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Abstract

Kidney transplantation is the treatment of choice for patients with end-stage kidney failure,

but transplanted allograft could be affected by viral and bacterial infections and by immune

rejection. The standard test for the diagnosis of acute pathologies in kidney transplants is

kidney biopsy. However, noninvasive tests would be desirable. Various methods using dif-

ferent techniques have been developed by the transplantation community. But these meth-

ods require improvements. We present here a cost-effective method for kidney rejection

diagnosis that estimates donor/recipient-specific DNA fraction in recipient urine by sequenc-

ing urinary cell DNA. We hypothesized that in the no-pathology stage, the largest tissue

types present in recipient urine are donor kidney cells, and in case of rejection, a larger num-

ber of recipient immune cells would be observed. Extensive in-silico simulation was used to

tune the sequencing parameters: number of variants and depth of coverage. Sequencing of

DNA mixture from 2 healthy individuals showed the method is highly predictive (maximum

error < 0.04). We then demonstrated the insignificant impact of familial relationship and eth-

nicity using an in-house and public database. Lastly, we performed deep DNA sequencing

of urinary cell pellets from 32 biopsy-matched samples representing two pathology groups:

acute rejection (AR, 11 samples) and acute tubular injury (ATI, 12 samples) and 9 samples

with no pathology. We found a significant association between the donor/recipient-specific

DNA fraction in the two pathology groups compared to no pathology (P = 0.0064 for AR and

P = 0.026 for ATI). We conclude that deep DNA sequencing of urinary cells from kidney allo-

graft recipients offers a noninvasive means of diagnosing acute pathologies in the human

kidney allograft.
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Introduction

In 1933 Ukrainian surgeon Yurii Voronoy achieved the first human kidney transplantation

[1]. Kidney transplantation is the preferred treatment option for patients with end-stage renal

failure compared to dialysis. Today, renal transplantation plays an important role in clinical

medicine and has become a relatively safe intervention. However, various pathologies can still

affect the transplanted organ, including infections, disease recurrence and immune rejections

The rejections can be related to a range of donor- and recipient-specific factors [2, 3]. Acute

renal rejection affects 10 to 20% of transplants within three months after transplantation and

chronic rejection is an important cause of graft failure [3–5].

To diagnose rejection, kidney allograft biopsies are considered the gold-standard for detect-

ing both acute and chronic immune rejection, as well as other associated pathologies that may

eventually lead to allograft loss. However, biopsies are invasive, costly, and in rare cases can

lead to organ loss, while the readout can potentially be erroneous if a non-affected part of the

kidney is sampled by chance. Therefore, invasive biopsies in patients with low immunological

risk could be criticized [6]. There is hence a strong need for noninvasive assays to detect injury

in transplanted kidneys. Several studies to develop suitable biomarkers for allograft rejection

have been conducted. These studies include the quantification of specific messenger RNAs

(mRNA) in urine [7], large-scale transcriptomics analyses of peripheral blood [8], proteomics

analyses of biopsies [9] and urine [10, 11], and metabolomics [12] and RNA sequencing [13]

of urine pellet or supernatant. Nevertheless, non-invasive methods developed to date still have

important caveats and require further improvement.

The presence of donor-specific DNA in the blood was first reported in women who had a

kidney or a liver transplant [14]. The measurement of cell-free donor-specific DNA in blood

for a differential diagnosis of kidney injury has been suggested recently [15–17]. These studies

focused on females who received a kidney from male donors by identifying the presence of

DNA coding for the testis specific protein Y- linked 1 (TSPY1) or the sex-determining region

of the Y chromosome using quantitative polymerase chain reaction. With the improvement of

next generation sequencing technologies, whole genome sequencing (WGS) [18, 19] and tar-

geted sequencing [20] were used for measuring donor-specific DNA for solid organ transplant

rejection. However, these studies focused on heart transplants and measured cell-free donor-

specific DNA in blood plasma. More importantly, these methods require the sequencing of

both donor and receptor DNA which is more costly.

An algorithm for measuring donor-specific DNA in plasma of organ transplants without

requiring donor or recipient genotyping was implemented by Gordon et al [21]. But this algo-

rithm made the assumption that donor fraction is< 14%. More recently, Grskovic et al. used

sequencing of 266 single nucleotide variants (SNVs) that discriminate best between two unre-

lated individuals to count reference and alternative allele frequency for estimating the donor-

derived cell-free DNA fraction [22]. This method showed a high correlation between cell-free

donor specific DNA levels in recipient blood and active rejection of the kidney allografts [23].

However, this method does not account for potential sequencing errors and requires a priori
knowledge of the familial relationship between donor and recipient. Finally, a statistical

method combining SNV array genotyping of donor and recipient before transplantation with

recipient DNA sequencing was used to estimate recipient-derived DNA fraction in heart and

lung transplants [24]. Nonetheless, this method requires SNV genotyping of donor and recipi-

ent DNA before transplantation. Most importantly, all of the previous studies focused on

DNA extracts from blood.

