary Material, Fig. S13).

Loci of pseudogenes and multiple classes of non-coding
RNAs are enriched at sites of eSNPs

Finally, we were interested in enrichment of eSNPs within func-
tionally annotated genomic loci. Knowledge of enrichment can
facilitate the search for yet undetected eQTLs and provides hy-
potheses about molecular mechanisms of the regulation of
gene expression. Table 4 and Supplementary Material, Table S6
show results of this analyses: we could confirm enrichment of
eSNPs within previously reported functionally annotated gen-
omic loci. This includes loci of certain classes of histones, tran-
scribed coding genes, CpG islands, transcription factors and
miRNA target sites (21,51,52). We also found enrichment within
yet unreported annotated loci. This includes loci of ncRNAs and
loci of pseudogenes, loci of transcripts of uncertain coding poten-
tial (55) and predicted open-reading frames in intergenic space
(56). Classes of enriched ncRNA loci were loci of large intergenic
RNAs (lincRNAs), ncRNA loci relevant in transcriptome regula-
tion (i.e. bona fide ncRNAs regulated by TP53-mediated apoptosis
or in the cell cycle (57) and ncRNA-loci displaying conserved sec-
ondary structures. Those ncRNA loci were found in intergenic re-
gions as well as in introns of coding transcripts. Importantly,
eSNPs were only enriched in exons of lincRNAs, but not introns
of lincRNAs (Supplementary Material, Table S6). This corrobo-
rates a functional relevance of these lincRNA-related eSNPs.

When investigating pseudogene-loci inmore detail, we found
systematic differences between pseudogene loci containing an
eSNP and those not: pseudogene loci with co-localized eSNPs
were more often transcribed and showed in general more often
evidence for transcription-related activities. These loci were
also less likely to result from retro-transposition of mRNA but
more likely to result from processes like gene duplication or
gene inactivation (Supplementary Material, Table S7). A special
class of pseudogenes comprehends those regulating their parent
gene. A pseudogene’s parent gene is defined as a coding gene,
from which the pseudogene originates, e.g. via gene duplication.
We searched for pseudogenes loci that contain an eSNP regulat-
ing the parent gene of the pseudogene. Within our data, we iden-
tified 44 such pairs. Of those, 16 pseudogenes were reported to be
transcribed. Six of these included a pseudogene locus where the
co-located eSNPs was in LD with GWAS-SNPs (Table 5).

We wanted to provide additional hypotheses for ncRNA- and
pseudogene-related regulatory processes in GWAS-traits. There-
fore, we first filtered all published GWAS-SNPs to those GWAS-
SNPs that were in LD (R2 ≥ 0.8) with an eSNP identified in our
study. We searched for GWAS-traits enriched for eSNPs located

in loci of pseudogene and loci of ncRNAs. We found 17 GWAS-
traits nominally enriched for eSNPs located in loci of ncRNAs
(Supplementary Material, Table S8) and 14 GWAS-traits nominal-
ly enriched for eSNPs located in loci of pseudogenes (Supplemen-
tary Material, Table S9). This information may provide a starting
point for further exploration of possibly ncRNA- or pseudogene-
related mechanisms of expression modulation in these traits.

Discussion
In this work, we performed an eQTL-study designed to detect
small effects aswe analysed the largest single eQTL-cohort avail-
able so far. This allows us to validate published variants, to detect
several new variants and to dissect cis- and trans-effects. As we
analysed cis- and trans-eQTLs in a genome-wide manner, our
data are a valuable resource to explore the relevance of trait asso-
ciated SNPs identified in current as well as future GWAS studies.
Going beyond univariate association analyses, we derived in-
sights into the gap between estimated heritability and discovered
eQTLs and provided potential functional explanation of geno-
type–phenotype associations and their relation to functional
classes of the genome.

In our analysis, we found cis-regulation in about 83% of tested
genes. This is higher than the percentage of cis-regulated gene re-
ported in a recent meta-study (44%). The explanation is that
(i) more SNPs survived the quality filter steps in our study
(2.63 Mio SNPs versus 1.96 Mio. SNPs in the meta-analysis);
(ii) we considered an eQTL to be cis-regulated in amuch larger gen-
omic region: in our cis-analysis, we included SNPs located within
1 Mb of either side of the transcription start or end site or within
the gene body. In contrast, the meta-analysis considered only
the probe binding site ± 250 kb. In consequence,manyof our iden-
tified cis-eQTLs were small in effect size, as the effect size of cis-
eQTL decreases as distance to the regulated gene increases: the
effect size of the strongest eSNP in 34.9% of all regulated genes ex-
plained atmost 1% of the variance of gene expression; (iii) we ana-
lysed a less diverse sample as we studied a single cohort using
purified PBMCs as tissue. In contrast, the meta-analysis included
many studies and focussed on whole blood. A relation between
the number of detected eQTLs and study homogeneity was de-
monstrated previously (2). Also note that a high number of cis-
regulated genes is in line with previous assumption, that most, if
not all genes may have allele-specific expression differences (59).

