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Abstract: Background: Altered sensorimotor gating has been demonstrated by Prepulse Inhibition
(PPI) tests in patients with psychosis. Recent advances in signal processing methods allow assess-
ment of neural PPI through electroencephalogram (EEG) recording during acoustic startle response
measures (classic muscular PPI). Simultaneous measurements of muscular (eye-blink) and neural
gating phenomena during PPI test may help to better understand sensorial processing dysfunctions in
psychosis. In this study, we aimed to assess simultaneously muscular and neural PPI in early bipolar
disorder and schizophrenia patients. Method: Participants were recruited from a population-based
case-control study of first episode psychosis. PPI was measured using electromyography (EMG)
and EEG in pulse alone and prepulse + pulse with intervals of 30, 60, and 120 ms in early bipolar
disorder (n = 18) and schizophrenia (n = 11) patients. As control group, 15 socio-economically
matched healthy subjects were recruited. All subjects were evaluated with Rating Scale, Hamilton
Rating Scale for Depression, and Young Mania Rating Scale questionnaires at recruitment and just
before PPI test. Wilcoxon ranked sum tests were used to compare PPI test results between groups.
Results: In comparison to healthy participants, neural PPI was significantly reduced in PPI30 and
PPI60 among bipolar and schizophrenia patients, while muscular PPI was reduced in PPI60 and
PPI120 intervals only among patients with schizophrenia. Conclusion: The combination of muscu-
lar and neural PPI evaluations suggested distinct impairment patterns among schizophrenia and
bipolar disorder patients. Simultaneous recording may contribute with novel information in sensory
gating investigations.

Keywords: sensory gating; electroencephalography; psychosis; schizophrenia; bipolar disorder;
EU-GEI; neural PPI

1. Introduction

Patients with bipolar disorder (BP) and patients with schizophrenia (SZ) show overlaps
of symptoms and deficits [1–6] that challenge the dichotomy proposed in Kraepelin’s origi-
nal classification of manic-depressive psychosis and dementia praecox [7], or the affective
and non-affective psychosis of more recent diagnostic classifications. Both are heritable [8],
respond similarly to antipsychotics [9,10], share common genetic causes [11,12], illness
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course and cognition impairments [13–16], and there is interchange in diagnosis in a frac-
tion of these patients [17]. Sensory processing impairments seem also to be shared among
BP and SZ patients [18], but the extension of this superposition still needs to be clarified.

The most common way of evaluating sensory-motor gating impairments is the muscu-
lar prepulse inhibition (PPI) test. This test evaluates the eye-blink startle reflex reduction
when a weak Prepulse (PP) stimulus precedes an intense Pulse (P) stimulus by few millisec-
onds [19–23]. This measure recruits the acoustic startle rapid response pathway, constituted
by the cochlear root nucleus, caudal pontine reticular nucleus (PnC), and motoneurons [24].
In parallel, the inferior and superior colliculus and the pedunculopontine tegmental nucleus
(PPN) are also activated by the stimuli. As the PnC on the rapid pathway may be inhibited
by the PPN in the slower pathway, it has been hypothesized that this slower circuit activa-
tion by the PP inhibits the startle response evoked by P, resulting in the PPI phenomenon.
Additionally, there are higher order structures, cortico-striato-pallido-pontine (CSPP),
which overlap with several impaired structures in patients with psychosis [20,24–27]. The
muscular (eye-blink) PPI effect reflects higher order neural impairments as an indirect
measure, thus considered a “pontine portal” to these deficits [20].

Reduction in PPI evaluated by measure orbicularis muscle contraction during acoustic
stimulation through the analysis of electromyography (EMG) has been consistently reported
in SZ [22,28–32] and euthymic BP [33–36]. However, PPI evaluation in patients with
psychoses is a challenging task, as numerous factors influence its outcome, ranging from
ethnicity [37] to drug treatment [38–41]. Our recent meta-analysis revealed only a moderate
effect size for muscular PPI in patients with schizophrenia, with high heterogeneity of
results between studies, mainly related with methodological aspects of studies [32].

