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Microorganisms represent the largest component of biodiversity in our world. For mil-
lions of years, prokaryotic microorganisms have functioned as a major selective force
shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the
animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intesti-
nal microbiome represents a “forgotten organ,” functioning as an organ inside another
that can execute many physiological responsibilities. The nature of primitive eukaryotes
was drastically changed due to the association with symbiotic prokaryotes facilitating
mutual coevolution of host and microbe. Phytophagous insects have long been used to
test theories of evolutionary diversification; moreover, the diversification of a number of
phytophagous insect lineages has been linked to mutualisms with microbes. From termites
and honey bees to ruminants and mammals, depending on novel biochemistries provided
by the prokaryotic microbiome, the association helps to metabolize several nutrients that
the host cannot digest and converting these into useful end products (such as short-chain
fatty acids), a process, which has huge impact on the biology and homeostasis of meta-
zoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences
the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects
the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation
of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as
well as the central nervous system. Despite these important effects, the mechanisms by
which the gut microbial community influences the host’s biology remain almost entirely
unknown. Our aim here is to encourage empirical inquiry into the relationship between
mutualism and evolutionary diversification between prokaryotes and eukaryotes, which
encourage us to postulate: who is hosting whom?

Keywords: microbiome, prokaryotes, eukaryotes, microbial endocrinology, probiotics, digestive physiology, enteric
nervous system

THE MICROBIOME AND GENERAL HOMEOSTASIS
A common human propensity is to regard all microorganisms as
“harmful,” in particular, equating bacteria to pathogenic germs.
Nothing could be further from the truth. The number of ben-
eficial bacterial species far exceeds the number of pathogenic
species and many of the known bacteria are in fact useful or
even indispensable for the continued existence of life on Earth.
Prokaryotic microorganisms are widespread in all environments
on Earth, establishing diverse interactions with many eukaryotic
taxa (1, 2). The cooperative interactions between species (mutu-
alism) have had a central role in the generation and maintenance
of life on earth (3, 4). Prokaryotes and eukaryotes are involved
in diverse forms of mutualism (5). Adaptive diversification is
a process intrinsically tied to species interactions (6). Yet, the
influence of most types of interspecific interactions on adaptive
evolutionary diversification remains poorly understood. In par-
ticular, the role of mutualistic interactions in shaping adaptive
radiations has been largely unexplored, despite the ubiquity of
mutualisms and increasing evidence of their ecological and evolu-
tionary importance. The endosymbiotic theory states that several
key organelles of eukaryotes originated as symbioses between

separate single-celled organisms (7). According to this theory,
mitochondria and plastids (e.g., chloroplasts), and possibly other
organelles, represent formerly free-living bacteria that were taken
inside another cell as an endosymbiont, around 1.5 billion years
ago (8). Molecular and biochemical evidence suggest that the mito-
chondrion developed from proteobacteria and the chloroplast
from cyanobacteria (9). Numerous facultative heritable endosym-
bionts are reproductive manipulators (5). Nevertheless, many do
not manipulate reproduction, so they are expected to confer fit-
ness benefits to their hosts, as has been shown in several studies
that report defense against natural enemies, tolerance to envi-
ronmental stress, and increased fecundity (6). One example of
such beneficial group of microorganisms is the incredibly complex
and abundant ensemble of microbes that harbors in the gastroin-
testinal tract (GIT) of metazoans (10). The GIT is more densely
populated with microorganisms than any other organ and is an
interface where the microflora may have a pronounced impact on
animal biology (11–13). More than 50 genera and at least 500–
1,000 different species are distributed along the length of the GIT
(10, 14, 15). The bacterial population of the human cecum and
colon is numerically ~1013 cfu/g (10, 15, 16), comprising about
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40–55% of solid stool matter and weights ~1 kg (17). Presum-
ably, the assembly of gut microflora is regulated by elaborate and
combinatorial host–microbial and microbial–microbial interac-
tions predicated on principles refined over the course of evolution
(16, 18, 19). Comparison of rodents raised without exposure
to any microorganisms to those colonized with an assembly of
microbiota revealed a wide range of host functions affected by
indigenous microbial communities. For example, the microbiota
directs the assembly of the gut-associated lymphoid tissue (20, 21),
helps educate the immune system (22), affects the integrity of the
intestinal mucosal barrier (23), modulates proliferation and dif-
ferentiation of its epithelial lineages (24), regulates angiogenesis
(21), modifies the activity of the enteric nervous system (25, 26),
and plays a key role in extracting and processing nutrients con-
sumed in the diet (27, 28). The microflora can metabolize proteins
and protein degradation products, sulfur-containing compounds,
and endogenous and exogenous glycoproteins (29, 30). Some
organisms grow on intermediate products of fermentation such
as H2, lactate, succinate, formate, and ethanol; converting these to
end products including short-chain fatty acids, a process which
has direct benefits on digestive physiology (31–33). In particu-
lar with diet composition, one must conclude that, metazoans
literally “become what we eat.” So, any disorders in this fragile
microbial ecosystem (disbacteriosis) may predispose the host to
a whole range of chronic diseases and infections thereby affect-
ing the production of food animals. On the other hand, over
millions of years, animals have developed various means for sup-
porting complex and dynamic consortia of microorganisms dur-
ing their life cycle (34, 35). As with most complex ecosystems,
it appears that the majority of these microbial species cannot
be cultured when removed from the niches in their host ani-
mals (24). The fragile composition of the gut microflora can be
affected by various factors such as age, diet, environment, stress,
and medication (36, 37). Furthermore, many factors are involved
in shaping gut microflora from infancy such as mode of delivery,
type of infant feeding, hospitalization, prematurity, antibiotic use,
and dietary nutrient composition (36, 38). Dietary ingredients
have a profound effect on the composition of the gut microflora,
which in turn regulates the physiology of all animals (19). As
such, nutritional components of the diet are of critical impor-
tance not only for meeting the nutrient requirements of the host
but also shaping the profile of the microbiome, which in turn
will determine the balance between health and disease. As an
example, several studies have shown the effect of diet composi-
tion in promoting insulin sensitivity, diabetes, cancer, and other
metabolic disorders (39–44). Some researchers believe that the
alarming increase in autoimmune diseases in the West may owe
to a disruption in the ancient relationship between our bodies
and a healthy microbiome (45). Thus, colonization of microbio-
mes in metazoans begins at birth, and is followed by progressive
assembly of a complex and dynamic microbial society maintain-
ing a perfect harmony or homeostasis (46). However, little is
known about how they influence the normal development and
physiology of hosts. A transcendent view of vertebrate biology
therefore requires an understanding of the contributions of these
indigenous microbial communities to host development and adult
physiology.