By comparing our results with the literature, we could repli-
cate 72–95% of reported cis-regulated genes and 25–61% of re-
ported trans-regulated genes. Vice versa, we could replicate at
Westra’s FDR ≤ 0.5 level 5174 (80.5%) of our cis-regulated genes
for which at least one overlapping eSNP is available in Westra
et al. and 228 (47.8%) of our trans-regulated genes. Therefore, rep-
lication rate can be considered good in comparison with previ-
ously reported replication rates (12,13,21). We estimated that
about one-third of our eQTLs are novel in respect to 22 published
eQTL studies including the meta-analysis (Supplementary Ma-
terial, Table S3). Although such comparisons are always limited
due to differences in design and methodology of different eQTL
studies, this number illustrates the increased power of our study.

Concerning cis-regulated eQTLs, we foundmost eSNPs within
<150 kb of the gene’s start and end site. When we analysed the
density of eQTLs, we found enrichments even at a distance of
5 Mb away from the transcribed region of a gene. This suggests
that cis-eQTL analysis might benefit from a more liberal defin-
ition of the maximum distance from eSNP to gene and further il-
lustrates that the concept of cis- and trans-eQTLs is limited. In this
sense, we believe that the usually applied concept of calculating
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cis- and trans-specific FDRs is not optimal. A Bayesian approach
including chances of true positives in dependence on the dis-
tance of an eSNP to its regulated genesmight be a future improve-
ment to be developed.

More than one-third of all top-eSNPs were not located directly
adjacent to the regulated gene (Supplementary Material, Fig. S5).
Furthermore, when looking at enriched pathways within regu-
lated genes related to GWAS-phenotypes (Table 2), immediately
neighbouring genes of an eSNP almost never matched the
regulated gene identified via eQTL-mapping. This illustrates the
relevance of functional studies in order to assign phenotype-
associated SNPs to causal genes.

This is even more relevant for trans-regulated genes. In
Table 3, we show trans-clusters related to GWAS phenotypes

thereby providing novel candidate genes for future studies on
various traits and diseases (5). We underline potential relevance
of these trans-clusters by showing that regulated genes are re-
lated to conceptually linked biological annotations and path-
ways. At the example of a trans-cluster related to HDL-levels,
we also use data from chromatin-immunoprecipitation experi-
ments to demonstrate how further functional evidence can be
added to the discovered associations.

Although the high number of novel eQTLs detected by our
study implies a considerable progress, it is important to describe
the gap between identified eQTLs and those still to be discovered.
Here, we estimated this gap by comparing the combined contri-
bution of all identified eSNPs with a global heritability measure
summarizing the effect of all imputed SNPs (CW-heritability)

Table 4. Enrichment of functionally annotated genomic loci co-localizing with eSNPs

Annotation OR P-value Overlap

Exons of long non-coding RNAs
Cabili et al. (55) 1.13 (1.08–1.18) 4.3 × 10−8 4041

Introns of long non-coding RNAs
Gencode v13 0.77 (0.75–0.8) 1.9 × 10−74 8688
Cabili et al. (55) 0.83 (0.81–0.84) 2.5 × 10−75 17 311

Bona fide non-coding RNAs regulated in cell cycle, TP53 pathway or STAT3 pathway
Cell cycle (transcript located in introns of protein-coding genes) 1.48 (1.33–1.65) 3.4 × 10−13 783
TP53 (transcript located in intergenic space) 1.51 (1.2–1.9) 3.0 × 10−4 181
TP53 (transcript located in introns of protein-coding genes) 1.61 (1.5–1.74) 9.8 × 10−38 1714

Bona fide non-coding genomic regions predicted to contain conserved secondary structure motifs
SISSIz (motif located in intron of protein-coding gene) 1.35 (1.31–1.39) 4.2 × 10−94 10 658
RNAz (motif located in intergenic space) 1.16 (1.12–1.22) 1.1 × 10−12 4459
RNAz (motif located in intron of protein-coding gene) 1.58 (1.53–1.65) 2.3 × 10−128 6555

miRNA target sites
TsmiRNA (conserved miRNA target sites–UCSC track) 1.66 (1.37–2) 6.5 × 10−8 277

Novel transcripts with putative coding function
Exons of transcripts of uncertain coding potential (TUCP) 1.26 (1.19–1.34) 7.2 × 10−15 2414
Predicted ORF in Intergenic space (RNAcode) 1.27 (1.19–1.35) 1.7 × 10−12 1897

Pseudogenes
Gencode v13 1.35 (1.32–1.39) 2.1 × 10−125 13 933

Protein-coding gene annotation (Gencode v13)
5′UTRs 1.57 (1.52–1.62) 7.2 × 10−188 10 084
Coding exons 1.43 (1.4–1.45) 4.0 × 10−288 24 729
3′UTRs 1.54 (1.51–1.57) <1 × 10−220 24 828
Intergenic space 0.9 (0.9–0.91) 4.3 × 10−93 174 239
Intron 1.33 (1.32–1.34) <1 × 10−220 180 540

Regulatory sites
CpG islands (UCSC track) 1.54 (1.5–1.59) 2.5 × 10−186 10 779
Most conserved sequences (MCS, UCSC track) 1.21 (1.19–1.22) 1.2 × 10−140 42 451
Open source for Regulatory Annotation (OregAnno, UCSC track) 1.26 (1.23–1.3) 2.4 × 10−52 9074
Promoter regions (2 kb upstream of 5′UTR) 1.51 (1.49–1.53) <1 × 10−220 46 383
Promoter regions (5 kb upstream of 5′UTR) 1.5 (1.48–1.51) <1 × 10−220 69 202
Pol-II binding sites (ENCODE) 1.44 (1.43–1.46) <1 × 10−220 85 931
Transcription factor binding sites (ENCODE) 1.27 (1.25–1.28) <1 × 10−220 102 616
Transcription factors from Transfac database 1.17 (1.15–1.19) 2.6 × 10−66 26 801
DNaseI hypersensitivity sites (ENCODE) 1.24 (1.23–1.25) <1 × 10−220 115 291