The presence of donor-specific DNA in urine of kidney allograft recipients has been

reported [25]. We recently conducted a study based on RNA sequencing of kidney allograft
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biopsies and found a correlation between the ratio of heterozygous to homozygous SNVs with

the rejection phenotype [26]. Moreover, we have shown that DNA methylation could be used

to accurately estimate the tissue type composition in recipient urine samples. We found that

the largest tissue types present in recipient urine were kidney cells and neutrophils and that

donor-specific DNA fraction correlates with the kidney derived cell fraction [27]. However,

we restricted the analysis to kidney recipients with urinary tract infection and BK-virus

nephropathy only. Most recently, we have identified different gene signatures and pathways

associated with two different types of kidney rejection using RNA-seq of urinary cell pellets:

acute T cell–mediated rejection and antibody-mediated rejection [13]. Deconvolution analysis

showed a higher enrichment of immune cells in urine matched to rejection biopsies compared

to urine matched to no-rejection biopsies.

Given that the fraction of donor-specific DNA can be determined using DNA sequencing,

we here hypothesize that the recipient-specific DNA fraction in urine correlates with the

level of active rejection in the kidney allograft, assuming that recipient-specific DNA origi-

nates mostly from allograft-invading immune cells while donor-specific DNA comes from

the allograft [28]. Inspired by methods to estimate DNA contamination in sequencing proj-

ects [29, 30], we present a cost-effective method to determine the fraction of donor/recipi-

ent-specific DNA (denoted α hereafter) in urine by sequencing targeted regions. We

demonstrate that the precision of this measure depends on sequencing depth and length of

the targeted region. Most importantly, no prior knowledge of donor and recipient relation-

ship is required. To the best of our knowledge, this is the first method for estimating donor/

recipient-specific DNA fraction in DNA mixture extracted from kidney graft recipient’s

urine. Our method provides an easy way to determine the donor/recipient-specific DNA

fraction regardless of donor and recipient gender. We evaluate the applicability of our

approach for the detection of kidney transplant rejection. Future applications could be rou-

tine tests of urine samples as a reference to adjust and personalize the dosage of immune sup-

pressive drugs in kidney transplant patients.

Materials and methods

Algorithm

The proposed algorithm is inspired by the contamination estimation assessment in DNA

sequencing methods [29, 30]. We hypothesize that recipient urine contains a mixture of recipi-

ent and donor DNA. Let N be the number of bi-allelic SNVs sequenced from recipient urine

DNA and each SNV i is covered byMi reads. Let gi
R and gi

D be the genotype of recipient and

donor at the SNV i, respectively. Both gi
R and gi

D are unknown. Limiting the analysis on bi-

allelic SNVs only leads to three possible genotypes for recipient and donor at each SNV i: gi
R

(gi
D) = {0, 1, 2} where 0 = homozygous wild type, 1 = heterozygous and 2 = homozygous for

the alternative allele. The likelihood of the donor-specific DNA fraction (α) will be:

L að Þ ¼
YN

i¼1

X

gRi

X

gDi

YMi

j¼1

X

eij
1 � að ÞP bijjg

R
i ; eij

� �
þ a P bijjg

D
i ; eij

� �� �
PðeijÞ

� �

P gRi
� �

P gDi
� �
ð1Þ

Where bij represents the read j covering the SNV i. eij represents the sequencing error of SNV i
at the read j: P(eij = 1) = 10-Qij/10 and P(eij = 0) = 1- P(eij = 1). Qij represents the minimum

between the base quality of the read j at the position of the variant i and the mapping quality of

the read j. The probability of bij conditioned to the recipient (donor) genotype gi
R (gi

D) and

the sequencing error eij is described in Table 1. Finally, we used the simulated annealing

approach together with a grid search to find α that maximizes the likelihood function [31].

The method was implemented in a Python script.
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As the likelihood function for estimating α requires a balance in alternative/reference allele

distribution in heterozygous calls for both recipient gi
R and donor gi

D genotypes, very deep

recipient urine DNA sequencing will provide this allele balance (Table 2).

Simulated SNVs based on general population structure

To assess the effect of the number of SNVs (N) and mean depth of coverage (M) on the allele

balance and thus the prediction accuracy of the likelihood function, we simulated 2 indepen-

dent SNV-sets each set containing N common SNVs (minor allele frequency� 5%) and cov-

ered on average byM reads. We varied N andM in 35 scenarios where N = {10, 50, 100, 500

and 1,000} andM = {10, 50, 100, 500, 1,000, 5,000 and 10,000}. We merged α reads from set1

and 1-α from set2 randomly generating a combined SNV-set and applied the likelihood func-

tion on the combined SNV-set to estimate the observed α. Because L(α) = L(1-α), we restricted

0� α� 0.5 in steps of 0.01 generating 51 scenarios. A thousand replicates for each scenario

and for each α were performed to obtain an empirical distribution.