Patients with BP and SZ also display sensory gating deficits that are evaluated by
electroencephalography, through the auditory elicited event-related potential (ERP) compo-
nents P50, mismatch negativity (MMN), and P300 [42]. In those studies, patients with SZ
show larger effect sizes than patients with BP in P50 [43–45], MMN [46,47], and P300 am-
plitude and latency [43,48–51], when compared to healthy controls. Neural PPI evaluates
the neural gating phenomenon in the time window of 100–200 ms, whose latency is not
explored by any other sensory gating paradigms [52]. However, neural PPI measurements
have rarely been performed due to neural signal contamination resulting from strong
muscular contractions elicited by the PPI-test stimuli. Fortunately, recent improvements
on signal processing now support signal contamination reduction, allowing neural PPI
assessment using electroencephalogram (EEG) alongside with classic eye-blink (muscu-
lar) [52]. The neural PPI is a more direct measure than the eye-blink muscular PPI and its
psychopathological levels have been associated to eye-blink PPI impairment in SZ [53–56],
but not in BP [34,57]. Thus, the concurrent muscular and neural PPI recording to assess
the gating phenomena may be a promising approach to reveal dysfunctions and brain
processing differences in BP and SZ patients with psychosis, considering that they occur at
different timing and are underlied by different neural circuits [58,59].

In the present study, the primary aim was to assess simultaneously muscular and
neural PPI in SZ and BP patients, in early stages of psychosis, and compare with age-sex-
education matched healthy subjects. A secondary aim was to evaluate the benefit of using
the neural PPI test to investigate sensory gating in patients with psychosis. We hypoth-
esized that neural PPI might be more sensitive to psychopathology levels changes than
the traditional test. Finally, another aim of this study was to evaluate psychopathological
levels related to psychosis, depression, and mania states concerning to the EMG- and
EEG-PPI levels.
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2. Materials and Methods
2.1. Participants

Participants had already been enrolled in the “Schizophrenia and other psychosis
Translational Research: Environment and Molecular Biology” (STREAM) project, part of
the multinational EU-GEI Project [60–62]. In that project, participants were included if they
lived in the defined catchment area and presented for the first time in their lives to mental
health services due to psychotic episodes. Potential participants were excluded if there was
evidence of psychotic symptoms precipitated by an organic cause, or transient psychotic
symptoms resulting from acute intoxication, as defined by the ICD-10. Controls came from
a population-based sample of individuals without history of contact with mental health
services due to psychotic symptoms with sex- and age-distribution similar to the general
population. A total of 55 subjects aged between 18 and 40 years were then recruited from
that study and participated in the PPI recordings, including 13 patients with SZ, 21 patients
with BP, and 21 healthy controls (CT), matched with patients according to gender, age
group, and educational level. All participants were evaluated at the Early Intervention in
Psychosis Program of the Clinical Hospital of the Ribeirão Preto Medical School, University
of São Paulo (HC-FMRP-USP). All tests were carried out by a healthcare professional
(clinician, nurse, or psychologist) belonging to the clinic health service team.

Participants signed an Informed Consent Form containing information about the
reasons, objectives, procedures, risks, and benefits of the study to which they were invited
to participate, and were informed that their participation was voluntary, being able to with-
draw at any time without loss to their attendance at the institution. Moreover, participants
were guaranteed the right to receive information and to have any questions answered, even
though this could affect their willingness to continue participating. They were told that
anonymity was ensured, and all provided information would be kept confidential. The local
research ethics committee approved the study (process No. 32293214.7.0000.5594/2017).

2.2. Clinical Assessment

Severity of psychotic symptoms was evaluated with the Brief Psychotic Rating Scale
(BPRS) [63], the Hamilton Rating Scale for Depression (HAM-D) [64] test was used to
assess severity of depression symptoms, and the Young Mania Rating Scale (YMRS) [65,66]
was used to assess manic symptoms severity. Additionally, at the PPI test session day,
participants had their hand preference evaluated by the Edinburgh Handedness Inventory
(EHI) [67]. Treatments with atypical and typical antipsychotics, mood stabilizers, and ben-
zodiazepines were also recorded. All participants were assessed at STREAM recruitment
day and at the PPI session day by clinicians.