THE MICROBIOME AND THE IMMUNE SYSTEM
Today, the fields of immunology, microbiology, and nutrition
converge in an astonishing way (47). Balanced gastrointestinal
microflora and immune-stimulation are major functional effects
attributed to beneficial bacteria (48–50). In this context, a short
window of time during birth exists that enables the colonization
of symbiotic bacteria to all mucosal surfaces, which may mod-
ify the future immune phenotype of the host (51–53). Perhaps,
a delayed microbial colonization of the gut mucosa, the largest
immune organ of the body, could cause significant changes in the
immune system possibly having long term impacts on systemic
immunity (54–60). For instance, some effects of the microbiome
are mediated through immune regulation, particularly through
balanced control of pro-inflammatory and anti-inflammatory
cytokines (61, 62). Moreover, several animal and human studies
have provided unequivocal evidence that specific bacterial strains
are capable of stimulating multiple aspects of innate immunity
(63–67) as well as to increase humoral immunity (68–70). Very
interestingly, through a process of “cross talk” with the mucosal
immune system, the microbiota negotiates mutual growth, sur-
vival, and inflammatory control of the intestinal ecosystem and
pathogen control (71–75).

THE MICROBIOME–GUT–BRAIN AXIS
Gut bacteria produce hundreds of neurochemicals that the brain
uses to regulate basic physiological as well as mental processes
such as learning, memory, and mood variations (76, 77). Today,
it has been recognized that the microbiome–gut–brain axis influ-
ences brain chemistry and behavior independently of the auto-
nomic nervous system, gastrointestinal-specific neurotransmit-
ters, or inflammation (78). The ability of the microflora to syn-
thesize neuroactive compounds such as acetylcholine, dihydrox-
yphenylacetic acid, l-3,4-dihydroxyphenylalanine, dopamine-4-
O-sulfate, epinephrine, γ-aminobutyric acid, histamine, norep-
inephrine, serotonine, tyramine, among others, provides some
microbial endocrinology-based mechanism that may help to
explain some of the mechanisms, both immunological and neuro-
physiological components, by which the microbiome modulates
the biology of their host (79). The fact that bacteria not only pro-
duce but also respond to neurochemicals produced by the host has
led to the creation of a new field of study, microbial endocrinology,
providing convincing evidence that cell-to-cell signaling in meta-
zoans may be due to late horizontal gene transfer from bacteria
(80). As an evidence of this astonishing link between prokary-
otes and their hosts, some probiotic strains have been shown to
reduce anxiety and depression by lowering the levels of corticos-
terone (81), as well as helping program some aspects of brain
development in neonates (82–84). There is a lot of truth in the
old saying “thinking with your gut,” since the enteric nervous sys-
tem, known as the “second brain” contains more neurons than
the peripheral nervous system (79). More recently, various stud-
ies have also linked some gut microflora with autism (85–88).
Conversely, just as gut bacteria affect the brain, the brain can
also exert profound influences on the gut microbiome, with feed-
back effects on behavior. This may help explain why people with
inflammatory syndromes such as Crohn’s disease, ulcerative col-
itis, or irritable bowel syndrome are also plagued by anxiety and
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depression (89–91). High and chronic levels of stress hormones
such as epinephrine and norepinephrine have been shown to
increase virulence and pathogenicity of several pathogenic enter-
obacteria (92–95). This neurochemical-mediated“two-way street”
is one of the principles that undergirds the microbial endocrinol-
ogy construct that unify animal and plant kingdoms with the same
origin, since for example, stress-related neuroendocrine hormone
family of catecholamines has also been demonstrated in all forms
of life on earth (79).

