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Abstract Through translational research, the outcomes for
women (and men) diagnosed with breast cancer have im-
proved significantly, with now over 80% of women surviving
for at least 5 years post-diagnosis. Much of this success has
been translated from the bench to the bedside using laboratory
models. Here, we outline the types of laboratory models that
have helped achieve this and discuss new approaches as we
move towards animal-free disease modelling.
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Introduction

Laboratory models to study breast cancer behaviour and re-
sponse to therapy have been instrumental in contributing to
improving patient outcome. Starting from simple cell culture
models using immortalised human cell lines derived from pa-
tient tumours grown in two dimensions (2D), these have grad-
ually evolved into more complex three-dimensional (3D)
multi-cellular models and, lately, towards patient-derived
organoid models (Soule et al. 1973; Wang et al. 2002;
Debnath et al. 2003; Nash et al. 2015; Bruna et al. 2016).
Animal models have also been employed first using cells lines
growing as xenografts (Deome et al. 1959) and, more recently,
using so-called patient-derived xenograft (PDX) models

(Whittle et al. 2015). The guiding principles for the improved
welfare of animals used in research were introduced in 1959
and termed the 3Rs: replacement, reduction and refinement
(Russell and Burch 1959). These have been implemented in
many countries to support the humane use of animals in lab-
oratory research. There are now specific funding bodies which
exclusively support research which either completely replaces
( e .g . An ima l F r ee Resea r ch UK; h t tp s : / /www.
animalfreeresearchuk.org), reduces or refines the use of
animals in research (e.g. the National Centre for the
Replacement, Refinement & Reductions of Animals in
Research in the UK; https://www.nc3rs.org.uk and Medical
Advances Without Animals in Australia; http://www.mawa-
trust.org.au). Many scientists are now actively engaged in
further advancing this ethos, by developing improved
scientific methods, which serve to reduce the reliance on
animals in biomedical research or to completely replace
them. A timeline showing key achievements towards the
advancement of breast cancer models in biomedical research
is shown in Fig. 1. We discuss the various models available
and their pros and cons below.

Cell lines

Cell lines have been the workhorses in biomedical research
labs for decades. The first and arguably the best known is
HeLa, a cervical cancer cell line derived from tissue taken from
Henrietta Lacks (Gey et al. 1952). The first breast cancer cell
line, BT20, was developed in 1958 from an invasive ductal
carcinoma (Lasfargues and Ozzello 1958); however, the most
commonly used breast cancer cell line in the world is MCF-7,
described in 1973 (Soule et al. 1973) and derived from a pleu-
ral effusion from an invasive ductal breast cancer which devel-
oped in a 69-year-old Caucasian nun, Frances Mallon. Since
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then, a number of different breast cancer cell lines have been
developed, and the latter half of the 20th century allowed sci-
entists to use these through in vitro cell culture or in animal
experiments using xenografts, in experiments designed to bet-
ter understand the biology of breast cancer. This research has
helped in the development of new diagnostic tests and new
treatments, e.g. the presence of HER2 to determine which pa-
tients are likely to derive benefit from trastuzumab and the
development of tamoxifen for the treatment of breast cancer
(Gottardis et al. 1988; Slamon et al. 1989).

While cell lines are convenient research tools to study
breast cancer, they are relatively simplistic models,
representing a reductionist approach to disease modelling, as
they lack the complexity and heterogeneity which characterise
human breast tumours. Not only is breast cancer complex with
many different subtypes, it know well recognised that the
tumour microenvironment can influence breast cancer epithe-
lial cells (Noël and Foidart 1998). Moreover, traditional
methods of culturing cells in isolation on plastic substrates
further remove this complexity, potentially limiting the trans-
lational impact of laboratory findings into the clinic. Given the
multi-faceted inter-relationship of cells with their microenvi-
ronment in native tumours, scientists have recognised the
shortfalls of this reductionist approach, as culturing cells in
2D in tissue culture plastic is not synonymous with this.
This was tackled initially in co-culture experiments, where
cancer epithelial cells were grown with fibroblasts, the princi-
pal cell type within the stromal microenvironment, leading to
important insights into how stromal fibroblasts could influ-
ence tumour epithelial cells (van Roozendaal et al. 1996;
Dong-Le Bourhis et al. 1997; Smith et al. 2015). A News