2.3. Prepulse Inhibition Test Session

Just after clinical assessment, participants seated on a comfortable chair, were told
to stare at a mark in the center of a wall and were informed they would hear strong
binaural sounds through headphones during the PPI test. After an acclimation period, two
blocks of four-type binaural auditory stimuli were pseudo randomly presented with an
inter-stimulus interval of 4–7 s. Each type (P and PP+P with 30, 60, or 120 ms PP-P time)
was presented 20 times. Before each block, five pulse-alone (P) stimuli were presented
and discarded to avoid discrepant high intensity responses. The Ps were applied with
115 dB intensity and the PPs with 85 dB; both consisting of white noise with virtually
instantaneous rise and decay duration of 40 and 20 ms, respectively [68–70]. Each test was
performed under background (white) noise of 70 dB of intensity, which was also present
during the 3-min interval between the first and second blocks. The stimuli intensity was
properly calibrated at the beginning of each test day using a decibel meter.
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2.4. Data Processing
2.4.1. Preprocessing

EEG, EMG, and EOG (electrooculogram) were recorded using a portable device (brand
Brain Products, model V-Amp) with 16 dry electrodes. EEG was acquired through a
cap (BrainVision Acticap, Brain Products, Gilching, Germany) with 11 scalp electrodes
(10–20 system: F7, F3, Fz, F4, F8, C3, Cz, C4, P3, Pz, P4). Two channels were used for EMG
measurement, one electrode was reserved for EOG and one more was used as an additional
reference. Sampling rate was set at 512 Hz for the recording of all electrophysiological
signals. Electrode impedance was kept below 15 kΩ. To register the muscular (EMG)
acoustic startle response (ASR), two dry electrodes were placed under the right eye: one
of them located 2 cm below the pupil (EMG1) and the other 2 cm below the outer edge
(EMG2). EOG was monitored by an electrode placed 2 cm above the center of the left eye,
only to facilitate artifact removal (eye blinks) from the EEG signals. The right ear lobe was
used as reference. To prevent laterality effects (bias), one electrode was placed on the left
earlobe and used as an additional reference. EEG and EOG signals were re-referenced
offline to the average of left and right earlobes and the (bipolar) EMG signal was formed
by the subtraction of EMG2 from EMG1.

EMG, EOG, and EEG signals were analyzed using the MATLAB software running
the EEGLAB package [71] and the SASICA plug-in [72]. All signals were notch-filtered at
60, 120, and 180 Hz to remove power grid interference. Also, to avoid signal delay and
distortion, filtering was performed in “zero phase” mode (by reversing the signal and
filtering it again). High- and low-pass EMG signal filtering were done with fourth-order
Butterworth filters at 24 and 200 Hz cutoff frequencies, respectively, as recommended for
PPI studies [73,74]. Although we wanted to remove low-frequency noise from EMG, a
greater high-pass cutoff could possibly discard PP responses from the analysis, biasing
the data to P alone responses. Therefore, we chose the lower limit of 24 Hz for high-pass
cutoff recommendation instead of the higher limit of 32 Hz [74]. The absolute EMG signal
envelope was obtained through rectification and low-pass filtering (15.9 Hz). Signals were
then divided into periods of 600 ms, from −300 to +300 ms in relation to P stimulus (which
occurs at 0 ms). The baseline was calculated by averaging the EMG envelope in the time
interval of −50 to 0 ms. In each trial, ASR was measured as the maximum amplitude of the
EMG envelope in the 20–120 ms interval.

EEG signal drifting was eliminated using a fourth-order Butterworth high-pass filter
with cutoff at 0.25 Hz. In order to obtain the ERPs of each subject, the EEG was segmented
from −1000 to 1000 ms in relation to P stimulus. Following, the signal was low-pass (40 Hz)
filtered (fourth order Butterworth) and had its baseline corrected according to the average
EEG activity in the −650 to −150 ms range. For each channel, trials with amplitudes above
300 µV were automatically removed. Myogenic artifacts were automatically removed
using Independent Component Analysis (ICA) available in the EEGLAB toolbox [75].
Artifactual components were automatically identified by the SASICA algorithm [72], with
its parameters validated on the control group only. Our previous article, which validated
our method to obtain neural PPI on the same control group used in this study, describes this
procedure in detail [52], comparing it to other methods used in previous studies [76–78].

2.4.2. EMG and EEG Processing

The ASR mean for each experimental condition was calculated as the average of ASR
peaks of trials belonging to the same condition on the first block. Subjects were classified
as “non-responders” and excluded from the study when the mean amplitude of ASR to
P was less than 1 µV. According to this criterion, the number of subjects excluded from
the CT, BP, and SZ groups was six, three, and two, respectively. Thus, the final number
of participants of this study were respectively 15, 18, and 11 for CT, BP, and SZ groups.
Additionally, trial-by-trial exclusion of non-synchronized responses was based solely on
the removal of extreme outliers [79] according to the following rules: (i) baseline trial above
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three SDs (standard deviations) from average baseline; (ii) ASR amplitude higher than
average +3 SDs; and (iii) trial onset latency three SDs above average.