Sequencing of urinary cell DNA from a pair of healthy individuals

We extracted DNA from whole urinary cell pellet of two healthy individuals; S1, a 30-year-old

European woman and S2 a 30-year-old Arab woman using the Qiagen1 Allprep Mini Kit (S2

Table in S1 File) extraction kit. We omitted urinary cell-free DNA as it has been shown that uri-

nary fragmented DNA needs suitable preservatives to avoid DNA degradation [32]. The DNA

concentration was similar for the two individuals: 35ng/μl. We mixed DNA from S1 and S2 to

achieve 5 scenarios: i) 100% from S1; ii) 100% from S2; iii) 90% from S1; and 10% from S2; iv)

70% from S1 and 30% from S2; v) 50% from S1 and 50% from S2, and each scenario was repli-

cated three times. We performed deep targeted DNA sequencing on each replicate. GeneR-

eadDNA Seq Targeted Panels V2; Human Breast Cancer Panel (Qiagen, USA) was used to

perform target enrichment by multiplex PCR. The breast cancer panel consists of four primer

pools yielding 2,915 amplicons. Briefly, 40ng of each gDNAs was amplified using PCR reagents

with 4 primer pool mixes following the manufacturer’s protocol. After the completion of the 4

Table 2. The probability and the 99% interval confidence of a perfect allele balance in a heterozygous call as a

function of depth of coverage M. A total of 10,000 simulations were performed for each proposedM.

M P(alt/(ref+alt) = 0.5) 99% confidence interval

10 0.24 [0.10, 0.90]

50 0.11 [0.34, 0.66]

100 0.08 [0.39, 0.62]

500 0.18 [0.45, 0.55]

1,000 0.27 [0.46, 0.54]

5,000 0.53 [0.48, 0.52]

10,000 0.69 [0.49, 0.51]

https://doi.org/10.1371/journal.pone.0249930.t002

Table 1. The probability of read bij carrying the reference (a), alternative (A) or a different allele (e) conditioned

to the recipient (donor) genotype gi
R (gi

D) and the sequencing error eij.

gi
R (gi

D) = 0 gi
R (gi

D) = 1 gi
R (gi

D) = 2

eij = 0 eij = 1 eij = 0 eij = 1 eij = 0 eij = 1

P(bij = a) 1 0 1/2 1/6 0 1/3

P(bij = A) 0 1/3 1/2 1/6 1 0

P(bij = e) 0 2/3 0 2/3 0 2/3

https://doi.org/10.1371/journal.pone.0249930.t001
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PCR reactions, the 4 products were combined, and the enriched DNA was purified using

Agencourt AMPure XP beads (Beckman Coulter, USA). The concentration and the size of the

purified amplicons were determined using Qubit 2.0 Fluerometer dsDNA BR assay kit (Life-

Technologies, USA) and Agilent BioAnalyzer 2100 High-Sensitivity DNA kit (Agilent Technol-

ogies, USA). A total amount of 80–160 ng of purified enriched DNA was used as template to

generate NGS libraries. The NGS libraries were prepared using NEBNEXT Ultra II DNA

Library Prep Kit (New England Biolabs, USA) and NEXTflex DNA Barcodes (Bio Scientific,

USA). All library preparation steeps were performed according to the manufacturer’s protocol.

The size and quality of the final libraries were analyzed using Agilent BioAnalyzer 2100 with

1000 DNA kit (Agilent Technologies, USA). The quantified libraries were then normalized,

pooled, and spiked with 5% PhiX control library (Illumina, USA). Finally, the pooled libraries

were sequenced on a single lane of Illumina Hiseq 4000 (Illumina, USA) paired-end 150 bp run.

Obtained reads were aligned to the human genome reference hg19 using bwa [33]. A total

of 51,893 bi-allelic SNVs from the Exac project are included in the targeted genomic regions.

The method works only on SNVs with different genotypes between donor and recipient.

Under Hardy Weinberg assumption, we assessed the probability of having a different genotype

for each SNV i as:

P GDi 6¼ G
R
i

� �
¼
X2

GD¼0

X2

GR¼0

F GDi ¼ G
D

� �
�F GRi ¼ G

R
� �

;GD 6¼ GR ð2Þ

F GD Rð Þ
i ¼ 0

� �
¼ pD Rð Þ

i
2

ð3Þ

F GD Rð Þ
i ¼ 1

� �
¼ 2�pD Rð Þ

i �q
D Rð Þ
i ð4Þ

F GD Rð Þ
i ¼ 2

� �
¼ qD Rð Þ

i
2

ð5Þ

Where GDi and GRi represent the donor and recipient genotype, respectively. pDi and pRi repre-

sent the donor and recipient reference allele frequency, respectively. qDi and qRi represent the

donor and recipient alternative allele frequency, respectively.