Feature and accompanying Editorial entitled BGoodbye, flat
biology?^ published in Nature (Abbott 2003a, b) was a rally-
ing call to scientists to consider adopting more relevant 3D
models, with due consideration of the microenvironment. This
was the first time 2D culture was officially challenged by a
high-impact journal. Since then, the number of papers
reporting 3D cell culture has overtaken that of 2D culture
and continues to grow exponentially (Fig 2).

3D culture using cell lines

Three-dimensional spheroidswere first generated using Chinese
hamster V79 cells growing in spinner flasks to study the effects
of irradiation (Sutherland et al. 1970). Since then, the use of
spheroids in cancer research has advanced greatly. The classifi-
cation of a spheroid is poorly defined but is generally thought of
as the formation of a rounded 3D structure composed of multi-
ple cells. Spheroids are good models of cancer as they develop
pH, hypoxic and proliferative gradients akin to the avascular
stages of solid tumours (Nederman et al. 1984; Rotin et al.
1986). This arrangement is mirrored in native tumours, where
the outer cells are the only ones with sufficient contact to a blood
supply containing nutrients needed for growth.

There are several ways in which breast cancer spheroids
have been cultured. Initial approaches involved plating cell
suspensions on an agar–base medium as a means of restricting
cell–substrate adhesion (Yuhas et al. 1978), the so-called liq-
uid overlay technique. Other cell types, notably fibroblasts,
were added (Seidl et al. 2002). Subsequently, the use of low-
attachment plastics allowed spheroid formation (Pickl and
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Ries 2009). The availability of reconstituted basement mem-
brane, Matrigel™, allowed 3D culture of normal and
tumourous human breast cell lines (Wang et al. 2002;
Debnath et al. 2003; Ivascu and Kubbies 2007) and, in the
case of normal, MCF-10A mammary epithelial cells, formed
acini-like spheroids that recapitulated facets of the native
mammary gland (Debnath et al. 2003). Collagen matrix was
also adopted as a means of offering greater physiological rel-
evance (Holliday et al. 2009; Roberts et al. 2016), and a range
of natural and synthetic matrices have since been used for 3D
culture of breast cancer cells (Bissell and Bilder 2003; Lee
et al. 2007; Russ et al. 2012; Nash et al. 2015). Other tech-
niques include the liquid overlay technique (Ivascu and
Kubbies 2007) and hanging drop method (Nagelkerke et al.
2013). More recently, our group has used a fully humanised
cell culture medium, which encouraged spheroid formation in
the absence of supporting matrix (Roberts et al. 2016).

With recognition that the tumour microenvironment plays a
pivotal role in cancer formation and progression, spheroid
models have become more complex and multi-cellular to re-
flect this. Multiple cell types are found in the tumour micro-
environment, including fibroblasts, macrophages and immune
cells, with cancer-associated fibroblasts (CAFs) being the
main cell type (Buchsbaum and Oh 2016). As a result, more
advanced heterotypic 3D models incorporating the tumour
stroma have been generated, e.g. the 3D co-culture of cancer
cells with CAFs (Sadlonova et al. 2005; Olsen et al. 2010; Li
and Lu 2011; Pinto et al. 2014) and the incorporation of im-
mune cells (Augustine et al. 2015). Such models more closely
replicate the tumour environment in vivo. These also include
pioneering 3D models of breast cancer metastasis to bone
using metastatic breast cancer cell lines seeded onto human
subchaodral bone discs (Holen et al. 2015). These types of
models are important, as models of cancer metastasis have
been limited to animal xenograft models, yet these do not
recapitulate the human bone microenvironment.