For each subject, EEG signal averaging over valid trials was performed separately for
the four types of auditory stimulation. Next, N100 and P200 (or N1 and P2) were computed
as the negative and positive peak in the 60–165 ms and 165–275 ms range, respectively.
The subtraction of N1 from P2 formed the P2-N1 ERP for each of the four stimulus types.
Lastly, the resulting ERPs were spatially averaged according to scalp region, with frontal
electrodes F3, F4, F7, F8, and Fz forming Favg, central electrodes C3, C4, and Cz averaged
to get Cavg and the parietal electrodes P3, P4, and Pz to get Pavg.

Finally, percentage of PPI was computed for both P2-N1 ERP (from EEG) and muscular
ASR (from EMG) according to the formula: %PPI = 100 × [1 − (P − PP)]/P, where P is the
pulse alone response and PP is the PP + P response.

2.5. Statistical Analysis

All statistical analyses were performed with the R software, version 3.4.4 [80]. Group
characteristics comparison (CT × BP × SZ) were performed using analysis of variance
(ANOVA) for age and education years, χ2-test for sex and Kruskal–Wallis tests for clinical
scores. Significance level was set as 5% for all statistical tests. For the patient groups, pair-
wise comparisons (BP × SZ) on variables age of onset and treatment start were performed
with Student’s t-tests. Within-group comparisons using Wilcoxon signed-rank tests were
also performed to compare clinical scores (BPRS, HAM-D, and YMRS) at STREAM recruit-
ment and PPI session days. The amplitude (P) and %PPI data (PPI30, PPI60, and PPI120)
distribution did not hold normality for the three groups according to visual inspection
on skewness and Shapiro–Wilk tests. Therefore, Kruskal–Wallis test was applied for the
muscular ASR and the three neural PPI (ERP) scalp regions (Favg, Cavg, and Pavg). When
significant group differences were found, one-tailed planned pairwise comparisons were
performed with Mann–Whitney/Wilcoxon Rank-sum tests using Bonferroni adjustment
based on the number of group comparisons in each measure, i.e., CT × BP, CT × SZ, and BP
× SZ. For post-hoc tests, results were considered significant if p < 0.05. Kendall correlation
was performed separately for each group (CT, BP, and SZ) to assess the relationship be-
tween ASR amplitude (P, PPI30, PPI60, and PPI120) and %PPI data (%PPI30, %PPI60, and
%PPI120), and also to compare the clinical scores (BPRS, HAM-D, and YMRS) at STREAM
recruitment and PPI test session days.

3. Results
3.1. Demographic and Clinical Data

Demographic and clinical characteristics of the sample are presented in Table 1. Educa-
tional levels were significantly lower in SZ when compared to CT [F(2,41) = 3.39, p = 0.02].
Participants displayed group statistical differences in symptoms severity measures (BPRS
[χ2(2) = 24.61, p < 0.00001], YMRS [χ2(2) = 22.35, p < 0.001], HAM-D [χ2(2) = 15.67, p < 0.001])
at STREAM recruitment day, but not at PPI test day, revealing that patients’ symptoms
were controlled at the test day. Use of atypical antipsychotic medication was different
between BP and SZ. Mood stabilizers were only administered to BP patients.

3.2. Prepulse Inhibition

Median P and PPI values are reported on Table 2. The muscular ASR to P, evaluated
by the EMG, was not statistically different between groups [χ2(2) = 0.6; p > 0.05]. Similarly,
neural ASR to P evaluated by P2-N1 was not different between groups at any scalp locations:
Favg [χ2(2) = 2.9; p > 0.05], Cavg [χ2(2) = 3.7; p > 0.05] nor Pavg [χ2(2) = 5.3; p > 0.05].
Regarding muscular %PPI (Figure 1A), CT values were significantly higher than SZ for
%PPI60 [W(1) = 132; p = 0.014] and %PPI120 [W(1) = 137; p = 0.006].
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Table 1. Socio-demographic and clinical characteristics of the sample.

Characteristics Control
(n = 15)

Bipolar
(n = 18)

Schizophrenia
(n = 11)

Test
Types

Omnibus Statistic and
Significance

Pairwise Comparisons

Age at STREAM (years) 26.8 ± 7.42 25.55 ± 6.87 27.36 ± 8.93 a F(2,41) = 0.22, n.s.
Education (years) 12.5 ± 2.69 10.79 ± 2.48 10.02 ± 2.37 a, t F(2,41) = 3.39, p = 0.02; θ

Sex (m/f) 9/6 10/8 8/3 c χ2(2, 41) = 0.87, n.s.
Age of onset (years) - 24.47 ± 6.84 25.65 ± 8.96 b t(17.10) = 0.38, n.s.