To avoid allele dropout due to primer annealing region, we filtered out 24,237 SNVs falling at

the primer sequencing regions and SNVs carried by reads targeted by primers containing SNVs

[34]. From the 27,656 remaining SNVs, we selected the 1,000 most common and applied the

likelihood function after filtering out the reads carrying the variant at the last 20 base pairs [35].

Simulated SNVs in pairs of individuals from the same and different

ethnicities

We used individuals from the 1,000 Genomes Project phase 3 representing five major popula-

tions: AFR, AMR, EAS, EUR and SAS [36]. We randomly selected two individuals and aimed

to cover all possible situations: five cases where individual1 and individual 2 belong to the

same population and ten cases where individual1 and individual 2 belong to different popula-

tions. We extracted the 1,000 SNVs described previously from individual1 and Individual 2

and then merged α reads from individual1 and 1-α from individual 2 generating a combined

SNV-set. We varied α from 0 to 0.5 in steps of 0.01 and fixed the mean depth of coverage at

M = 5,000. We applied the likelihood function to assess α for each combined SNV-set gener-

ated. We repeated the individual selecting process 100 times to obtain an empirical distribu-

tion for each situation.
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Simulated SNVs in pairs of biological siblings

We performed WGS on Illumina HiSeq 2500 sequencer of 91 Qatari siblings from 27 nuclear

families containing at least 2 siblings and up to 7 siblings [37]. Reads were aligned to the hg19

reference genome using bwa [33]. Sequence alignment files were filtered and genotypes were

called using the Genome Analysis Tool Kit best practices pipeline; variants were called using

HaplotypeCaller [38, 39]. We used Plink identity by state to confirm the familial relationship

[40] (S1 Fig in S1 File). We extracted the 1,000 SNVs described previously from each sibling

and merged each pair generating 100 combined SNV-sets. We applied the likelihood function

to assess α for each combined SNV-set generated by varying α from 0 to 0.5 with a step of 0.01

while the mean depth of coverage was set atM = 5,000.

Donor/recipient-specific DNA fraction in real kidney recipient urine DNA

We studied 32 biopsy-matched urine specimens collected from 26 kidney allograft recipients

who were enrolled. The study was approved by the Weill Cornell Medicine Institutional

Review Board protocols 1207012730). All patients provided written informed consent. Kidney

allograft biopsies were classified as acute rejection (n = 11), acute tubular necrosis (n = 12) and

normal histology (n = 9) using the Banff 2017 schema [41] (Table 3 and S2 Table in S1 File).

DNA was extracted exclusively from urinary cell pellets and deep targeted DNA sequencing

was performed on all samples. Briefly, 50cc of fresh urine was centrifuged at 2,000g for 30 min-

utes at room temperature and the urinary cell pellet was harvested after removing the superna-

tant. After washing the urine cell pellet with 1ml PBS, the cells were lysed using 350ul of Buffer

RLT from Qiagen1 and DNA was isolated from the cell pellet using Allprep DNA/RNA/Pro-

tein Mini Kit from Qiagen1. Total DNA was quantified using the NanoDrop™ Spectropho-

tometer. DNA sequencing was performed as previously described for the pair of healthy

individuals. Obtained reads were aligned to the human genome reference hg19 using bwa [33].

We filtered out low quality reads using an in-house Python script. We applied the likelihood

function on the 1,000 SNV-set to estimate the recipient-specific DNA fraction. The nonpara-

metric Kruskal-Wallis test was applied to assess the correlation between observed α and all the

diagnosis phenotypes. Dunn’s function was applied to test the pairwise association. R software

was used for statistical tests and generating graphs [42].

Ethnicity estimation for donor and recipient

We combined the observed α in the kidney transplant patients with a cost function to predict

the genotype of both recipient (gi
R) and donor (gi

D) at each SNV i. First, we computed the

expected fraction of the alternative to the total allele (reference + alternative) expi for all 9 pos-

sible combinations of gi
R and gi

D (Table 4). The observed fraction of the alternative to total

alleles (obsi) at the SNV i is defined by:

obsi ¼
Number of reads carrying the alternative allele
Total number of reads covering the SNV i

ð6Þ

Then, we used the cost function to determine gi
R and gi

D that minimizes the difference

between the 9 expected (expi) and the observed (obsi) fraction of the alternative to total alleles:

Loss a; gRi ; g
D
i

� �
¼ Mino¼9

o¼1
expio � obsið Þ

2
ð7Þ

Once gi
R and gi

D were estimated, we performed a partial least square analysis (PLS) using 3

subpopulations from the 1,000 Genomes Project African, East Asian and European

PLOS ONE Urine DNA-sequencing for kidney allograft rejection prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0249930 April 15, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0249930


Table 3. Characteristics of kidney transplant recipients.