WHO IS HOSTING WHOM?
Wolbachia are common intracellular bacteria that are found in
arthropods and nematodes (5). It is one of the world’s most
common parasitic microbes and is possibly the most common
reproductive parasite in the biosphere (96). Its interactions with
its hosts are often complex, and in some cases have evolved to be
mutualistic rather than parasitic. Some host species cannot repro-
duce, or even survive, without Wolbachia infection (97). These
proteobacteria endosymbionts are transmitted vertically through
host eggs and alter host biology in diverse ways, including the
induction of reproductive manipulations, such as feminization,
parthenogenesis, male killing, and sperm-egg incompatibility and
they can also move horizontally across species boundaries, result-
ing in a widespread and global distribution in diverse invertebrate
hosts (98).

Prokaryotes also have developed a sophisticated system of stim-
ulus, communication, and response (quorum sensing ) that many
species of bacteria use to coordinate gene expression that coordi-
nate certain behaviors such as biofilm formation, virulence, and
antibiotic resistance, based on the local density of the bacterial
population (99–102). Quorum sensing occurs within a single bac-
terial species as well as between diverse species, and the cells of
the host, serving as a simple indicator of population density or the
diffusion rate of the cell’s immediate environment (103–107).

At a higher biological level, there is clear evidence that even
some parasites can be also excellent manipulators of their host.
It is remarkable that when two parasite species are manipulators
and have different definitive hosts, there is a potential for conflict
between them. Selection may then exist for either avoiding hosts
infected with conflicting parasites, or for hijacking, i.e., competi-
tive processes to gain control of the intermediate host (108). The
evidence for both phenomena depends largely on the study of
the relative competitive abilities of parasites within their com-
mon intermediate host. Adaptive host manipulation hypothesis
is usually supported by case studies on trophically transmitted
heteroxenous endoparasites. Trematodes and cestodes are among
efficient manipulators of fish, their common intermediate hosts.
Reviewed experimental data suggest that heteroxenous parasites
manipulate their host mainly through impaired defense behav-
ior, e.g., impairing shoaling in fish. Alternatively, monoxenous
parasites facilitate shoaling that is profitable for both parasites
and hosts (109). Coordination of modified host behavior with
the parasite life cycle, both temporal and spatial, is the most
convincing criterion of the adaptive value of host manipulation
(110). In human beings, seropositivity of the obligate intracellular
protozoan parasite,T. gondii is related to various mental health dis-
orders including schizophrenia, suicide attempt, depression, and

other neuropsychiatric diseases (111). Depressive symptoms have
been linked to interferon-γ (IFN-γ) blocking T. gondii growth
by inducing indoleamine-2,3-dioxygenase (IDO) activation and
tryptophan depletion, which results in a decrease of serotonin
production in the brain (112).

FINAL REMARKS
The interest in digestive physiology and the role of microorgan-
isms has generated data whereby human and animal well being
can be enhanced and the risk of disease reduced. New molecu-
lar techniques that allow more accurate assessment of the flora
composition are resulting in improved strategies for elucidating
mechanisms. The research field of beneficial microorganisms to
animals and humans (probiotics) has been aimed at modulating
the intestinal microflora and current research is still heavily biased
toward gastrointestinal applications for probiotics, such as chronic
constipation (113), chronic diarrhea (114), inflammatory bowel
disease (115), irritable bowel syndrome (116), and food allergy
(117), the possibilities for impacting many areas of health are
numerous. However, other parts of the body containing endoge-
nous microflora or problems relating to the immune system may
also be candidates for probiotic therapy. A few researchers have
already shown that probiotics have potential for human health
issues such as vaginal candidiosis (118), dental caries (119), aller-
gies (120),autoimmune diseases (121),urogenital infections (122),
atopic diseases (69), rheumatoid arthritis (26), and respiratory
infections (68). It has been said that “nothing is new under the
sun.” There are no new or novel discoveries in this review that
have not been clearly described previously by numerous scientists.
Rather, the purpose of this manuscript is simply trying to put
some of the puzzle pieces together. When we ponder and contem-
plate the astonishing and remarkable roles that prokaryotes have
on host metabolism, immune function, gene expression, repro-
duction, and behavior of metazoans, I wonder who is, in reality,
hosting whom?
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