PPI test—treat. start (years) - 1.57 ± 0.8 1.84 ± 0.92 b t(19.01) = 0.81, n.s.
Edinburgh (score) 17.26 ± 3.15 17.94 ± 2.33 17.54 ± 2.38 d k2(2) = 0.50, n.s.

BPRS STREAM (score) 0.93 ± 2.84 9 ± 5.58 12.81 ± 6.86 k, w k2(2) = 24.61, p < 0.00001; θ, δ
BPRS at PPI test (score) 1.93 ± 2.65 3.77 ± 7.05 7.45 ± 8.06 k k2(2) = 4.05, n.s.

Hamilton D at STREAM (score) 1.86 ± 5.16 5.27 ± 6.02 9.18 ± 5.84 k, w k2(2) = 15.67, p < 0.001; θ, δ
Hamilton D at PPI test (score) 1.93 ± 3.03 2.5 ± 3.09 6.27 ± 6.73 k k2(2) = 5.45, n.s.

YMRS at STREAM (score) 0.53 ± 1.18 13.5 ± 10.18 5.18 ± 4.91 k, w k2(2) = 22.35, p < 0.001; θ, δ
YMRS at PPI test (score) 0.53 ± 0.83 3.05 ± 5.77 2.9 ± 3.83 k k2(2) = 2.75, n.s.

Atypical antipsychotic (%) - 39% 82% c χ2(1, 29) = 5.09, p = 0.05; β
Typical antipsychotic (%) - 6% 18% c χ2(1, 29) = 1.17, n.s.

Humor stabilizer (%) - 61% - c χ2(1, 29) = 10.83, p < 0.01; β
Benzodiazepines (%) - 22% 45% c χ2(1, 29) = 1.72, n.s.

Sex is displayed as the absolute counts for male (m)/female (f) participants. Drug treatment are displayed as the
percentage of use in relation to participants of the same group. The remaining characteristics are displayed as the
mean ± the standard deviation. Age is displayed at STREAM recruitment day. Brief Psychotic Rating Scale (BPRS),
Hamilton D and Young Mania Rating Scale (YMRS) are displayed at STREAM recruitment day and at PPI test
day. Statistical Test Types are indicated as: a—ANOVA (CT × BP × SZ); t—Welsh Two Sample t-test (CT × BP)
or (BP × SZ) or (BP × SZ); c—χ2 (CT × BP × SZ) or χ2 (BP × SZ); k—Kruskal–Wallis test (CT × BP × SZ);
w—Wilcoxon rank sum test pairwise group comparisons. Statistically significant post-hoc pairwise comparisons:
θ—CT × BP; δ—CT × SZ; β—BP × SZ.

Table 2. Medians of Acoustic Startle Response (ASR) and percentage Prepulse Inhibition for Control,
Schizophrenia, and Bipolar Disorder participants.

Electrode Response Control (n = 15) Bipolar (n = 18) Schizophrenia (n = 11) Omnibus Statistic

EMG P Amp (µV) 2.23 1.87 3.04 χ2(2) = 0.62, n.s.
%PPI30 60.05 48.49 21.61 χ2(2) = 1.9, n.s.
%PPI60 60.52 52.25 33.81 χ2(2) = 6.71, p = 0.03

%PPI120 48.51 39.29 24.26 χ2(2) = 6.81, p = 0.03
Favg P Amp (µV) 21.89 16.90 13.95 χ2(2) = 2.94, n.s.

%PPI 30 48.89 34.14 39.36 χ2(2) = 2.6, n.s.
%PPI 60 61.36 54.90 58.55 χ2(2) = 1.95, n.s.
%PPI 120 48.52 41.01 44.28 χ2(2) = 2.86, n.s.

Cavg P Amp (µV) 25.26 20.97 19.47 χ2(2) = 3.68, n.s.
%PPI 30 45.96 30.12 35.50 χ2(2) = 5.11, n.s.
%PPI 60 60.29 50.72 54.72 χ2(2) = 7.46, p = 0.02

%PPI 120 48.14 43.58 48.06 χ2(2) = 2.28, n.s.
Pavg P Amp (µV) 19.70 14.79 13.65 χ2(2) = 5.26, n.s.

