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Abstract
Plants in their natural habitats adapt to drought stress in the environment
through a variety of mechanisms, ranging from transient responses to low soil
moisture to major survival mechanisms of escape by early flowering in absence
of seasonal rainfall. However, crop plants selected by humans to yield products
such as grain, vegetable, or fruit in favorable environments with high inputs of
water and fertilizer are expected to yield an economic product in response to
inputs. Crop plants selected for their economic yield need to survive drought
stress through mechanisms that maintain crop yield. Studies on model plants
for their survival under stress do not, therefore, always translate to yield of crop
plants under stress, and different aspects of drought stress response need to
be emphasized. The crop plant model rice ( ) is used here as anOryza sativa
example to highlight mechanisms and genes for adaptation of crop plants to
drought stress.
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Introduction
Drought stress is the most prevalent environmental factor limit-
ing crop productivity1, and global climate change is increasing the  
frequency of severe drought conditions2. The sheer diversity of 
plant species grown across climatic regions that include extreme 
dry conditions suggests that, in nature, plants have evolved to 
endure drought stress with an array of morphological, physiologi-
cal, and biochemical adaptations3. ‘Drought resistance’ (DR) is a 
broader term applied to plant species with adaptive features that 
enable them to escape, avoid, or tolerate drought stress4. ‘Drought 
escape’ is the ability of a plant species to complete its life cycle 
before the onset of drought. Thereby, plants do not experience 
drought stress, as they are able to modulate their vegetative and 
reproductive growth according to water availability, essentially 
through two different mechanisms: rapid phenological develop-
ment and developmental plasticity5. Rapid phenological develop-
ment involves rapid plant growth, producing a minimal number 
of seeds before the soil water depletes, and these plants are con-
sidered not to have any special morphological, physiological, or  
biochemical adaptations. Plants with mechanisms of developmen-
tal plasticity show little growth during the dry season, with very 
few flowers and seeds, but in wet seasons they grow indetermi-
nately, producing a large amount of seed. ‘Drought avoidance’ is the 
ability of plants to maintain (relatively) higher tissue water content 
despite reduced water content in the soil4. This is achieved through 
a variety of adaptive traits involving the minimization of water loss 
(water savers) and optimization of water uptake (water spenders). 
Water spenders achieve higher tissue water status by maintaining 
the water uptake through increased rooting, hydraulic conduct-
ance, etc. under drought stress. In contrast, water savers use water 
effectively through reduced loss of water by reducing transpiration, 
transpiration area, radiation absorption, etc. under drought stress. 
‘Drought tolerance’ (DT) is the ability of plants to endure low tissue 
water content through adaptive traits. These adaptive traits involve 
maintenance of cell turgor through osmotic adjustment and cellular 
elasticity, and increasing protoplasmic resistance6.

Improvement of yield and maintaining yield stability of crops, 
under normal as well as drought stress conditions, is essential for 
the food security of the growing global population. It is difficult to 
resolve the role of different components of DR in the stability of 
the crop yield as the major objective. However, there exist a vari-
ety of different mechanisms for drought escape, avoidance, or tol-
erance in natural populations that can improve DR and maintain  
grain yield in crop plants. In nature, extreme DR is found in res-
urrection plants7,8 which possess strong drought escape mecha-
nisms. Resurrection plants can be exposed to severe drought for  
months, extending up to years, forcing them to optimize their 
growth for survival, but not for seed production, in the long term9. 
Therefore, the DR mechanisms that enable plants to merely sur-
vive longer lead to subsistence yield, which is much lower than 
that which is observed under normal conditions. Crop plants, 
on the other hand, are grown by humans in environments under  
conditions for high agricultural production and will be exposed to 
only a random short-term drought stress of days to weeks, from 
which they must quickly respond to limit the damage caused by 

short-term drought stress while they continue to grow and yield 
in the stressful environments. Therefore, bringing in the drought 
adaptive mechanisms from plants adapted to grow in extreme dry 
conditions may not be a feasible option, as it may result in growth 
and/or yield penalty in crop plants under drought as well as normal 
conditions.

