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The recent years have witnessed a rise
in the number of intrinsically disor-
dered proteins (IDPs), also known as
hybrid proteins, which possess both struc-
tured domains and biologically important
intrinsically disordered protein regions
(IDPRs). These proteins challenge the
“one sequence—one structure—one func-
tion” concept by demonstrating that the
lack of stable tertiary and/or secondary
structure does not preclude proteins
from being biologically active (Wright
and Dyson, 1999; Uversky et al., 2000;
Dunker et al., 2001; Tompa, 2002; Uversky
and Dunker, 2010). Both ordered and
disordered/hybrid proteins tend to mis-
fold under certain conditions, and the
aggregation that typically accompanies
protein misfolding is associated with
the pathogenesis of several human dis-
eases, particularly those that originate
from the deposition of protein aggre-
gates in a variety of organs and tissues
(Kelly, 1998; Bellotti et al., 1999; Dobson,
1999; Uversky et al., 1999a,b; Rochet and
Lansbury, 2000; Uversky and Fink, 2004;
Gasperini et al., 2012; Moreau and King,
2012; Safar, 2012; Walker and LeVine,
2012; Cuanalo-Contreras et al., 2013;
Mulligan and Chakrabartty, 2013; Hipp
et al., 2014). Misfolding and aggregation
of IDPs/IDPRs are especially common in
neurodegeneration (Uversky, 2010, 2014a;
Breydo and Uversky, 2011). An incom-
plete list of human neurodegenerative
diseases associated with IDPs/IDPRs is
provided below. This list shows that some
IDPs are involved in several diseases and
that some neurodegenerative diseases are

associated with misbehavior of several
IDPs/IDPRs. The list includes Alzheimer’s
disease [AD, where the deposition of
amyloid-β, tau-protein, and α-synuclein
fragment NAC (Glenner and Wong,
1984; Ueda et al., 1993) takes place];
Niemann-Pick disease type C, subacute
sclerosing panencephalitis, argyrophilic
grain disease, myotonic dystrophy, and
motor neuron disease with neurofibril-
lary tangles (NFTs) (accumulation of
tau-protein in the form of NFTs, Lee
et al., 1991); Down’s syndrome (nonfil-
amentous amyloid-β deposits, Wisniewski
et al., 1985); Parkinson’s disease (PD),
dementia with Lewy body (LB), diffuse
LB disease, LB variant of AD, multiple
system atrophy (MSA), and Hallervorden-
Spatz disease [all characterized by the
deposition of α-synuclein in a form of
LB, or Lewy neurites (LNs), Dev et al.,
2003]; amyotrophic lateral sclerosis (ALS)
and frontotemporal lobar degeneration
(FTD) [both characterized by the pres-
ence of the cytoplasmic inclusions rich
in transactive response element DNA-
binding protein of 43 kDa (TDP43) (Nass
et al., 2012; Barmada et al., 2014)]; aber-
rant accumulation of the wild type and
mutated fused in sarcoma/translocated in
liposarcoma (FUS/TLS) in the cytosol of
voluntary motor neurons in sporadic and
familial ALS (Pokrishevsky et al., 2012;
Sreedharan and Brown, 2013; Ajroud-
Driss and Siddique, 2015); prion diseases
(deposition of PrPSC, Prusiner, 2001); and
a family of polyQ diseases, a group of neu-
rodegenerative disorders caused by the
expansion of GAC trinucleotide repeats

that code for polyQ in the gene products
(Zoghbi and Orr, 1999).

There are several reasons for why
IDPs/IDPRs are so common in neu-
rodegenerative diseases. Firstly, these pro-
teins/regions, with their unique struc-
tural plasticity, conformational adaptabil-
ity, ability to react quickly in response
to changes in their environment, and
their binding promiscuity, are abun-
dantly involved in various signaling, reg-
ulation, and recognition processes, and
play diverse roles in the modulation and
control of the functions of their bind-
ing partners (Dyson and Wright, 2005;
Oldfield et al., 2008; Uversky and Dunker,
2010; Cozzetto and Jones, 2013; Ferreon
et al., 2013). Secondly, the biological
activities of IDPs/IDPRs are under tight
control and are regulated by means of
extensive posttranslational modifications
(PTMs), such as phosphorylation, acety-
lation, glycosylation (Collins et al., 2008;
Uversky and Dunker, 2010; Kurotani et al.,
2014; Pejaver et al., 2014), and by alter-
native splicing (Romero et al., 2006;
Buljan et al., 2012, 2013; Uversky, 2014b).
Thirdly, many IDPs and hybrid proteins
are able to interact with a large num-
ber of unrelated partners, thereby serv-
ing as hubs in cellular protein-protein
interaction networks (Dunker et al., 2005;
Uversky et al., 2005; Dosztanyi et al.,
2006; Ekman et al., 2006; Haynes et al.,
2006; Patil and Nakamura, 2006; Singh
et al., 2007; Singh and Dash, 2007).
Lastly, IDPs/IDPRs are often able to fold
differently while interacting with differ-
ent binding partners (Dyson and Wright,
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2005; Oldfield et al., 2008; Hsu et al.,
2013).