Chromatin marks associated with enhancer or promoter sites (ENCODE)
H3K4 monomethylation 1.25 (1.24–1.27) <1 × 10−220 220 210
H3K4 trimethylation 1.4 (1.38–1.41) <1 × 10−220 108 138
H3K27 acetylation 1.36 (1.34–1.37) <1 × 10−220 135 114

Chromatin marks associated with active regions of POL-II transcripts (ENCODE)
H3K36 trimethylation 1.55 (1.54–1.57) <1 × 10−220 213 995

Chromatin marks associated with repressed regions of POL-II transcripts (ENCODE)
H3K27 trimethylation 0.81 (0.8–0.82) <1 × 10−220 251 569

OR, odds ratios; P-value, P-value of Fisher’s Exact Test; Overlap, numberof eSNPs overlappingwith an annotation. Anon-coding transcript is bonafidenon-coding if it does

not exhibit any evidence for open-reading frames or any sequence similarity to known amino acid coding sequences. Within this analysis, 787 378 unique eSNPs were

included. In this table, enriched or depleted categories are reported if significance level was smaller than 0.05 after Bonferroni correction for 42 categories considered.
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Table 5. Examples of pseudogenes co-located with an eSNP that regulates the pseudogene’s parent gene

Pseudogene ID Pseudogene position Pseudogene
biotype

eSNPs Regulated
gene = pseudogene
parent gene

Regulated gene position Corresponding GWAS trait

ENST00000427240.1 chr1: 39 997 510–40 024 379 (−) Unprocessed rs2746050 (0.006) PPIE chr1: 40 204 517–40 229 585 (+) C-reactive protein (rs12037222–
rs2746050, R2 = 0.55)
HDL cholesterol (rs4660293–
rs2746050, R2 = 0.50)
Red blood cell traits (rs3916164–
rs2746050, R2 = 0.62)

ENST00000428767.1 chr2: 73 898 157–73 912 212 (+) Unprocessed rs1052162 (0.027),
rs10206899 (0.022)

ALMS1 chr2: 73 612 886–73 837 046 (+) Chronic kidney disease (rs13538–
rs10206899, R2 = 1.00)
Creatinine levels (rs10206899–
rs10206899, R2 = 1.00)
Glomerular filtration rate
(rs10206899–rs10206899, R2 = 1.00)
Metabolic traits (rs13391552–
rs1052162, R2 = 0.96)
Metabolite levels (rs9309473–
rs10206899, R2 = 1.00)
Metabolite levels (X-11787) (rs13538–
rs10206899, R2 = 1.00)

ENST00000475455.1 chr3: 133 407 036–133 431 646 (+) Unprocessed rs1006097 (0.005) TF chr3: 133 464 977–133 497 849 (+) Iron status biomarkers (rs2718812–
rs1006097, R2 = 0.90)

ENST00000377662.2 chr6: 26 422 347–26 431 843 (+) Processed rs6456723 (0.005) BTN2A1 chr6: 26 458 189–26 469 865 (+) Iron levels (rs17342717–rs6456723,
R2 = 0.32)
Iron status biomarkers (rs17342717–
rs6456723, R2 = 0.32)
Red blood cell traits (rs17342717–
rs6456723, R2 = 0.32)

ENST00000435769.1 chr7: 72 040 483–72 298 654 (−) Unprocessed rs3015844 (0.105),
rs13238203 (0.005)

TYW1 chr7: 66 461 817–66 704 496 (+) Subcutaneous adipose tissue
(rs2058059–rs3015844, R2 = 0.75)
Triglycerides (rs13238203–
rs13238203, R2 = 1.00)

ENST00000415709.1 chr22: 25 851 679–25 855 648 (+) Unprocessed rs6423498 (0.373) CRYBB2 chr22: 25 615 612–25 627 836 (+) Bipolar disorder (mood-incongruent)
(rs1930961–rs6423498, R2 = 0.94)

Pseudogeneswere restricted to those reported to be transcribed (58), additionally, a corresponding GWAS trait had to exist. Pseudogene biotype: ‘processed’, pseudogene originates from retrotransposition; ‘unprocessed’, pseudogene

originates fromgene-duplication (58); eSNPs, all co-localized eSNPs that also are associatedwith expression levels of the pseudogene’s parent gene. Values following SNP-Ids showexplained variance of the regulated gene’s expression

level, corresponding GWAS phenotype, GWAS phenotype with a GWAS SNP in LD with the eSNPs. LD between GWAS-SNPs and eSNPs is shown in hyphens.
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(29,54). This accounts for LD (30,60) and allows separate analysis
of the cis- and trans-component.