Recipient Characteristics Patient Total

(N = 26)

Patients with AR

(N = 8)

Patients with ATI

(N = 10)

Patients with No Pathology

(N = 8)

Number of Biopsy Associated Urine Specimens 32 12 11 9

Age, years

Mean (SD) 45.5 (14) 46.1 (19) 43.8 (14) 47.1 (8)

Median 43 43 40 49

Min, Max 25, 80 25, 80 29, 74 34, 59

Gender, N (%)

Male 40 (100%) 40 (100%) 40 (100%) 40 (100%)

Race, N (%)

White 8 (31%) 3 (38%) 3 (30%) 2 (25%)

Black 11 (42%) 4 (50%) 3 (30%) 4 (50%)

Hispanic 3 (11%) 1 (12%) 0 (0%) 2 (25%)

Asian 2 (8%) 0 (0%) 2 (20%) 0(0%)

Mixed 2 (8%) 0 (0%) 2 (20%) 0 (0%)

Cause of ESRD, N (%)

Diabetes 4 (15%) 1 (13%) 1 (10%) 2 (25%)

Hypertension 11 (42%) 3 (37%) 5 (50%) 3 (50%)

Glomerulonephritis 6 (23%) 3 (37%) 1 (10%) 2 (25%)

Polycystic Kidney Disease 3 (12%) 0 (0%) 2 (20%) 1 (11%)

Other 2 (8%) 1 (13%) 1 (10%) 0 (0%)

Prior Transplant History, N (%) 2 (8%) 1 (13%) 1 (10%) 0 (0%)

Donor Source, N (%)

Living 17 (65%) 4 (50%) 7 (70%) 6 (75%)

Deceased 9 (35%) 4 (50%) 3 (30%) 2 (25%)

Induction Therapy, N (%)

Antithymocyte globulin 23 (88%) 5 (62%) 10 (100%) 8 (100%)

IL-2 Receptor Antibody 3 (12%) 3 (38%) 0 (0%) 0 (0%)

Steroid Maintenance Therapy, N (%) 10 (38%) 4 (50%) 2 (20%) 4 (50%)

Time since Transplant to Biopsy, Month, mean

(SD)

8.26 (12.32) 9.79 (11.05) 1.56 (1.64) 15.10 (17.20)

Biopsy Creatinine 3.1 (2.4) 2.9 (1.9) 4.4 (2.9) 1.6 (0.25)

One Year Post Biopsy Creatinine 2.2 (1.7) 2.9 (2.9) 2.0 (0.6) 1.8 (0.7)

https://doi.org/10.1371/journal.pone.0249930.t003

Table 4. Expected fraction of the alternative to total alleles (reference + alternative) as a function of observed α.

gi
R gi

D expi
0 0 0

0 1 α/2

0 2 α

1 0 1 � a=
2

1 1 1/2

1 2 1 þ a=
2

2 0 1—α

2 1 2 � a=
2

2 2 1

https://doi.org/10.1371/journal.pone.0249930.t004
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populations using the mixOmics R package [43] and then predicted the ethnicity of donor and

recipient in the real kidney transplant samples. The leave-two-out 1,000-fold cross-validation

showed the highest prediction accuracy (81.6%) when using the Yoruba in Nigeria, the South-

ern Han Chinese and the Toscani in Italy amongst the African, East Asian and European sub-

populations (S2 Fig in S1 File). We excluded the American and the South Asian populations

because using just 1,000 SNVs is not sufficient to perform a reliable PLS on 5 populations,

where the highest cross-validation prediction accuracy was too low at only 54.8% (S2 Fig in S1

File). More relevant, none of the donors or recipients involved in the study belonged to the

South Asian or the American populations.

Results

In silico simulation of donor-recipient DNA mixtures

To determine the optimal sequencing parameters, we use numerical simulations. The simula-

tion process is based on generating two different SNV-sets, then merging the two sets with a

predefined proportion of each set; α from set 1 and (1-α) from set 2, and then applying a likeli-

hood function (Methods) to estimate this proportion (observed α). Two major parameters

affect the estimation of the observed α: the number of sequenced SNVs (N) and the depth of

sequencing coverage (M). For a range of parameters N = {10, 50, 100, 500, 1,000} andM= {10,

50, 100, 500, 1,000, 5,000, 10,000} and varying α from 0 to 0.5 in steps of 0.01, we repeated the

simulation process for each N xM x α combination 1,000 times to obtain an empirical distri-

bution of observed α (S3 Fig in S1 File).