%PPI 30 46.52 29.62 34.65 χ2(2) = 9.45, p < 0.01
%PPI 60 61.00 35.55 50.15 χ2(2) = 10.45, p < 0.01
%PPI 120 47.09 32.62 40.59 χ2(2) = 3.29, n.s.

In bold, are indicated Schizophrenia and/or Bipolar patients with significantly lower %PPI than the Control group
revealed by pairwise (CT × BP or CT × SZ) Mann–Whitney/Wilcoxon Rank-sum tests.
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Figure 1. Box- and swarm-plots of muscular and neural P2-N1 PPI for the Prepulse and Pulse
intervals of 30, 60, and 120 ms for Control (CT), Manic (BP), and Schizophrenia (SZ) participants. (A)
Eye-blink startle inhibition; (B) Average of the frontal electrodes F3, F4, F7, F8, and Fz; (C) Average of
the central electrodes C3, Cz, and C4; (D) Average of parietal electrodes P3, Pz, and P4. * p < 0.05
in the pairwise comparisons for the case groups compared to control groups (CT vs. BP or CT vs.
SZ) according to Mann–Whitney/Wilcoxon Rank-Sum Test. Blue boxplots are CT, orange are BP and
green represents SZ group. Gray dots are individual %PPI data for each participant. Note that the
percentage scale for EMG has a wider range than the neural %PPI.

As for neural %PPI measured by Cavg (Figure 1C), CT displayed significantly higher
%PPI than BP for the %PPI60 [W(1) = 212; p = 0.007]. Also, when measured by Pavg
(Figure 1D), CT displayed significantly higher %PPI than BP for %PPI30 [W(1) = 208;
p = 0.011] and %PPI60 [W(1) = 221; p = 0.002]. Accordingly, CT exhibited significantly
greater %PPI than SZ for %PPI30 [W(1) = 133; p = 0.012] and %PPI60 [W(1) = 125; p = 0.041].

Kendall correlation analysis on BP group showed a negative association between
the HAM-D Score at recruitment day and muscular %PPI for 30 [Kendall’s tau = −0.47;
p = 0.01], 60 [Kendall’s tau = −0.51; p < 0.01], and 120 ms [Kendall’s tau = −0.47; p = 0.01] P
+ PP intervals. In contrast, for the same BP group, neural %PPI60 evaluated by Favg was
positively correlated with HAM-D score at recruitment day [Kendall’s tau = 0.52; p < 0.01].
Still for BP patients, the YMRS was negatively correlated with neural %PPI120 measured
by Favg [Kendall’s tau = −0.63; p < 0.01].

Figures 2 and 3 show the efficiency of the SASICA algorithm [72] to eliminate the
eye-blinks and other artifacts from the RAW signal. Figure 2 shows the topography (grand
average ERP) for the pulse alone (P) condition at latencies N1 and P2 with eye-blink artifacts
occurring due to startle reflex affect mainly the N1 component (RAW signal). After artifacts
removal (SASICA), the N1 component displays normal negative activation across all scalp
channels. In Figure 3, it is possible to observe that eye-blinks were completely eliminated
from the EOG channel, enabling the identification of the N1 and P1 ERPs even in this



Brain Sci. 2022, 12, 93 8 of 17

electrode, due to the underlying brain activity captured by EOG. Figure 4 displays the
grand averaged waveforms from CT, SZ, and BP groups for the conditions pulse alone (P)
and PP+P (30 and 60 ms) at EOG, Favg, Cavg, and Pavg (grey areas signalize statistically
significant differences with the control group in neural PPI).
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Figure 2. 2D topography (grand average ERPs) for the pulse alone (P) condition at latencies N1 (a)
and P2 (b) from CT, SZ, and BP groups before (RAW signal) and after (SASICA) artifacts removal.
2D topography includes Frontal (F7, F3, Fz, F4, and F8), Central (C3, Cz, and C4) and Parietal (P3,
Pz, and P4) channels. Eye-blink artifacts due to startle reflex affect mainly the N1 component (RAW
signal). After the artifacts’ removal (SASICA), the N1 component displays normal negative activation
(blue color) across all scalp channels.
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Figure 3. Grand averaged waveforms of all groups before (red line) and after (black line) artifacts’
removal on the EOG electrode and on the average of frontal (Favg), central (Cavg) and parietal (Pavg)
channels (lines of subfigures). After artifact’s removal, the N1 and P2 ERPs (green and magenta
crosses, respectively) were identified even on the EOG channel, due to the underlying brain activity
captured by this electrode, visible only after complete removal of eye-blinks.
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Figure 4. Grand averaged waveforms (after artifacts removal) of from CT, SZ, and BP groups (column
subfigures) for the conditions pulse alone (P) and PP + P (30 and 60 ms) at EOG, Favg, Cavg, and Pavg
(line subfigures). The N1 and P2 ERPs (green and magenta crosses, respectively) were signalized only
for the pulse P condition (black lines), but grand averaged waveforms were also displayed for the PP
+ P conditions at Prepulse-Pulse intervals of 60 and 30 ms (blue and red lines, respectively), which
were the only conditions were significant differences (highlighted in grey color) with the CT group
were found in the neural PPI.