Thereby, we like to acknowledge that our CW-heritability es-
timates are still imprecise with standard errors ranging from
0.094 to 0.155 (median 0.143) for genome-wide CW-heritability
and from 0.012 to 0.054 (median 0.0346) for cis-attributable com-
ponent of CW heritability. Therefore, conclusion from these re-
sults are limited to strongly heritable genes and this analysis
could benefit from even larger sample sizes than ours. Still, re-
sults drastically differed between cis- and trans-regulated genes:
for almost all strongly heritable geneswith a significant cis-attrib-
utable heritability component, we could identify one or more
eSNPs. Combined cis-eSNPs explainedmost of the cis-attributable
component of CW-heritability. In fact, due to winner’s curse, the
combined contribution of all identified eSNPswas often even lar-
ger than the cis-attributable CWheritability as the latter is less af-
fected by winner’s curse. Although an exact quantification of
these effects is difficult, these results suggest that for strongly
heritable genes, the vast majority of common cis-eQTLs seems
to be identified (given our tissue and expression microarray
technique). A strong contribution of known cis-eSNPs to the
CW-heritability is in line with previous findings (13,61).

In contrast, only for 19% of genes with a significant trans-
attributable CW-heritability, we could identify one or more
eSNPs, on median all trans-eSNPs accounted for <10% of the
trans-attributable heritability component (Fig. 2). This is espe-
cially important as we found that on median, most of the total
CW-heritability result from trans (Supplementary Material,
Fig. S12). These findings are also in linewith other studies report-
ing that the trans-component has a stronger influence on
the heritability of the transcriptome and that the number of
yet-identified responsible trans-eSNPs is still very limited (61).
Note, that the architecture of the genetics of gene expression is
reported to be in the main additive, thereby closely resembling
those of common diseases (62). Therefore, these results warrant
that a comprehensive identification of trans-eQTLs requires even
larger eQTL studies and respective meta-analyses with sample
sizes comparable to those required in GWAS of common dis-
eases. Additionally, this points to the relevance of improved
methodological approaches for trans-eQTL detection.

EQTL detection could benefit from the identification of func-
tional elements that co-localize with eSNPs. Knowledge of such
functional classes can be used to better identify and predict
eQTLs (63,64) and improve understanding of the regulatory archi-
tecture of the genome. For the first time, we report that loci of
eSNPs are enriched at genomic sites of distinct classes of ncRNAs
andpseudogenes (Table 4 andSupplementaryMaterial, Table S6).
This is reasonable, as ncRNAs are known to regulate expression
of protein-coding genes in cis (65) and in trans (66,67). Previously,
108 cis-regulated ncRNAs were directly described (68). Our study
further extends this finding, as our enrichment analysis com-
prised many additional ncRNA loci.

Our observation of enrichment of eQTLs in loci of pseudo-
genes hints towards a more general regulatory relevance of
pseudogenes. This is supported by the reported enrichment of
GWAS-SNPs—which are themselves enriched for eSNPs (6)—
within genomic loci of pseudogenes (69). Examples for mechan-
isms on how a pseudogene can influence expression levels of
other genes include miRNA-related interaction, influence of
RNA stability and antisense regulation (70). Many of these re-
ported mechanisms include interaction with the pseudogene’s
parent gene (i.e. the gene fromwhich the pseudogene originates).
Accordingly, we found 44 pseudogenes with a co-located eSNP
that appears to regulate the pseudogene’s parent gene. Table 5

shows examples of such pairs with potential relevance for
GWAS-traits. To provide further starting points for the explor-
ation of possibly ncRNA- or pseudogene-related mechanisms of
gene-expression modulation, we report GWAS-traits showing
nominal enrichment of eSNPs located at genomic loci of ncRNAs
and pseudogenes (Supplementary Material, Tables S8 and S9).

In summary, our study substantially increases the catalogue
of human eQTLs and improves our understanding of the
complex genetic regulation of gene-expression, pathways and
disease-related processes hereon. By numerous examples, we
demonstrated how our study can support the identification of
biologically plausible and testable hypotheses facilitating further
research to understand themechanisms of genotype–phenotype
associations.

Materials and Methods
Ethics statement

The study meets the ethical standards of the Declaration of Hel-
sinki. It has been approved by the Ethics Committee of theMedical
Faculty of the University Leipzig, Germany (registration number
276–2005) and is registered at ClinicalTrials.gov (NCT00497887).
Written informed consent including agreement with genetic ana-
lyses was obtained from all participants enrolled in the study.

Description of the cohort

Samples were derived from the ongoing Leipzig LIFE Heart Study
which is an observational study designed to analyse molecular-
genetic modifiers of atherosclerosis risk and related phenotypes.
Individuals comprise either patients with suspected coronary ar-
tery disease due to clinical symptoms/non-invasive testing or
with stable left main coronary artery disease. Details of the
study can be found elsewhere (31,71). Patients with acute myo-
cardial infarction were excluded from this analysis.

Measurement of gene expression

PBMC isolation (N = 2580) was performed using Cell Preparation
Tubes (CPT, Becton Dickinson) as described (71). Total RNA was
extracted using TRIzol reagent (Invitrogen) and quantified with
an UV-Vis spectrophotometer (NanoDrop, Thermo Fisher).
A total of 500 ng RNA per sample were ethanol precipitated
with GlycoBlue (Invitrogen) as carrier and dissolved at a concen-
tration of 50–300 ng/μl prior to probe synthesis. N = 79 samples
were not further processed due to low RNA concentrations.
N = 2501 samples were hybridized to Illumina HT-12 v4 Expres-
sion BeadChips (Illumina, San Diego, CA, USA) in batches of 48
and scanned on the Illumina iScan instrument according to the
manufacturer’s specifications (67). Documentation of sample
processing included batch information at any processing step
to allow adjustment in subsequent data analysis.