We computed the maximum error (ε) for each combination N xM over all tested α. ε
ranges between 0 (best case where observed α = tested α) and 0.5 (worst case where tested

α = 0.5 and observed α = 0 or tested α = 0 and observed α = 0.5) (Fig 1). As expected, our

Fig 1. Maximum error for detecting the DNA fraction α in a simulated DNA sequencing experiment by varying sequencing depth and

number of SNVs. Maximum absolute (A) and maximum relative (B) errors are represented. A total of 35 scenarios combining five different

numbers of SNVsN = {10, 50, 100, 500, 1,000} and seven depth of coverageM = {10, 50, 100, 500, 1,000, 5,000, 10,000} were simulated (S3

Fig in S1 File). Represented here are maximum error observed in 1,000 simulations for every tested α ranging from 0 to 0.5 in steps of 0.01.

https://doi.org/10.1371/journal.pone.0249930.g001
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simulations show that increasing both N andM improves the observed α estimation accuracy.

Moreover, the estimation of the observed α is unstable when using a small number of SNVs

(N< 100) or low coverage (M< 500). The prediction accuracy stabilizes above N> 500 and

M>1,000.

Experimental estimation of α using a controlled mixture of urine from two

individuals

To assess the accuracy of detecting observed α in a mixture of two real human urine samples, we

performed a targeted sequencing of urine DNA from two healthy individuals originating from

different populations: S1 a healthy 35-year-old European woman and S2 a healthy 34-year-old

Arab woman (S2 Table in S1 File). A total of 1,850 exonic regions from a panel targeting 93

genes known to be associated with risk of breast cancer were sequenced. These sequenced geno-

mic regions cover 370,942 base pairs across 22 chromosomes (S1 Table in S1 File). We chose to

use this genomic panel due to its costs and the high number of SNVs present in the targeted

genomic regions. Indeed, a total of 51,893 bi-allelic SNVs falling in these genomic regions were

present in the Exome Aggregation Consortium (ExAC) [44]. As the method works on bi-allelic

SNV with different genotypes between donor and recipient, we computed for each SNV the

probability of having different genotypes for two individuals (S1 Table in S1 File). Only 437

SNVs have a probability of having different genotypes for two individuals higher than 10%.

As a measure of quality control, we first checked the balance of reference and alternative

alleles in heterozygous calls. The alternative allele frequency is expected to be around 50% in

heterozygous genotypes. However, we observed the presence of SNVs with skewed alternative

allele frequencies (S4 Fig in S1 File). We noticed the recurrence of such unbalance in every rep-

licate of both samples (S5 Fig in S1 File for examples). We investigated whether the amplifica-

tion-based strategies for DNA target enrichment affect the allele dropout, causing the skewed

alternative allele distribution. We found that the SNVs with a skewed distribution all fall into

the primer sequence regions or carried by reads targeted by primers containing SNVs. We

therefore filtered out SNVs falling into these regions and kept the 1,000 most common SNVs

in the general population. These 1,000 SNVs will be used as a SNV panel for detecting DNA

fraction in a combination of two DNA sources (observed α) in the rest of the study. The alter-

native allele frequency was balanced in these 1,000 SNVs (S6 Fig in S1 File). Moreover, the

maximum error of estimating the observed α based on these 1,000 SNVs in all replicates

was< 0.0034 (mean error = 0.0028 ± 0.00037). We then mixed 90% DNA from S1 and 10%

DNA from S2 in three replicates. For each replicate, targeted DNA sequencing was performed

and the observed α was estimated. The preparation of the mixture was based on total DNA

content in the samples. However, the presence of bacterial DNA in urine samples can strongly

skew the estimation of human DNA concentration measurement [45]. We assessed the actual

DNA concentration of S1 and S2 in urine by considering the mean observed α over the three

replicates to 0.053. This indicates that S1 DNA concentration is ~19 times lower than S2 DNA

concentration. Considering the estimated S1 and S2 DNA concentration, the maximum error

of the observed α was < 3.5% in the three replicates (Fig 2).

We extended the analysis to two levels of DNA mixture scenarios: (i) 70% DNA from S1

and 30% DNA from S2, (ii) 50% DNA from S1 and 50% DNA from S2. Each scenario was rep-

licated three times and targeted DNA sequencing was performed for each replicate. The

observed α was similar in the three replicates of all three scenarios (scenario i: mean observed α
= 0.11 ± 0.036, scenario ii: mean observed α = 0.032 ± 0.00048). Considering the estimated S1

and S2 DNA concentration, the maximum error of the observed α was < 3.8% in all replicates

of both scenarios (0.037 in scenario (i) and 0.018 in scenario (ii)) (Fig 2).
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Simulation of the effect of family relationship and ethnicity on the

estimation of α
The most challenging scenario is that of one sibling donating a kidney to another, as they

share 50% of their genome. The extreme case of mono-zygotic twins, where both genomes

are identical, can of course not be addressed with our method. To numerically explore this

"worst case" scenario, we used whole genome sequencing data from 91 siblings [37] and then