Since IDPs/IDPRs play a number of
crucial roles in numerous biological pro-
cesses, it is not surprising that some of
these proteins are related to the pathogen-
esis of human disease, and to neurode-
generative processes in particular. In fact,
dysregulation and misfolding of the oth-
erwise tightly controlled IDPs/IDPRs can
result in their dysfunction, ultimately lead-
ing to the development of life-threatening
pathological conditions. Mutations and/or
changes in the environment may reduce
the capability of a protein to recog-
nize proper binding partners, leading to
the formation of nonfunctional complexes
and aggregates (Uversky et al., 2005). The
topic of the involvement of IDPs/IDPRs in
neurodegeneration was covered in recent
reviews (Uversky, 2010, 2014a; Breydo and
Uversky, 2011). Table 1 clearly shows that
some individual proteins involved in the
pathogenesis of human neurodegenerative
diseases are either completely disordered
or contain long disordered regions. Table 1
also illustrates that neurodegeneration-
related IDPs are characterized by astonish-
ing binding promiscuity, as they are able
to interact with a large number of unre-
lated partners. It is worth noting that the
numbers shown in Table 1 correspond to
the minimal interactomes, or “first inter-
action shells”; i.e., they correspond to
the numbers of proteins directly inter-
acting with a given neurodegeneration-
related protein. Many of the proteins
in such “first interaction shells” inter-
act with other proteins, thereby gener-
ating a broadened “second interaction
shell.”

Neurodegeneration-related proteins are
intrinsically disordered hubs with highly
extended proteomes. Due to the overall
abundance of IDPs, at least some of these
binding partners are disordered proteins
themselves. This gives an interesting twist
to the involvement of IDPs in neurode-
generation, since the neurodegeneration-
related IDPs listed in Table 1 are not only
abundantly found in neurodegenerative
diseases, but are also regulated and con-
trolled by other IDPs. A few related exam-
ples are provided below to illustrate the
ensuing “chaos to control chaos” concept.

The first example deals with the pro-
teins directly involved in the control of

normal cellular proteostasis: protein chap-
erones. Protein chaperones form a specific
network that constitutes the major com-
ponent of the cellular quality control
(McClellan et al., 2005; Bukau et al.,
2006; Leidhold and Voos, 2007; Witt,
2010). Computational studies revealed
that ∼40% of chaperones’ residues are
located within the disordered regions,
with ∼15% of the residues falling within
long IDPRs exceeding 30 consecutive
residues (Tompa and Csermely, 2004).
Studies have shown that many neuro-
protective chaperones/co-chaperones are
either completely disordered or possess
long IDPRs (Uversky, 2011). The illustra-
tive examples of these disordered/hybrid
chaperones include Hsp70 (C-terminal
part of substrate binding domain and lid
domain); members of the human DnaJ
homolog subfamilies A, B, and C; various
Hsp70 co-chaperones [Hip, Hsp100, BAG
family molecular chaperone regulator
1 L, CHIP/STIP1, Hop (Hsp70/Hsp90-
organization protein)]; linker regions
in human Hsp90α and Hsp90β; Hsp90
co-chaperones p23 and FKBP52; small
heat shock proteins Hsp27/HspB1,
HspB2, HspB3, αA-crystallin/HspB4,
αB-crystallin/HspB5, Hsp20/HspB6,
cvHsp/HspB7, H11/HspB8, HspB9, and
outer dense fiber protein 1 (ODF1);
human α-, β-, and γ-synucleins; pre-
foldin subunits. (Uversky, 2011). It was
demonstrated that the presence of disorder
determines the promiscuity of chaperones,
allowing them to act as pliable molecular
recognition elements, to wrap misfolded
chains, and to participate in disaggrega-
tion and local unfolding of the aggregated
and misfolded species (Uversky, 2011).
Furthermore, disorder plays a number of
important roles in the precise orchestra-
tion of coordinated actions of chaperones,
co-chaperones, and their auxiliary and
regulatory proteins, which intricately
communicate with each other to form
a sophisticated and highly flexible net-
work of malleable guardians (Uversky,
2011).