Raw data of all 47 323 probes were extracted by Illumina Gen-
omeStudio, 47 308 probes could be successfully imputed in all
samples. Datawere further processed within R 2.13.1/Bioconduc-
tor. A total of 123 (4.9%) individuals having an extreme number of
expressed genes [<7505 genes, defined as median ± 3 interquar-
tile ranges (IQR) of the cohort’s values] were excluded. Tran-
scripts that were not found to be expressed according to
Illumina’s internal cut-off as implemented in Bioconductor pack-
age ‘lumi’ P ≤ 0.05 in at least 5% of all samples were not further
considered in the analysis. Expression values were quantile nor-
malized and log2-transformed (72). For further outlier detection,
we calculated the Euclidian distance between all individuals and
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an artificial individual having average expression levels of all
transcripts. Sixty-nine (2.9%) of the remaining individuals with
a distance larger than median + 3 IQR were excluded. Further-
more, we defined for each individual a combined quantitative
measure combining quality control features available for HT-12
v4 (i.e. perfect-match and miss-match control probes, control
probes present at different concentrations,mean of negative con-
trol probes, mean of house-keeping genes, Euclidian distances of
expression values, number of expressed genes, mean signal
strength of biotin-control-probes). We calculated Mahalanobis-
distance between all individuals and an artificial individual hav-
ing average values for these quality control features. Thirty-one
(1.3%) of the remaining individuals with a distance larger than
median + 3 IQR were excluded. Transcript levels were adjusted
for the known batch Sentrix barcode (i.e. expression chip-ID)
using an empirical Bayesmethod as described (73). The empirical
Bayes method required that at least two individuals for each
batch are provided. This excluded two individuals. Success of ad-
justmentwas checked using ANOVA for both, the Sentrix barcode
as well as the processing batch (in a processing batch, several
expression chips were jointly processed, in consequence, within
a processing-batch, several Sentrix barcodes are completely
nested). The multivariate model included age, sex, monocyte
counts and lymphocyte counts as covariates. A QQ-plot showing
the distribution of ANOVA P-values before and after adjustment
is shown in Supplementary Material, Figure S14. A total of 625
(2.2%) expression probes still over-inflated following Bonferro-
ni-correction were excluded and 28 295 probes residualized for
age, sex, monocyte counts and lymphocyte counts remained in
analysis. Due to incomplete data of these covariates, 20 (0.9%)
of the remaining individuals were excluded. Additionally, we cal-
culated principal components of the expression data residua-
lized for its first five principal components to account for
unmeasured batch effects as outlined elsewhere (12). Using this
number of PCAs, we found no evidence that trans-eQTL detection
was compromised and still observed increasing numbers and ef-
fect sizes of detected eQTLs due to the adjustment. Probes were
assigned to genes using Entrez-gene IDs via the R add-on package
from Bioconductor illuminaHumanv4.db_1.14.0 that relates to
NCBI data dated on 7 March 2012 (74). Entrez-gene IDs were
used to retrieve information for the abbreviated gene names
(HGNC identifier) (8) and transcription start site and transcription
end site of corresponding genes via Bioconductor package ‘org.
Hs.eg.db_2.7.1’. This package is based on hg19 coordinates re-
trieved from Golden Path data provided by UCSC Genome Bio-
informatics at ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19
with a date stamp of 22 March 2010. Remapping information
(74) was only accepted if distance between chromosomal coordi-
nates of expression probes and TSS/TSE was smaller than 1 Mb.
The initial pre-processing resulted in 28 295 expression probes
corresponding to 15 217 genes. Of those, 18 738 probes corre-
sponding to 13 338 genes mapped uniquely within the human
genome and had a probe annotation quality score (74) of at
least ‘good’. Throughout the manuscript, corresponding gene
names are provided as HGNC identifiers. For 2112 (93.5%) of the
remaining individuals, valid genotype data were available allow-
ing eQTL analysis. Raw and pre-processed gene-expression data
are available from GEO (https://submit.ncbi.nlm.nih.gov/geo,
GEO accession no. GSE65907).

SNP genotyping, pre-processing and imputation

DNAwas extracted from peripheral blood using the Invisorb Spin
Blood Maxi Kit (Stratec) as described (71). Genotyping was