Although plant survival is very critical in the early growth stages, 
the mechanisms have little relevance to increasing grain yield 
directly. The emphasis to improve DR of crop plants should  
therefore be based on stability of yield components and not on 
plant survival alone. So far, most of the efforts to improve grain 
yield under drought stress were focused on secondary traits such 
as root architecture, leaf water potential, osmotic adjustment, and  
relative water content at the vegetative stage, which are often not 
highly correlated with grain yield10,11. Looking forward in crops, 
the effective drought improvement approach should be selec-
tion for yield and its component traits under reproductive-stage  
drought stress12. Additionally, little importance has also been 
given to simultaneous improvement of grain yield under normal and  
drought conditions. Selection for DT has been suggested to have a 
yield drag under normal conditions. It has been proposed that the 
yield potential of crop plants should be simultaneously selected 
for under favorable and environmental stress conditions, as there 
is a positive correlation between yield potential under normal and 
drought stress conditions13. Combining high yield potential under 
normal conditions with good yield under drought stress is the  
ideal trait. Identification of mechanisms, traits, and genes regu-
lating yield under drought stress that are free from yield drag 
under normal conditions should be the focus. For example, regu-
lation of yield under normal as well as drought stress conditions 
has been shown for three NAC family transcription factors (TFs).  
Transgenic plants expressing OsNAC5, OsNAC9, and OsNAC10 
TFs showed an increase in grain yield of 5-26% under normal 
conditions14–16. Nevertheless, in these studies, yield under normal 
conditions has been overlooked with more emphasis given to yield 
under drought stress. Two of our recent studies show the poten-
tial of simultaneously improving and stabilizing grain yield, both  
under normal as well as drought stress conditions, using two reg-
ulatory genes, namely GUDK and HYR in rice17,18. These studies 
indicate that it might be advantageous to identify mechanisms  
and genes for increasing grain yield that are also stable or main-
tained under drought stress conditions.

Despite the complexity of DR, tremendous progress has been 
made in understanding the drought-adaptive mechanisms of 
plants1,19,20. Adaptation through DR mainly involves morpho- 
physiological alterations. These alterations in adaptive processes  
are controlled by molecular mechanisms that regulate the expres-
sion of genes21. There exists a large diversity in drought adapta-
tion within a crop species, as some genotypes are able to cope 
with drought better than others. Genotypes that differ in drought 
adaptive mechanisms serve as an important resource to study the 
variation in drought adaption in crop plants. This natural vari-
ation needs to be exploited to simultaneously improve DR and 
yields of cultivated varieties through better understanding of the  
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underlying mechanisms and to aid in selection for these traits22. 
In the following sections, we describe the widely known morpho-
physiological processes and recent molecular advances in regulat-
ing these drought-adaptive processes leading to increased yield  
in crop plants.

Photosynthesis
Drought stress is known to reduce photosynthesis by decreasing 
both leaf area and photosynthetic rate per unit leaf area. Reduced 
photosynthetic rate is mainly through stomatal closure or metabolic 
impairment23. Continued photosynthetic light reactions during 
drought stress under limited intercellular CO

2
 concentration results 

in the accumulation of reduced photosynthetic electron transport 
components, which can potentially reduce molecular oxygen, 
resulting in the production of reactive oxygen species (ROS). ROS 
can cause severe damage to the photosynthetic apparatus24. The 
adaptive responses that plants have developed to reduce drought-
induced damage to photosynthesis include thermal dissipation of 
light energy, the xanthophyll cycle, the water-water cycle, and 
dissociation of the light-harvesting complexes from photosynthetic 
reaction centers25–27. The metabolic impairment during drought 
stress is mainly caused by changes in photosynthetic carbon 
metabolism24. The biochemical efficiency of photosynthesis under 
drought stress mainly depends on ribulose-1,5-bisphosphate 
(RuBP) regeneration and the activity of ribulose-1,5-bisphosphate 
carboxylase/oxygenase (RuBisCO)28,29. Considerable progress  
has been made in improving the stomatal components for CO

2
 

diffusion, photosynthetic light reaction, and metabolic changes, 
including the expression of photosynthesis-related genes to regu-
late photosynthesis under drought towards the improvement of 
grain yield30.

The C4 pathway of carbon assimilation has been suggested to be 
the major adaptation of the C3 pathway to limit water loss, reduce 
photorespiration, and improve photosynthetic efficiency under 
drought stress31. However, many important crops—including 
rice, wheat, soybean, and potato—use the C3 pathway of photo-
synthesis. Although the transfer of the C4 pathway into C3 crops  
is underway, so far its contribution to increased grain yield is very 
limited32. Photosynthetic adaptation of plants to drought stress 
involves a complex interaction of hormones, ROS, sugars, and 
other metabolic events33. Combinations of computational mod-
els, which integrate the physiological and metabolic processes  
with gene expression data, along with modern breeding and trans-
genic technologies hold promise in improving photosynthesis  
and hence crop yield under normal as well as drought stress  
conditions.