Nevertheless, spheroids do have their limitations. Different
cell types have varying abilities to form spheroids; for exam-
ple, the BT-474 HER2 overexpressing cell line forms tightly
packed rounded spheroids, whereas the SKBR3 HER2 over-
expressing cell line forms loose, grape-like aggregates
(Froehlich et al. 2016; Roberts et al. 2016). Also, it can be
challenging to control the size of spheroids formed and, there-
fore, the reproducibility of experiments for high-throughput
drug screening is limited. This has been examined recently,
where 42 different experimental methods were evaluated to
test how well spheroid formation was induced using three
commonly used breast cancer cell lines; MCF-7, MDA-MB-
231 and SKBr3 (Froehlich et al. 2016). Further work in ad-
dressing these limitations could make them stronger tools for
cancer research in the future.

Animal models

The significance of using animal models in breast cancer re-
search has recently been reviewed comprehensively (Holen
et al. 2017), and the reader is directed to this article for up-
to-date information. While there is no doubt that these models
have contributed to some of the success in translating labora-
tory findings to the clinic, they have limitations as pre-clinical
models. This is exemplified by the high attrition rates of prom-
ising pre-clinical agents when entered into clinical trials (Kola
and Landis 2004). Scientists are now applying lateral thought
to implement better ways of modelling breast cancer and
models developed from human clinical material are starting
to gain traction. These are discussed below.

Primary cell culture

Recognition that breast cancer was classified into at least four
major molecular subgroups (Perou et al. 2000) allowed scien-
tists to reclassify existing cell lines into representative exam-
ples (Neve et al. 2006; Holliday and Speirs 2011). However,
use of the panel of cell lines available tends to be skewed in
favour of the most common Luminal subgroup, exemplified
by the ‘workhorse’ of breast cancer research, MCF-7. This is
shown in Fig. 3, where the number of papers in PubMed
which have used MCF-7 far exceeds those using the second
most common breast cancer cell line, MDA-MB-231, often
used to model the more aggressive triple negative breast can-
cer, while aggregate publications of other less commonly used
breast cancer cell lines, e.g. to represent HER2-positive breast
cancer, is lower still. This has led scientists to consider alter-
native models using human clinical material.

Generating primary cells from tissue biopsies or resections
is regarded by many as a step up from cell lines, moving
towards achieving greater clinical relevance in biomedical
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Fig. 2 Interrogation of PubMed (2 June 2017) shows that the number of
publications reporting 3D cell culture has overtaken that of 2D culture
and continues to grow exponentially
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research. Primary cell culture is challenging, at least in breast
cancer, where, paradoxically, it is often easier to generate nor-
mal epithelial cells than cancer cells (Wang et al. 2002).
Furthermore, overgrowth by fibroblasts is a perennial prob-
lem. Hence, a degree of skill and perseverance is required to
achieve this successfully. Nevertheless, this has been achieved
by a number of groups, successfully generating explant cul-
tures or short-term culture of epithelial cells growing in 2D
(Ethier et al. 1993; Speirs et al. 1998; Hass and Bertram 2009;
Bruna et al. 2016).

For those scientists who are not embedded within research
groups based at hospital sites, access to human tissue can be a
problem. Additionally, the access and use is tightly regulated
in some countries, which can present further obstacles. This
was recognised by the UK charity Breast Cancer Now, who
commissioned two gap analyses where clinical and scientific
breast cancer experts discussed barriers in obtaining human
breast tissue (Thompson et al. 2008; Eccles et al. 2013). As a
direct result, a specialist breast cancer biobank was
established, the Breast Cancer Now Tissue Bank (BCNTB;
http://www.breastcancertissuebank.org). While a number of
other breast biobanks exist worldwide (Wilson et al. 2015),
the BCNTB is unique in that it offers a cell culture pro-
gramme, which complements its routine collection of fresh
frozen tumour and surrounding normal tissue, whole blood
and serum samples, as well as formalin-fixed paraffin-embed-
ded material. The BCNTB cell culture programme offers sci-
entists a wide range of isolated purified cell populations, in-
cluding explants, organoids, purified epithelial and
myoepithelial cells and fibroblasts from different types of
breast tumours. This provides scientists with new ways of
modelling breast cancer without the need to use animals.
Two good recent examples developed 3D models of the hu-
man breast duct with a view to using these to study ductal
carcinoma in situ (DCIS), an early-stage, pre-invasive breast
cancer. The introduction of mammographic screening in most