Fig 2. Estimation of DNA fraction (Alpha) in a combination of two healthy DNA sources. Five scenarios of DNA mixtures and three replicates for

each scenario were performed. From left to right: 100% from individual S1 and 0% from individual S2; 0% from individual S1 and 100% from

individual 2; 50% from individual 1 and 50% from individual 2; 70% from individual S1 and 30% from individual S2; 90% from individual S1 and 10%

from individual S2. The estimated fractions (estimated α) are represented by black dots. The expected fractions when DNA concentration in individual

S1 was 19 times lower than DNA concentration in individual S2 are represented by red dots. The expected fractions before correction for DNA

concentration are represented by blue dots.

https://doi.org/10.1371/journal.pone.0249930.g002
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generated 100 combinations of every sibling pair. Self-reported relationship was confirmed

using the identity by state (S1 Fig in S1 File). For each pair of siblings, we simulated donor and

recipient DNA sequences by varying α from 0 to 0.5 in steps of 0.01 and resampling the mean

coverage at 5,000 reads. The maximum absolute error was observed when the expected α =

0.07: observed α = 0.034 (Fig 3).

Simulation of the effect of population origin on the estimation of α
Using the same methods as when comparing siblings, we then assessed the effect of donor

and recipient ethnicity on our method. We applied our method to simulated pairs of indi-

viduals belonging to the same and to different populations of the 1,000 genomes project

[36]: Africans, Americans, East Asians, Europeans and South Asians. The absolute error

was < 0.04 in all scenarios (Fig 3). As expected, the absolute error was lower when the two

DNA sources belonged to different populations (mean maximum absolute error = 0.018 ±
0.005) than when they belonged to the same population (mean maximum absolute

error = 0.022 ± 0.007). Additionally, the maximum relative error was comparable in all

scenarios (mean maximum relative error = 0.836 ± 0.137) whether the two DNA sources

belonged to the same (mean maximum relative error = 0.764 ± 0.207) or different popula-

tions (mean maximum relative error = 0.856 ± 0.077). These results confirm the power of

the method for detecting the DNA fraction in a combination of two DNA sources indepen-

dent of familial relationship or ethnicity.

Application to urine samples from clinical kidney allograft patients

To test our method in a real-case scenario, we used DNA extracted from 32 urine samples

matched to 32 biopsies from 26 kidney allograft recipients and classified the urine samples

Fig 3. Effect of family relationship and ethnicity on detecting DNA fraction in a combination of two DNA sources. Each dot represents in A) the

maximum absolute error and in B) the maximum relative error for each expected (α) from 0 to 0.5 in steps of 0.01 over 100 pairs of siblings (red), 100

pairs of individuals belonging to the same population (green) and 100 pairs of individuals belonging to different populations (blue). Afr = Africans.

Amr = Americans. Eas = East Asians. Eur = Europeans. Sas = South Asians.

https://doi.org/10.1371/journal.pone.0249930.g003
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into three groups based on their Banff classification of kidney alllograft biopsy: “Acute Tubular

Injury” (ATI, N = 12), “Acute Rejection” (AR, N = 11) and “No Observed Pathology” (N = 9)

(Table 3 and S2 Table in S1 File). DNA was extracted from the urinary cells and deep targeted

sequencing was performed for the 32 samples. Reflecting the effect of depth of coverage on the

accuracy of detecting observed α in simulated data, we set the mean depth of coverage to ~

14,000 reads. After read alignment, we applied our method to estimate the donor/recipient to

total DNA fraction (Fig 4).

The difference of observed α between the diagnosis phenotypes was statistically significant

(P = 0.035, Kruskal-Wallis test). We observed a significant difference when comparing the

two transplant kidney pathologies ATI and AR to the No Pathology group (P = 0.0064 and

P = 0.026, Dunn’s test for ATI vs no pathology and AR vs no pathology, respectively). How-

ever, no significant difference was observed in observed α when comparing the two pathologies

ATI to AR (P = 0.31, Dunn’s test).

Fig 4. Donor/recipient to total DNA fraction in urine from 32 real kidney allograft recipients. Box plots and individual data points of the estimated

fraction (observed α) are estimated from deep DNA targeted sequencing of urinary cells. AR: Acute Rejection. ATI: Acute Tubular Injury. A statistically

significant difference was observed between all the diagnostic categories (P = 0.035, Kruskal-Wallis test). By Dunn’s test, difference in observed α
between the two pathologies and no pathology group was statistically significant: ATI vs no-pathology: P = 0.0064 and AR vs no-pathology: P = 0.026.

The pairwise comparison of AR and ATI pathologies was not statistically significant (P> 0.05).

https://doi.org/10.1371/journal.pone.0249930.g004
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Inference of donor and recipient ethnic origin

In the absence of donor and recipient genomes, it is impossible to determine whether the

observed α represents the donor or the recipient fraction of the total DNA. However, in cases

in which recipient and donor gender or ethnicity differ, this issue can be addressed. The uri-

nary cell DNA sequencing we performed here did not target genomic regions of the Y chro-

mosome. Thus, detecting recipient and donor gender cannot be carried out using the actual

data, but could be accomplished/carried out easily in future sequencing panels.