performedwith the Affymetrix AxiomTechnology using the cus-
tom option. Axiom CEU comprising M = 541 621 autosomal mar-
kers served as a backbone of our custom array. A total of 62 471
autosomal markers enriched in 44 genomic regions associated
with cardiovascular disorders were additionally placed on the
array. Genotyping was performed on Affymetrix facilities. From
N = 3036 DNA samples originally sent to Affymetrix facilities,
N = 2925 samples were successfully genotyped. Cell files of all
successfully genotyped samples were combined and genotypes
were called by Affymetrix Power Tools version 1.12. We required
an individual-wise call rate to be 97% or better. For N = 604 092
autosomal SNPs, we estimated allele frequency and minimal
call rate with respect to plates. We tested asymptotically for
Hardy–Weinberg equilibrium and for association of allele fre-
quency with plates. For all samples, we recalculated the call
rate in a CW manner and we assessed the mean squared differ-
ence of the individual’s genotype and expected genotype incorp-
orating all autosomal SNPs with non-missing genotype. Further,
we estimated pair-wise relatedness (75) using N = 184 108 auto-
somal SNPs after filtering for minimal call rate (call rate<98%),
Hardy–Weinberg equilibrium (P < 10−6) and SNPs which are asso-
ciated with plates (P < 10−7). Adopting these criteria, 2857 indivi-
duals remained in analysis.Within these individuals, SNPquality
was re-estimated and filtered for the following criteria:minimum
of all plate-wise call rates had to be ≥90% (these criteria imply
that the conventional overall SNP call rate is >94.2% and its
10th percentile is >99.2%), a Hardy–Weinberg equilibrium with P
≥ 10−6 and association of SNP frequencies with plates with a P≥
10−7). A total of 566 359 autosomal SNPs fulfilled these criteria
and were used for imputation with IMPUTE v2.1.2. (http://
mathgen.stats.ox.ac.uk/impute/impute_v2.html). HapMap2
CEU, Release 24, dbSNP-build 126, NCBI 36 was applied as refer-
ence panel comprising 3 974 237 autosomal SNPs. 555 911 of our
measured SNPs could be mapped to the reference. Following im-
putation, we removed 19 individuals being outliers according to
the commonly adopted six-standard deviation criterion in EI-
GENSTRAT (76). For this step, we used 213 540 SNPs fulfilling fol-
lowing quality criteria: call rate per plate ≥ 98%, HWE P ≥ 10−6,
batch association with genotyping plates P≥ 10−7. A graphical re-
presentation of the distribution of the first two eigenvalues of the
remaining individuals together with estimated relatedness is
shown in Supplementary Material, Figure S15. Furthermore,
SNPs with low quality based on minor allele frequency (MAF)
<1% or with IMPUTE-info score ≤0.3 were excluded. Here, MAF re-
lated to those 2112 individuals that had also valid transcriptome
data. SNPs not included in imputed data but having high-quality
genotypes on chip were added to the data set, quality-control cri-
teriawere call rate ≥97%, MAF ≥ 1% and Hardy–Weinberg equilib-
rium P ≥ 10−6. This resulted in a total number of 2 627 381 SNPs.
These SNPs were lifted from hg18 dbSNP130 (given by themanu-
facturer) to hg19 applying the public available tool ‘liftOver’ from
UCSC (http://genome.ucsc.edu/cgi-bin/hgLiftOver). From this
procedure, 2 625 374 autosomal SNPs resulted for eQTL analysis.

eQTL-association analysis

For eQTL association analysis and FDR calculation, we used the
Matrix eQTL software (77) in the environment of Revolution R En-
terprise 5.0.1. We created a genome- and transcriptome-wide QQ
plot to investigate the distribution of our test statistics using the
same R-package. No evidence of inflation of our test statistic was
observed (Supplementary Material, Fig. S16). In our data, the FDR
at 5% for cis-eQTL corresponds to a P-value threshold of 0.0028
and the FDR at 5% for trans-eQTLs corresponds to a P-value
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threshold of 1.02 × 10−7. Given the threshold for trans-effects and
our sample size, we performed power analysis in dependence on
the explained variance of an eSNP. Note that this measure of ef-
fect size is independent of SNP-allele frequencies. Calculation
was done using the R-package ‘pwr’. Calculation of the number
of eQTLs when considering only one eSNPs per locus was done
by counting all eSNPs per 1 Mb only once for each regulated
gene. Assignment of cis and trans was done based on smallest
physical distance betweenmapping of the SNP and transcription
start and end site of the corresponding gene. Genes were consid-
ered cis-regulated, if the distance between the eSNP and the tran-
scribed regions of the gene was at most 1 Mb, or if the eSNP was
found within the transcribed region of the gene. Calculation of
the number of pruned SNPs was done using PLINK 1.9. Here, we
applied parameters clump_r2 = 0.3 and clump_kb = 5000. Pruning
was done separately for cis- and trans-associated eSNPs resulting
in a total of 285 362 and 288 875 unique SNPs corresponding to the
2 625 374 autosomal SNPs in analysis, respectively.

To analyse potential reasons for false-positive cis-eQTLs, we
investigated whether the putative eSNP was correlated with an-
other SNP located at the same position where the corresponding
expression probe binds and therefore might artificially disturb
gene-expression measurement (12). For this purpose, we ana-
lysed whether any SNP reported in the 1000 genomes project (re-
lease 20 110 521 version 3 f, restricted to SNPs with a MAF ≥ 1%)
co-locates with the binding region of transcript probes (78). If
LD between the putative eSNP and the 1000 genomes SNP was
present (R² > 0.1) or was unknown, cis-regulated eQTLs were
marked as potential false positive. For LD calculation, we
used HapMap Data (Release #28, lifted over to GRCh37/hg19)
as well as the 1000 genomes data as reference applying Plink
v1.07 (79).

For trans-eQTLs, a reason for false positive is cross-hybridiza-
tion of the corresponding expression probe in proximity to the
putative eSNP site. If this is the case, the putative trans-eQTL
might be in fact a cis-eQTL. Trans-eQTLsweremarked as potential
false positive, if cross-hybridization of expression probes of the
putatively regulated gene was found within 1 Mb of the putative
eSNP. Cross-hybridization information resulted from a previous
extensive remapping approach (74). Within our data, we found
2.7% of all cis-eQTLs and 8.7% of all trans-eQTLs to have an in-
creased chance to be false positive. Since our criteria do not ne-
cessarily result in false-positive eQTLs (80) and since the overall
rate of these events was moderate, we did not filter these results
in general, butmarked them in SupplementaryMaterial, Table S1
and excluded them in certain distinct analyses as described. For
additional details of potential false-positive SNPs, see Supple-
mentary Material, Tables S10, S11 and Figure S17.