4. Discussion

To the best of our knowledge, this is the first time muscular and neural PPI impair-
ments were evaluated in early BP and SZ. We found that only SZ, but not BP patients,
presented sensorimotor gating reduction in muscular %PPI at 60 and 120 ms PP + P in-
tervals. In addition, we observed reduction in neural %PPI for both BP and SZ patients.
These findings suggest that the evaluation of neural PPI may detect gating impairments in
a broader manner than the classical muscular PPI paradigm [52].

In classical eye-blink (muscular) PPI, some previous SZ sensorimotor gating investi-
gations found impairments for the 60 ms but not for the 120 ms PP + P interval [22,53,81],
while others observed just the opposite [82,83]. Some studies found %PPI reduction in SZ
at both 60 and 120 ms intervals [84,85], but others did not detect any impairment at 60 or
120 ms intervals [86,87]. The moderate effect size of this phenomenon and methodologi-
cal aspects that may influence the outcomes probably explain such heterogeneity, as we
showed in our recent meta-analysis [32]. We controlled several of these factors by including
CT participants that were socio-economically matched to patients. Additionally, the PPI
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test session was performed on average one year and eight months after a patients’ first
psychotic episode. Drug treatment after the first episode may have reduced the effect size of
%PPI impairments at PPI test session day [69]. The sensorimotor gating impairments using
EMG (muscular) were not observed in BP patients. A previous study with BP patients
found %PPI reduction in some subgroups, such as males with high depression levels, but
did not show abnormalities in female and euthymic BP groups [33], as well as in manic or
mixed groups [57]. In contrast, another investigation described %PPI reduction at 60 and
120 ms PP + P intervals [34].

In this study, the neural %PPI measured by the P2-N1 ERP at the parietal region
detected reduction in sensory gating in both BP and SZ groups. Muscular and neural
PPI recruit different brain regions, with muscular PPI revealing CSPP circuitry alterations
through motor output (detected by the EMG signal) and neural PPI directly reflecting
neuronal synchronized firings (detected by the EEG signal). They also occur at differ-
ent temporal scales. Muscular PPI involves the fast ASR and slower PPI modulation
circuitry [24], usually detected at 20–120 ms, not necessarily requiring higher order cortical
systems activation. Neural PPI is observed on a distinct temporal scale, with the ERPs
N1 and P2 occurring, respectively, 100 and 200 ms after stimulus onset and necessarily
involves cortical regions. In neural PPI, the (auditory) N1 is time-locked to the stimuli
onset and indicates that its perception reached the auditory cortex region [88]. The auditory
N1 in response to P alone stimuli is related mainly to the primary and secondary auditory
cortices [88]. Differently, the P2 wave has been reported to be more widely distributed
within the brain, with two main sources identified, one in the auditory cortex and the
other in the frontoparietal region, as well as other weaker sources in the anterior cingulate
cortex and the insula [89]. Furthermore, an auditory inhibition paradigm evaluated by
magnetoencephalography recording proposed that the N1m potential source is at the lateral
side of the transverse gyrus or superior temporal gyrus [90,91]. The source of N1 and P2
were also estimated in a neural PPI paradigm investigating healthy individuals [92] with
low resolution brain electromagnetic tomography [93]. The N1 generating source was
estimated in the frontal lobe of the right hemisphere, while the source of P2 was estimated
in the right upper parietal lobe. In summary, although methodological differences may
play a role in these results, the N1 and P2 source estimation investigations suggest different
generating origin for the ERPs according to their inhibition state. Moreover, the inhibited
N1 and P2 sources are clearly distinct, indicating that the sensory gating is not constrained
to one brain region. Hence, the extension of the classical eye-blink (muscular) PPI with
concurrent EEG recordings enabling the evaluation of neural PPI, similarly to the PPI and
P50 sequential recording [94,95], adds a significant piece of information to the classical PPI
research. Nevertheless, this result should be interpreted with caution, as the detection of
%PPI impairments on the same electrodes does not directly imply that deficits occur in the
same brain structures for both patient groups. While EEG is recorded with high temporal
resolution and can be considered a neuroimaging tool, and with some advanced techniques
being even able to detecting source localization of brain signals [96,97], it still displays a
lower spatial resolution than other techniques such as magnetic resonance imaging (MRI)
and positrons emission tomography (PET).