To predict donor and recipient ethnicity, an estimation of both recipient and donor geno-

types is needed. For each of 1,000 SNVs, we computed the fraction of the alternative to total

alleles. We then used the observed α to compute the nine expected fractions of the alternative

allele (Table 4). We then used a cost function to estimate donor and recipient genotypes that

minimizes the difference between the nine expected fractions and the observed fraction of the

alternative to total alleles. Based on these estimated genotypes, we applied a supervised classifi-

cation method to predict the recipient and the donor ethnicity as following: as donor-specific

DNA fraction has been shown to be higher in the no-pathology group [28], we supposed the

observed α to represent the donor-to-total DNA fraction and computed the probability of

donor and recipient belonging to one of the three populations: African, East Asian and Euro-

pean (see Methods). Both donor and recipient are assigned to the population showing the

highest probability and then compared to the self-reported ethnicity. Seven recipients and

eight donors were excluded from the prediction because they belong to a mixed self-reported

population or the observed α was ~ 0 so the prediction of donor genotypes was impossible. The

prediction was inconclusive (Probability of prediction < 70%) for 5 recipients and 8 donors.

In 16 of 20 recipients (80%) and 15 of 16 donors (94%), the probability of prediction was

higher than 70%. However, only one AR sample and one ATI sample, for which the prediction

was conclusive, had donor and recipient ethnicity mismatch. In these two samples (European

donor and African recipient for both samples), the prediction was in agreement with the self-

reported ethnicity. Hence, due to the small number of self-reported ethnicity mismatches, it is

impossible to confirm whether the observed α represents the donor or the recipient DNA frac-

tion (as observed α< 0.5 by definition).

Discussion

Different omics technologies, including mRNA measurement by PCR [7], metabolomics [12]

and RNA-sequencing [13] have been applied by our group and others to identify non-invasive

biomarkers for kidney allograft rejection. Here, we present a new approach based on targeted

deep- sequencing of DNA obtained from urine samples from kidney allograft recipients. We

extended methods originally used for the assessment of DNA contamination to estimate the

fraction of recipient DNA in a two-source mixed DNA sample [29, 30]. We used in silico sim-

ulations to obtain a suitable parameter range for the method to be sufficiently accurate in esti-

mating the fraction of a two-source DNA mixture. We then experimentally evaluated the

accuracy of the estimation method using controlled mixtures of two DNA sources. Allele

drop-out occurs in amplification-based target enrichment when a variant is located in a primer

region and prevents primer hybridization, leading to failed amplification and allele bias [34].

Our method overcomes these unexpected artefacts due to DNA sequencing. Other algorithms

for estimating the donor-specific DNA fraction require the donor and recipient relationship

information [22]. Here, we found that ethnicity and familial relationship between donor and

recipient appear to have a lower impact as compared to previously presented methods.

We tested our method on clinical samples from patients with and without kidney allograft

rejection events. We compared the α value obtained from urine DNA sequencing reads of
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kidney allograft recipients with kidney injury associated with AR and ATI. The alpha value was

significantly different in patients with AR and ATI compared to those without kidney allograft

pathology. The calculation of alpha is based on the assumption that the DNA isolated from the

urine is derived from the transplanted kidney and that both the recipient and the donor DNA

are present: recipient DNA from the infiltrating immune cells and donor DNA from the kidney

parenchymal cells. Indeed, by counting Y chromosome-derived cell free DNA, we have recently

shown that in kidney recipients with donor-recipient gender mismatch the donor-specific

DNA fraction was lower in recipients with UTI compared to those with no UTI, and higher in

recipients with BKVN compared to those with no BKVN [28]. Thus, our approach might be

considered as a potential new diagnostic signature measured in urine specimens.

We were not able to ascertain whether the DNA in recipient urine is derived mostly from

the donor or the recipient. Studies have shown that both AR and ATI are associated with allo-

graft damage indicating that there will be some donor DNA in the urine. But AR is also associ-

ated with recipient immune cell infiltration while ATI is usually not [46]. Tissue injury from

ATI however could be associated inflammation. The fraction of recipient to donor cells in the

urine should be higher for AR compared to ATI and the fraction of donor cell to recipient

cells in the urine should be higher for ATI compared to AR. Thus, AR patients should have a

fraction of donor to recipient DNA of much lower than 0.5 and ATI patients should have a

fraction of donor to recipient DNA of much greater than 0.5. To address this, a future comple-

mentary analysis on a bigger sample having donor and recipient ethnicity and/or gender mis-

matches will be worthy of investigation.
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