To get information about the distribution of eQTLs under the
null hypothesis, we performed 100 additional genome-wide
eQTL studies by permuting per individual labels of SNP data and
expression data. These data are referred to as ‘permuted eQTL
data’. We used permutated eQTL data to verify the Benjamini–
Hochberg based P-value thresholds corresponding to the FDR of
5%. For cis-eQTLs, empirical FDR was on average 0.0501 ranging
from 0.0478 to 0.0521, for trans-eQTL, empirical FDR was on aver-
age 0.0515, ranging from 0.0459 to 0.0596. For hypergeometric
enrichment analysis of genes within Gene Ontology and KEGG
pathways, we used the R-package ‘GOstats’. Results with enrich-
ment P-values of <0.05 were reported. We used all 13 338 genes
that were included in eQTL analysis as background. When using
Gene Ontology, we used the implemented adjustment option to
correct significance of enriched pathways according to the redun-
dant nature of the hierarchical annotation system.

We compared our results with results of the GWAS catalogue
(81), accessed on 14 August 2014. Thereby, we used as reference
both, HapMap Data (Release #28, lifted over to GRCh37/hg19)
and 1000 genomes data release 20 110 521 version 3 from EUR
population, and applied PLINK (79) to identify correlated SNPs.

Comparison with known eQTLs

To identify novel eQTLs, we compared our results with publicly
available results of 22 studies (3,7–27) (Supplementary Material,
Table S3). Data of some of these studies were summarized and
available from seeQTL (82) and the Chicago eQTL browser (http://
eqtl.uchicago.edu). Significance level α of reported eQTLs of those
studies was required to be always <0.005. We matched regulated
genes on transcription-probe information (Ensemble gene ID, Re-
fSeq ID, Entrez-gene ID, Probe-ID, and/or HGNC ID) as available.
Putative and/or badly characterized genes defined as genes start-
ing with letters ‘KIAA’, ‘FLJ’, ‘HS.’, ‘C.*ORF’ ‘MGC’ and ‘LOC’ were
excluded from summary statistics when counting novel eQTLs.
eSNPs were matched between our study and databases based
on their dbSNP identifiers. An eQTL was regarded novel if for a
certain regulated gene, eSNPs of our study were found on differ-
ent chromosomes compared with published eSNPs, or if LD be-
tween our eSNPs and published eSNPs could be calculated and
was found to be lower than R2 = 0.3 or if distances between our
eSNPs and published eSNPs were >5 Mb.

To identify replication rates for eQTLs in our study, we per-
formed detailed comparison with genome-wide studies includ-
ing more than 1000 individuals (12,21,23). Two of these studies
adopted a cis-and trans-specific significance level at an FDR of
5% (12,23), and one a global Bonferroni-criterion (21). Reported
eQTLs of these three studieswere included in replication analysis
if eQTLs were autosomal and if the regulated gene as well as the
reported eSNPwas analysed in our study. Adopting these criteria,
80, 85, 81% of reported cis-eQTLs and 79, 77, 73% of reported
trans-eQTLs of Fehrmann et al., Westra et al. and Zeller et al.
were available for replication analysis, respectively. Cis- and
trans-classification was used as defined in the original reports.
A certain gene was considered replicated if one or more of the
reported eSNPs were associated with the same gene in our
study at an FDR of 5%. When analysing vice-versa replication of
our regulated genes in Westra et al., we restricted our data in
the cis-specific comparison to any SNP and gene reported in
results of Westra et al. (FDR≤ 0.5). For the trans-specific compari-
son, we additionally restricted our SNPs to those included in the
GWAS catalogue as done by Westra et al. to allow a direct com-
parison between the studies.

Analysis of eSNP densities flanking transcribed regions

To estimate ranges of cis-effects, we analysed the distribution of
the physical distances between eSNPs and corresponding regu-
lated genes if found on the same chromosome. In order to
avoid bias, genomic regions of long-range LD (83) were excluded
for this analysis, thereby filtering out 559 genes. Additionally,
potential false positives were excluded from this analysis. If a
certain SNP was associated with multiple probes of the same
gene, the corresponding SNP-gene distance was counted only
once per gene. Cis-eQTLs with effect sizes smaller than the min-
imal observed effect size of trans-eQTLs were excluded from this
analysis. This was to avoid bias as the study-wide significance
level was different for cis- and trans-eQTLs. In order to estimate
themaximumdistance, wheremore eSNPs are observed than ex-
pected under the null hypothesis, we compared the local eSNP

Human Molecular Genetics, 2015, Vol. 24, No. 16 | 4759

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddv194/-/DC1
http://eqtl.uchicago.edu
http://eqtl.uchicago.edu
http://eqtl.uchicago.edu
http://eqtl.uchicago.edu
http://eqtl.uchicago.edu
http://eqtl.uchicago.edu


density with the average eSNP density from interchromosomal
trans-eQTLs. A scatter-plot was applied to estimate the distance
for which the frequency of eQTLs in our data dropped below
the density of inter-chromosomal eQTLs (Supplementary Mater-
ial, Fig. S6). When estimating the total variance explained by all
cis-eSNPs located on the same chromosome, we combined re-
spective eQTLs using correlation adjusted scores as implemented
in the R-package ‘care’ (30,60).