Western nations has resulted in the increased detection of
DCIS. This can be a precursor of invasive breast cancer in
some women, but is an issue for doctors in terms of identify-
ing who should receive treatment, which may turn out to be
unnecessary in some cases, as not all DCIS will develop into
invasive breast cancer (Marmot et al. 2013). Consequently,
there is much interest in better understanding its biology, so
a robust in vitro model is critical.

Two groups used cells from the BCNTB to develop
physiologically relevant models to better understand the
processes that underlie the transition of normal breast to
DCIS and DCIS to invasive cancer. The first, a partially
humanised 3D tri-culture model of normal breast, com-
prised luminal epithelial cell lines, primary human fibro-
blasts from the BCNTB and immortalised human
myoepithelial cells growing in 3D in a collagen I matrix
(Nash et al. 2015). More recently, a fully humanised 3D
in vitro model using material from the BCNTB was de-
veloped to study the relationship between luminal and
myoepithelial cells, the disruption of which is a critical
first step towards the development of DCIS into an inva-
sive phenotype (Carter et al. 2017). These models are
important, as research into the biology of DCIS has pre-
viously relied on animal models, notably the MIND mod-
el, which involves intra-ductal transplantation of either
DCIS-like cell lines or fragments of xenografts derived
from human DCIS into immunocompromised mice to
functionally test molecular events occurring in the initial
changes in premalignant progression (Behbod et al. 2009).
With increased uptake of the use of the BCNTB cell cul-
ture programme by the research community, it is highly
likely that additional humanised models will be developed
to help scientists work towards reducing reliance on the
use of animal models in biomedical research.

Patient-derived organoids

Further technical advances towards more advanced dis-
ease modelling is the development of the patient-derived
organoid (PDO) model. Although organoid modelling per
se is not new, the way this is now being applied to human
tissues is opening up new opportunities to study and un-
derstand disease processes. Organoids are generated from
small fragments of tissue from human tumours by me-
chanical and enzymatic disaggregation and plating in
basement membrane extract, which can be maintained in
culture. Because cells are maintained in 3D and retain
critical cell–cell and cell–matrix interactions, these
organoid models can be perceived as an intermediary be-
tween in vitro cell lines and animal xenograft models.
While still a relatively new method, organoid cultures
have enormous potential, with PDOs now derived from
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a number of different types of primary and metastatic
human tumours with good success (van de Wetering
et al. 2015; Bruna et al. 2016). By using patient tissue
for research, the translational impact could increase great-
ly, with the possibility of advancing personalised medi-
cine. Furthermore, this will certainly reduce, potentially
even eliminating, the need for animals as pre-clinical
models in the longer term. The use of patient tissue is
possible through tissue banks such as the BCNTB men-
tioned above and others.

Conclusions

Models to study breast cancer have evolved in the last few
decades, gradually increasing in complexity to reflect na-
tive tissue architecture. Complementary to this, research is
gradually moving away from 2D culture and in using
animals to model breast cancer, towards developing
humanised systems using human tissue samples from
biobanks. In this era of precision medicine, this has real
potential to revolutionise pre-clinical drug testing, offer-
ing an intermediate step, which could reduce or may even
eventually replace the use of animals. Whilst it is unlikely
that a single model alone will be used to recapitulate na-
tive tumour biology, using a combinatorial approach
could impact on drug efficacy trials, improving translation
into patients.
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