We found a negative correlation between muscular %PPI and the HAM-D score for
all PP + P intervals at recruitment day only, not at PPI test session day. Several studies
investigating the correlation between symptoms’ severity, as measured with scales such as
BPRS/PANSS, YMRS and/or Ham-D, and %PPI levels in a wide range of mental illnesses,
as Alzheimer [98], BP [33,99], and SZ [56,83,100–104], did not find significant associations.
A small number of studies observed significant correlations between those measures in SZ
patients subgroups or for some of the investigated PP + P intervals, such as the PANSS
positive or SAPS being negatively correlated to %PPI60 [53,105] and %PPI120 [106]. In
the present study, we did not find correlations between BPRS, YMRS or HAM-D scores,
and %PPI levels in the SZ patients. It is possible that the neural %PPI, being a more direct
measure, would be more sensitive to correlation measures than muscular %PPI, but again
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we observed no significant correlation between psychopathological scores and the neural
%PPI in any of the three electrode averages for the SZ patients. To sum up, as sensory
gating belongs to automatic processing domains and clinical symptoms are revealed in
more complex domains, association between those measures may not be prone to be reliably
detected [100,107,108].

The present study has some limitations. First, 22% of SZ and 45% of BP patients were
treated with benzodiazepines. This class of medications is known to reduce %PPI levels
among healthy individuals in a dose-dependent pattern [109], a limitation that is recurrent
among PPI studies, especially in first-episode psychotic patients [100,110,111], with some
studies attenuating possible medication effects by restricting the use of such drugs at the PPI
test day [54]. We did not restrict inclusion due to the use of any drug, and all schizophrenia
and bipolar patients were under antipsychotic, mood stabilizer, or both treatments, and
some were prescribed benzodiazepines, but doses were not recorded in this work. Second,
in our study, the limited number of subjects in each group thwarted additional analyses
that might have provided more information on sensory gating by subgroups, such as
sex [112], antipsychotic drug types [113], and severity of psychotic symptoms [114]. Third,
similarly to previous neural PPI studies [76,77,115], this study did not evaluate %PPI on
N1 and P2 potentials, separately. The P2-N1 ERP complex is originated in distinct brain
regions, therefore biological validity is reduced with this unified analysis. Fourth, we
analyzed the signal in the 1–40 Hz range (full band). Sub-band analyses might provide
further information [76], as patients’ groups may display alterations limited to specific
bands. For example, SZ patients have dysfunctions in resting-state high gamma frequencies
when compared to healthy people [116], so it is possible that they also present alterations
in the PPI when investigated in specific bands. Fifth, frontal lobe plays a major role in
inhibition [117,118], but no group differences were detected in this region. The frontal
electrodes were the most contaminated by eye-blink artifacts, and the cleaning process may
have attenuated the signal in these regions [72]. Sixth, there are several distinct protocols of
PPI test, including different intensities, duration, and source of stimuli; herein, we opted
to use a set up similar to those used in many studies with schizophrenia and/or bipolar
patients [22,32,36,95] and those used in our previous study [52]. Seventh, we did match
cases and controls for potential confounding variables (gender, age group, and educational
level), but did not control for potential confounding of smoking status. Lastly, the small
sample size may have increased the chance of type II errors, which means not enough
statistical power to detect the distinct effects for %PPI in BP and SZ populations. On the
other hand, multiple statistical comparisons may have increased the chance of type I errors.

5. Conclusions

As implications for future studies, the combination of muscular with neural PPI has
the potential to contribute to differential diagnosis after the psychotic outbreak, as different
patient groups may display changes in specific electrode regions, band frequencies, or PPI
modalities (neural or muscular). Future studies should include larger BP and SZ groups
and evaluate other disorders, to assess the predictive validity of combined muscular and
neural PPI.
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