The second example is related to sir-
tuins that constitute an important family
of regulatory proteins involved in several
physiological functions, including con-
trol of gene expression, metabolism, and
aging (Paraiso et al., 2013). In mam-
mals, there are seven sirtuins (Sirt1 to

Sirt7), with members of this protein family
being highly expressed in various regions
of the brain. Here, sirtuins are involved
in cognitive functions and regulate cel-
lular protection against oxidative stress
in many neurodegenerative diseases (Gan
and Mucke, 2008). For example, in ani-
mal PD models, Sirt1 regulates autophagy
(Lee et al., 2008), which is responsi-
ble for the aggregated α-synuclein clear-
ance (Paraiso et al., 2013), and therefore
Sirt1 can reduce α-synuclein aggregation
(Zhang et al., 2012). In AD models, the
overexpression of Sirt1 modulates the pro-
cessing of APP by increasing the activity
of α-secretase (Bonda et al., 2011), which
shifts APP processing toward the non-
amyloidogenic Aβ forms (Bonda et al.,
2011). Furthermore, Sirt1 deactivation has
been associated with increased levels of
acetylated and pathogenic phosphorylated
forms of tau protein (Min et al., 2010).
In HD mouse models, some neuropro-
tection was reported for Sirt1 overex-
pression (Jeong et al., 2012). These data
show that sirtuins can act as important
regulators of several neurodegenerative
diseases caused by the misbehavior of sev-
eral neurodegeneration-promoting IDPs
(α-synuclein, tau, Aβ, and huntingtin).
Recent in silico analysis of the sirtuin fam-
ily members showed that all these proteins
have long disordered arms that play crucial
biological roles such as recognition and
interaction with other protein molecules
(Costantini et al., 2013).

The third example emphasizes the
important role of intrinsic disorder
in the maintenance of stress granules
(SGs) that are potentially related to the
pathology of some neurodegenerative dis-
eases (Wolozin, 2012; Bentmann et al.,
2013). These SGs are formed as a cellu-
lar stress response and are cytoplasmic
membrane-less organelles that contain
several RNA-binding proteins and RNA
molecules that are stalled at the pre-
initiation stage. These RNA molecules and
binding proteins possess defined cyto-
protective function (Bentmann et al.,
2013). Importantly, all the major play-
ers responsible for the nucleation and
maturation of SGs are either IDPs or
hybrid proteins containing long, func-
tionally important IDPRs (Uversky et al.,
2015). Furthermore, SGs were shown
to co-localize with insoluble protein
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Table 1 | IDPs and associated neurodegenerative diseases.

Protein (number of residues) Disease(s) Disorder by

prediction (%)a
Number of binding

partners on BioGridb

Aβ (42) Alzheimer’s disease
Dutch hereditary cerebral hemorrhage with
amyloidosis
Congophilic angiopathy

16.9 (28.6) 1975 (for the Aβ precursor
protein)

Tau (758) Tauopathies
Alzheimer’s disease
Corticobasal degeneration
Pick’s disease
Progressive supranuclear palsy

77.6 (99.1) 73

Prion protein (231) Prion diseases
Creutzfeld-Jacob disease
Gerstmann- Sträussler -Schneiker syndrome
Fatal familial insomnia
Kuru
Bovine spongiform encephalopathy
Scrapie
Chronic wasting disease

55.8 (61.0) 60

α-Synuclein (140) Synucleinopathies
Parkinson’s disease
Lewy body variant of Alzheimer’s disease
Diffuse Lewy body disease
Dementia with Lewy bodies
Multiple system atrophy
Neurodegeneration with brain iron
accumulation type I

90.7 (37.1) 416

β-Synuclein (134) Parkinson’s disease
Diffuse Lewy body disease

87.3 (52.2) 16

γ-Synuclein (127) Parkinson’s disease
Diffuse Lewy body disease

100 (56.8) 26

TDP43 (414) Amyotrophic lateral sclerosis and
frontotemporal lobar degeneration

57.3 (35.8) 286

FUS (526) Amyotrophic lateral sclerosis 90.7 (72.6) 105

Huntingtin (3144; polyQ tract: 16–37 Qs in norm;
>38 Qs in pathology)

Huntington’s disease 35.5 (30.4) 193

DRPLA protein
(1185; polyQ tract: 7–23 Qs in norm; 49–75 Qs in
pathology)

Hereditary dentatorubral-pallidoluysian atrophy 89.5 (84.2) 98

Androgen receptor (919; polyQ tract: 15–31 Qs in
norm; 40–62 Qs in pathology)

Kennedy’s disease or X-linked spinal and
bulbar muscular atrophy

53.9 (46.7) 219

Ataxin-1 (816; polyQ tract: 6–39 Qs in norm;
41–81 Qs in pathology)