In recent studies, we used a rice gene regulatory network to iden-
tify a TF termed HYR (HIGHER YIELD RICE), which was 
highly associated with primary carbon metabolism17, and on  
overexpression in rice enhanced photosynthesis under normal 
conditions as well as under drought and high temperature stress. 
HYR regulates several morpho-physiological processes lead-
ing to higher yield under normal and environmental stress con-
ditions. Our study showed that HYR is a master regulator of  
photosynthesis, directly activating photosynthesis genes, cascades 

of TFs, and other downstream genes involved in photosynthetic  
carbon metabolism, resulting in improved yield.

Hormonal regulation
Major phytohormones, such as abscisic acid (ABA), cytokinin 
(CK), gibberellic acid (GA), auxin, and ethylene, regulate diverse 
processes which enable plant adaptation to drought stress34. Upon 
exposure of plants to drought stress, ABA is the major hormone syn-
thesized in roots and translocated to leaves to initiate adaptation of 
plants to drought stress through stomatal closure and reduced plant 
growth35. However, modulating the ABA-induced drought adapta-
tion of plants for better yield remains a greater challenge because 
of the potential inadvertent reduction in carbon gain upon stomatal 
closure and ABA-induced senescence, especially if the drought 
occurs at the reproductive stage36. There are ABA signaling genes, 
such as OsNAP, OsNAC5, and DSM2, which promote improved 
yield under reproductive drought37–40. These ABA-induced non- 
stomatal adaptations of plants under drought stress can be exploited 
to improve grain yield under reproductive drought (Figure 1).

Under drought stress, CKs are known to delay premature leaf 
senescence and death, adaptive traits very useful for increasing 
grain yield. An increase in the endogenous levels of CK through 
expression of isopentenyltransferase (IPT), a CK biosynthetic 
pathway gene, leads to stress adaptation by delaying drought-
induced senescence and an increase in yield41,42. Generally, auxin 
has been shown to negatively regulate drought adaptation in  
plants. Decrease in indole-3-acetic acid (IAA) content was 
shown to be associated with up-regulation of genes encoding late  
embryogenesis abundant (LEA) proteins, leading to drought  
adaptation in plants43,44. Recently, the DEEPER ROOTING 1 
(DRO1) gene determining a quantitative trait locus (QTL) con-
trolling root growth angle was shown to be negatively regu-
lated by auxin. Higher expression of DRO1 in a shallow-rooting 
rice cultivar resulted in drought avoidance and high yield under 
drought45. GA is suggested to positively regulate plant adaptation 
to drought stress. A rapid decline in levels of endogenous GA was 
observed in plants subjected to drought stress, resulting in growth  
inhibition46. The role of GA in regulating grain yield of crop  
plants is thus an important area that can be further explored.  
Ethylene is a negative regulator of drought stress response by pro-
moting leaf senescence and inhibiting root growth and develop-
ment, shoot/leaf expansion, and photosynthesis47–51. Ethylene can 
also directly affect yield by increasing embryo and grain abortion 
and reducing the grain-filling rate52. In addition to the major hor-
mones, other hormones such as brassinosteroids, jasmonic acid 
(JA), salicylic acid (SA), and strigolactone also have an equally 
important role in plant growth and development. However, their 
function under drought stress is relatively less characterized. 
Tillering in rice has been suggested to be the outcome of an inter-
action among three hormones, CK, auxin, and strigolactone, with  
CK promoting branching and the other two inhibiting it53,54, sug-
gesting that all hormones do not act in isolation but instead interact 
and modulate each other’s biosynthesis and responses. Therefore, 
the net outcome of the drought stress response is regulated by a  
balance between hormones that promote and those that inhibit the 
trait, rather than individual hormones.
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Figure 1. The abscisic acid (ABA)-dependent gene regulatory pathway in rice. This pathway is required for drought stress tolerance and 
grain yield under drought. The drought stress ABA-dependent signal is shown perceived directly by the regulatory genes described in the 
text, followed by transcriptional regulation of downstream genes and underlying stress response mechanisms. Genes regulating drought 
tolerance (DT) at the vegetative stage are shaded green, and genes regulating DT and grain yield under drought are shaded orange. 
The resulting phenotypes are represented for DT at the vegetative level only (green diamonds), or DT and grain yield (orange diamonds). 
The genes described here are OsGH392, OsNAP, OsABI239, AP3793, OsPP2C09, OsPP2C0694, OsPYL/RCAR5, OsSIDP36695, OsMYB4896, 
OsRK197, Oshox2298, SNAC299,100, OsOAT101, OsbZIP23102, SNAC199, OsEREBP1103, OsbZIP71104, OsbZIP46105, OsABI5106, DSM240, AREB2107, 
OsSRO1c108, and OsABA8OX3109.