Trans-cluster analysis

We defined trans-clusters as trans-eSNPs associated with at least
two trans-regulated genes. When counting trans-cluster loci, we
considered only one trans-cluster eSNP per 1 Mb. To score signifi-
cance across trans-clusters thereby accounting for correlation be-
tween regulated genes, we applied a standard framework of a
MANOVA. We analysed the mean change of correlation between
expression levels of trans-regulated probeswhen adjusting on the
eSNP. For this purpose, we calculated pair-wise absolute Pearson
product-moment correlation coefficients of all transcripts of a
trans-cluster before and after adjusting expression levels in a lin-
ear model on the regulating trans-eSNP. A negative change indi-
cated a decreased correlation after adjustment.

Reported novel trans-clusters in Table 3 resulted frompruning
applying R2 ≤ 0.3 in order to report independent effects. Trans-
cluster shown in this table were required to have at least three
trans-regulated genes, 75% of those had to be novel. LD with a
GWAS-SNP had to be at least R2 ≥ 0.5, additionally, at least one
GWAS-SNPwas required to have an R2≥ 0.8 with the trans-cluster
eSNP. Potentially false-positive eQTLs were excluded from this
analysis.

To identify enrichment of KEGG and GO terms within
cis- and trans-regulated genes, we used the R-package ‘GOstats’.
To visualize enriched KEGG pathways, we used the R-package
‘pathview’ (84).

Estimation of CW heritability and correlation adjusted
scores

To estimate CW heritability (CW-heritability) of transcripts, we
used the software GCTA as previously described including all
SNPs included in eQTL association analysis (54). We restricted
this analysis to autosomal transcripts. CW-heritability is esti-
mated based on mixed-model analysis of background related-
ness between samples. Due to our chip-design, HapMap-based
imputation and the non-family-based design of our cohort, this
estimates the contribution of common variants to heritability
only. This is different to usual family-based studies of the herit-
ability of gene expression (2,11,13,62,85,86). When restricting
analysis to the cis-attributable component of CW-heritability,
we included all SNPs of the chromosome where the regulated
gene is located. Vice versa, when restricting analysis to the
trans-attributable component of CW-heritability, we excluded
all SNPs of the chromosomewhere the regulated gene is located.
We limited analysis to transcripts with CW-heritability signifi-
cantly different from zero at the level of α = 0.05.

For contrasting CW-heritabilities with explained variances by
identified eQTLs, we used correlation adjusted scores as imple-
mented in the R-package ‘care’ (30,60). For each transcript, all as-
sociated eSNPs (FDR ≤ 5%) where summarized. We restricted
analysis to observations without missing data (if SNP was from
non-imputed data). The correlation shrinkage intensity lambda
was 0 or if necessary to avoid singularity of the correlationmatrix
at most 10−9, i.e. we basically used the empirical correlation

structure to estimate the genetic covariance. To quantify the ex-
plained variance assignable to cis- and trans-eSNPs separately,
we summarized squared car-scores separately for all cis- and all
trans-acting eSNPs of a certain transcript, respectively. For graph-
ical presentations, summarized car-scores smaller than 10−3

were set to zero. When plotting ratios between summarized
car-scores and CW-heritabilities, ratios larger than one were set
to one. For reasons of improved comparability between summar-
ized car-scores and cis-/trans-CW-heritability, all eSNPs located
on the same chromosome as the regulated gene were regarded
as cis-acting in this analysis.

Enrichment of eSNPs in functional elements

To compute the enrichment of eSNPs that harbour a genome an-
notation, we adapted the approach proposed by Hindorff et al.
(81). Considering all SNPs in strong LD with the eSNP, the overlap
with a genome annotation was computed with a selection of an-
notation sets of the human genome (version GRCh37/hg19). Sig-
nificance of the observed overlap was inferred by Fisher’s Exact
Test. The expected number of overlaps was estimated from
permuted eQTL data. For each eSNP, an interval (LD-block) that
contains all SNPs in strong LD with that eSNP was generated.
The LD-block was defined by the left and right most SNP which
appears to be highly correlated with that eSNP (R² > 0.9) within
a distance of 200 kb. Therefore, the maximum size an LD-block
can have is 400 kb. LD data were obtained from HapMap (Release
#27, NCBI 36, CEU) and lifted over to GRCh37/hg19. To avoid re-
gional bias, replicates of LD-blocks were removed, so that the
final set used in the analysis contains only unique LD-blocks.
An LD-block was counted if at least one SNP within it overlaps
the annotation. The LD-block is counted only once regardless of
how often the overlap occurred with the annotation. We per-
formed the same steps to calculate the overlap within permuted
eQTL data and annotation sets providing expected distributions
of SNPs under the null hypothesis.

A non-coding transcript was called bona fide non-coding if it
does not exhibited any evidence for open-reading frames as pre-
dicted by RNAcode (56) nor any sequence similarity to known
amino acid sequences in RefSeq database (version 7 March
2012). Thereby, similarity was assessed using tblastn with para-
meters -word-size 3 and an e-value < 0.05. A detailed listing and
description of all included annotation sets is provided in Supple-
mentary Material, Table S12. To characterize pseudogenes in de-
tail, we used information described in psiDR version 1.0.0 (58).

Supplementary Material
Supplementary Material is available at HMG online.
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