Spinocerebellar ataxia 1
Neuronal intranuclear inclusion disease

76.8 (73.4) 254

Ataxin-2 (1312; polyQ tract: 22–31 Qs in norm;
>32 Qs in pathology)

Spinocerebellar ataxia 2 93.8 (76.9) 44

Ataxin-3 (376; polyQ tract: 12–40 Qs in norm;
55–84 Qs in pathology)

Spinocerebellar ataxia 3 52.1 (47.1) 76

(Continued)
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Table 1 | Continued

Protein (number of residues) Disease(s) Disorder by

prediction (%)a
Number of binding

partners on BioGridb

P/Q-type calcium channel α1A subunit (2505;
polyQ tract: 4–16 Qs in norm; 21–28 Qs in
pathology)

Spinocerebellar ataxia 6 53.0 (49.3) 94

Ataxin-7 (892; polyQ tract: 4–35 glutamines in
norm; 36–306 glutamines in pathology)

Spinocerebellar ataxia 7 89.5 (70.2) 83

TATA-box-binding protein (339; polyQ tract: 25–42
glutamines in norm; >42 glutamines in
pathology)

Spinocerebellar ataxia 17 53.9 (52.5) 145

Glial fibrillary acidic protein (432) Alexander’s disease 82.4 (68.5) 33

DNA excision repair protein ERCC-6 (1493) Cockayne syndrome 56.8 (47.8) 40

Survival motor neuron protein (294) Spinal muscular atrophy 69.7 (60.2) 186

aDisorder was predicted by two predictors, PONDR® VSL2 and VLXT (given in parenthesis), respectively. PONDR® VSL2 was chosen because of its high accuracy,

whereas PONDR® VLXT was chosen because this predictor was shown to be very sensitive for the presence of molecular recognition features, which are disordered

polypeptide segments that are predicted to acquire secondary structure upon forming complexes with binding partners.
bInteractivity of neurodegeneration-related proteins was evaluated by BioGrid 3.2 (Chatr-Aryamontri et al., 2013, 2015).

aggregates in many neurodegenerative dis-
eases (Wolozin, 2012). They commonly
include RNA-binding proteins related
to the pathogenesis of various neurode-
generative diseases, such as TDP-43 and
FUS (related to the pathology of ALS and
FTD), SMN (related to SMA pathology),
ataxin-2 (related to SCA2), optineurin
(related to primary open angle glaucoma
and ALS12), and angiogenin (involved
in ALS9 pathology). They may also con-
tain, and be regulated by, proteins such
as tau (Wolozin, 2012), PrPsc (Goggin
et al., 2008), huntingtin (Waelter et al.,
2001), and some other Q/N-rich proteins
(Furukawa et al., 2009).

The last example emphasizes the role
of the tubulin polymerization promot-
ing protein (TPPP)/p25 in regulating
α-synuclein aggregation in multiple sys-
tem atrophy (MSA). The α-synuclein-
containing glial cytoplasmic inclusions
are the neuropathological hallmark of
MSA. Recent studies revealed that the
pathological aggregation of α-synuclein
in oligodendroglia is dramatically acceler-
ated by TPPP/p25 (Hasegawa et al., 2010),
which is a highly disordered and widely
expressed protein that possesses multiple
PTM sites, and is involved in a multitude
of interactions with unrelated partners.
Structural analysis revealed that TPPP/p25
is a typical IDP that partially folds as

a result of Zn2+ binding (Zotter et al.,
2011).

CONCLUSIONS
Human neurodegenerative diseases are
commonly associated with the misbehav-
ior of IDPs and hybrid proteins contain-
ing ordered domains and IDPRs. This
link between intrinsic disorder and neu-
rodegeneration is determined by the spe-
cific structural and functional features of
IDPs/IDPRs, which are some of the major
cellular regulators, recognizers, and sig-
nal transducers. The normal function-
ality and pathological misbehavior of
IDPs/IDPRs are both modulated by var-
ious PTMs and alternative splicing, with
dysregulation of these regulatory mech-
anisms being a crucial contributing fac-
tor to dysfunction of related proteins
and, consequently, to neurodegeneration.
IDPs/IDPRs are promiscuous binders that
can fold differently upon interaction with
different binding partners. Furthermore,
proteomes of such neurodegeneration-
related IDPs/IDPRs are vast and con-
tain numerous regulatory IDPs. Therefore,
pathogenesis of neurodegenerative dis-
eases is commonly driven by the dys-
function of corresponding IDPs, and the
normal and pathogenic behavior of such
disease-related IDPs are controlled by
other IDPs.
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