Transpiration and stomatal conductance
The immediate response of plants on being exposed to drought 
stress is stomatal closure. However, stomatal closure not only 
diminishes water loss through transpiration but also reduces CO

2
 

and nutrient uptake, and hence alters metabolic pathways such as 
photosynthesis55. Plants growing in dry areas have developed 
xeromorphic traits to reduce transpiration under drought stress. 
Reduction in transpiration under drought stress conditions can 
also be achieved through leaf shedding (i.e. deciduous species in 
drought) as well as decrease in leaf number, leaf size, and branch-
ing. Another adaptation to counter drought stress is sclerophylly, 
where plants form hard leaves that will not suffer permanent  
damage due to wilting and can be restored to full functionality 
when normal conditions resume56. Recent research has shown that 
decreased stomatal conductance in response to drought stress is 
related not only to reduced expression of aquaporin genes but also 
to anatomical traits leading to reduction of chloroplast surface area 
exposed to intercellular space per unit leaf area57,58. Several other 
factors, including leaf developmental stage and light availability, 
are also known to interact with drought in modulating mesophyll 
and chloroplast differentiation, ultimately affecting conductance 
and photosynthetic capacity58. Reduction in stomatal size and 

number on exposure to drought is another adaptation for survival 
under drought conditions. Previous studies have shown that while 
there is an increase in stomatal density under mild drought stress, 
there is a decrease during severe drought59. Thus, all these adap-
tations in plants reduce the negative impacts of drought stress on 
photosynthesis and thereby have a positive effect on water use 
efficiency (WUE), which in turn will result in high yield potential 
and high yield60. Such an adaptation was shown in rice by  
overexpression of the Arabidopsis AP2/ERF TF HARDY that 
improved WUE (the ratio of biomass produced to water used) by 
enhancing photosynthesis and reducing transpiration61. The above 
reported traits therefore exemplify adaptive mechanisms in plants to 
survive under drought stress without loss of productivity or yield.

Root morphology
In many agriculturally important crops, drought stress is perceived 
first by the root system, which continues to grow underneath the 
soil even though shoot growth is inhibited under these conditions62. 
Although the growth of the primary root is not affected by drought 
stress, the growth of lateral roots is significantly reduced, mainly 
by suppression of the activation of the lateral root meristems63. 
The Arabidopsis R2R3-type MYB TF MYB96 has been shown to 
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regulate activation of lateral root meristem through an ABA signal-
ing cascade, with an activation-tagged mutant showing enhanced DR 
with reduced lateral root formation64. The plant microRNA miR393 
has also been shown to play a role in root-mediated adaptation to 
drought stress response through attenuation of auxin signaling65.  
In addition to the lateral roots, the presence of small roots is also 
considered as an adaptive strategy to increase water uptake by pro-
viding more absorptive surface. Presence of specialized tissues  
like rhizodermis, with a thickened outer cell wall or suberized 
exodermis, or reduction in the number of cortical layers are consid-
ered an adaptive advantage for drought stress survival. Hydrotro-
pism is another adaptive measure taken by plants to counter stress, 
where studies have shown that degradation of amyloplasts in the 
columella cells of plant roots on exposure to drought stress increases 
hydrotropism66,67. Hormonal cross-talk mediated by auxin, CK, 
GA, and ABA has been implicated as a potential chemical signal in 
response to water stress to modulate root system architecture68.

The expression of enzymes related to root morphology (e.g. 
xyloglucan endotransglucosylase) is induced upon mild drought 
stress, while other structural proteins are down-regulated, which is 
strongly correlated with root growth and hence an augmentation in 
the surface area for water uptake. The alterations in the expression 
of these proteins correlate positively with lateral development that 
in turn also affects photosynthesis69. More lateral root and root hair 
formation was found in lines possessing a QTL, qDTY12.1, only 
when under drought70. Such traits, which are expressed only under 
drought stress, have higher potential to increase grain yield under 
drought. Moreover, it has also been shown that drought stress triggers 
a wide variety of anatomical traits expressed to different levels and 
patterns in different species and even in different cultivars within 
species71–73. For example, suberization and compaction of scleren-
chyma layer cells were shown to decrease in rice under drought, 
which increases retention of water under drought stress71.

Osmotic adjustment
Osmotic adjustment (OA) is defined as a process of solute accu-
mulation in dividing cells when the water potential is reduced, 
and thereby helps in maintaining the turgor74. Cell enlargement 
and growth in plants is highly dependent on water availability and 
helps in maintaining the turgor. Turgor measurement in growing 
regions of plants, especially the leaves and stems, shows little or 
no reduction, though cell enlargement is inhibited during drought 
stress and is believed to be due to OA75,76. Under conditions of 
drought stress, OA has been implicated in maintaining stomatal 
conductance, photosynthesis, leaf water volume, and growth74,77. At 
times of drought stress, in addition to the reduction in water con-
tent, there are also other associated changes, such as increases in 
salt concentration and mechanical impedance78. Inorganic cations, 
organic acids, carbohydrates, and free amino acids are the known 
predominant solutes that accumulate in response to water stress. 
Previous studies have shown that drought-resistant wheat varieties, 
with yield stability under drought stress, have a greater capacity 
for osmoregulation than less resistant varieties76. The accumulation 
of compatible solutes such as proline and glycine betaine help in 
protecting the plants from detrimental effects of drought stress not 

only by OA but also by detoxification of ROS, protection of mem-
brane integrity, and stabilization of enzymes or proteins79. Enzymes 
such as betaine aldehyde dehydrogenase (BADH), pyrroline-5-
carboxylate reductase (P5CR), and ornithine δ-aminotransferase 
(OAT) have been shown to play major roles in OA. Overexpression 
of Arabidopsis EDT1/HDG11 was shown to increase DT of poplar 
and cotton through increased accumulation of solutes such as pro-
line and soluble sugars and also increase the yield of cotton in the 
field80. However, there are some plants in which sugars are the main 
osmolytes that play a significant role in OA, including sucrose, 
trehalose, glucose, and fructose. Previous studies have shown 
that overexpression of the sucrose:fructan-6-fructosyltransferase  
(6-SFT) gene from Psathyrostachys huashanica in tobacco and 
the trehalose-6-phosphate phosphatase gene OsTPP1 in rice  
confers abiotic stress tolerance81,82. Researchers have also identi-
fied a QTL for OA on chromosome 8 in rice that is homeologous  
with a segment of wheat chromosome 783.

Source-sink relationships
Source-sink relationships largely determine the grain yield of  
cereal crops, with developing grains being primary sinks while the 
top two leaves, the flag leaf in particular, are the primary source84,85. 
Drought stress affects the source-sink relationship by reducing the 
source strength, leading to yield reduction. Sufficient sugar sup-
ply through photosynthesis, transport, and conversion of sugars is 
regarded as the most critical component in determining the viabil-
ity of reproductive organs in rice86–88. Drought stress dramatically 
affects pollen viability due to abnormal starch accumulation89. 
Insufficient starch synthesis and arrested pollen development have 
been linked to reduced invertase activity under drought stress88. 
In addition to invertases, active grain filling involves other key 
enzymes, such as sucrose synthase, ADP glucose pyrophosphory-
lase (AGPase), and starch synthase as well as starch branching and 
debranching enzymes, which are also affected by drought stress88. 
Therefore, enhancing rice yield through source-sink relationships 
involves not only sugar metabolism but also the regulated mobiliza-
tion of metabolic resources from source to sink tissue.

Future research perspectives
Improving DR in crop plants is a challenge for plant breeders and 
crop physiologists, as it is a complex genetic trait with multiple 
pathways involved. Effective development of drought-resistant 
crop plants thus requires the pyramiding and interaction of many 
mechanisms, traits, and genes that are appropriate to individual 
crops and their growing environments. Success in this direction 
not only extends the growing area of crop plants but also achieves 
stable yield in drought-prone areas. Identifying genetic variation 
for DR is the first step towards development of drought-resistant 
crop plants. Such variation is often present in wild species and 
adapted genotypes that have evolved under natural selection and 
these are the best source of DR traits. Evaluation of these resources 
through an integrated phenotyping and genotyping approach under 
field conditions alongside identification of traits that are directly 
associated with yield is key to improving DR90. Comparative omics 
analyses between the diverse germplasm could aid in bettering our 
understanding of the variety of crop adaptations to drought stress. 
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In addition, analysis of specific genes focussed on increasing DR 
while stabilizing the yield is crucial for understanding the broad 
basis of complex traits such as DR91. The development of high-
yielding resilient crops74 that maintain yield stability under drought 
and other environmental stresses due to climate change is also cur-
rently needed. Drought-resistant plants should combine a better root 
system, stomatal regulation, WUE, and hormonal balance while 
avoiding the negative effects on grain yield under both normal and 
drought stress conditions. Therefore, a holistic crop improvement 
strategy should involve the deployment of high crop yield poten-
tial and the utilization of a combination of morpho-physiological,  
biochemical, and anatomical adaptive responses to drought  
stress.
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