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Abstract

Community-dwelling African American elders are twice as likely to develop mild cognitive

impairment (MCI) or Alzheimer’s disease and related dementias than older white Americans

and therefore represent a significant at-risk group in need of early monitoring. More exten-

sive imaging or cerebrospinal fluid studies represent significant barriers due to cost and bur-

den. We combined functional connectivity and graph theoretical measures, derived from

resting-state electroencephalography (EEG) recordings, with computerized cognitive test-

ing to identify differences between persons with MCI and healthy controls based on a sam-

ple of community-dwelling African American elders. We found a significant decrease in

functional connectivity and a less integrated graph topology in persons with MCI. A combi-

nation of functional connectivity, topological and cognition measurements is powerful for

prediction of MCI and combined measures are clearly more effective for prediction than

using a single approach. Specifically, by combining cognition features with functional con-

nectivity and topological features the prediction improved compared with the classification

using features from single cognitive or EEG domains, with an accuracy of 86.5%, compared

with the accuracy of 77.5% of the best single approach. Community-dwelling African Ameri-

can elders find EEG and computerized testing acceptable and results are promising in

terms of differentiating between healthy controls and persons with MCI living in the

community.

Introduction

With the aging of the population, age- and disease-related cognitive declines have important

socioeconomic implications. Identifying those who are at risk for accelerated cognitive decline

and understanding the mechanisms leading to this decline are vital for guiding interventions

and improving early prediction of dementia. Community-dwelling African American elders

are twice as likely to develop mild cognitive impairment (MCI) or Alzheimer’s disease (AD)
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and related dementias compared with older white Americans and therefore represent a signifi-

cant at-risk group in need of early monitoring [1]. More extensive imaging or cerebrospinal

fluid studies represent significant barriers due to cost and burden. Community-based, fast,

and efficient screening methods, such as portable electroencephalogram (EEG) or computer-

based cognitive testing, present potential screening options to identify individuals for whom

more extensive evaluations are necessary or who may be most appropriate for clinical trials

aimed at early disease prevention.

Newer analysis and processing approaches for EEG provide additional options for early

characterization of cognitive change. The concept of functional connectivity and graph theory,

in particular, have recently been extensively applied to understand the behavior of interactions

in the human brain [2–4]. In parallel to functional connectivity, which provides information

on statistical dependence between activities of different regions of the brain [5, 6], graph the-

ory offers a graph-based representation of the brain, together with a powerful framework for

investigating its underlying organization. A functional EEG brain graph consists of vertices

corresponding to electrodes and each pair of vertices is connected by a weighted edge, where

the edge weights represent a measure of synchronization between EEG signals.

Numerous studies have reported a loss of functional connectivity in patients with AD com-

pared to normal controls in resting state [7, 8] supporting the concept of AD as a disconnec-

tion syndrome [9]. Similar findings of a reduced level of functional connectivity have also been

reported in patients with MCI [10–12], suggesting that MCI may be viewed as a disconnection

syndrome, as well. In addition to functional connectivity alterations, recent studies in patients

with AD show a deviation of brain graph topology from optimal small-world topology, how-

ever, the results between studies differ drastically (c.f., [13] and references therein). Perhaps

unsurprisingly, changes in brain graph topology have also been described in patients with

MCI [12, 14–18]. Although these results may show that brain graph topology is disrupted in

MCI patients, the direction of the disruption is not clearly understood. Contradictory findings

are partially due to different methodological aspects in brain graph analysis. In particular, nor-

malization is an important step in traditional graph analysis, usually done by thresholding

and/or comparing brain graph parameters to those in random graphs. However, these meth-

ods do not yield an optimal solution [19, 20]. An alternative that avoids the aforementioned

limitations is to take and compare a minimum spanning tree (MST) of the brain graph—a sub-

graph connecting all vertices with the minimum sum of the inverse edge weights [21]. The

MST represents, by definition, the backbone of the brain graph in a sense that it captures the

strongest connections. Several studies have applied MST analysis to show that brain graph

topology is altered in neurological diseases such as multiple sclerosis [22], Parkinson’s disease

[23] and Alzheimer’s disease [24]. Perhaps surprisingly, only one study used the MST

approach to compare healthy and MCI groups [25]. That study found that MST topology dif-

fered between groups, however, differences did not survive correction for multiple testing.

Moreover, in the same study, traditional graph measures were also used, but interestingly,

these measures did not distinguish between groups. Nevertheless, additional study is necessary

to understand if the MST approach is sensitive enough to detect differences between healthy

and MCI groups.

An additional factor affecting the results in the above studies in terms of effectively differen-

tiating MCI from normal could be the fact that MCI patients may show a range of cognitive

impairment type and severity prior to diagnosis of dementia [26]. One option to improve the

sensitivity of the comparisons could be to consider both cognitive status, as well as functional

connectivity and graph-theoretic parameters derived from EEG. Various studies have

employed classification approaches for the identification of MCI patients using functional con-

nectivity and graph theory [27–30]. However, to the best of our knowledge, no study to date
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investigating aging and cognitive decline, and in particular differences across MCI and con-

trols, has combined both EEG and cognitive performance measures.

Our study aimed to investigate whether resting-state EEG could detect differences in the

functional connectivity and brain graph topology in MCI and whether connectivity, topologi-

cal and computer-based cognitive measures can be used together in a model to distinguish

which variables can best differentiate MCI patients from healthy controls. Our sample repre-

sented a group of individuals at higher risk for MCI: community-dwelling African American

elders reporting a cognitive change over the past year. We hypothesized that functional con-

nectivity brain graph topology is disrupted in MCI patients as compared to controls and that

the combination of both EEG and behavioral measures improves normal/MCI classification

efficiency. To test these hypotheses, functional connectivity was derived from EEG data and

functional brain graphs together with their MSTs. To quantify the topological organization of

these graphs, we computed the two most basic traditional graph measures that together char-

acterize the concept of small-world topology, namely the average clustering coefficient and the

average characteristic path length for weighted graphs, as well as several graph measures

derived from the MST. We then compared them between the MCI and control groups. Con-

nectivity, topological, and cognitive measures were then used to discriminate between the two

groups in a model based on linear discriminant analysis.

Material and methods

Participants

We recruited 40 community-dwelling African American participants (36 females, four males),

ranging in age from 62 to 86 years, from the greater Detroit area. Some of the participants

were recruited out of the pool of over 1125 registered volunteers in the Healthier Black Elders

Center, a collaboration between Wayne State University’s Institute of Gerontology and Uni-

versity of Michigan’s Institute of Social Research [31] and others were recruited through the

Michigan Alzheimer’s Disease Research Center (MADRC) from outreach programs in local

churches and community centers. To evaluate a group of participants with a higher than usual

expectation of an MCI diagnosis, persons were recruited if they were living in the community

and considered themselves to be functioning fully, though they also responded positively to a

question asking if they had experienced a decline in cognitive ability over the past year. All par-

ticipants were diagnosed at the MADRC consensus conference; 27 of them being normal and

13 with MCI. All participants were consented and signed a written consent document. All pro-

cedures were in accordance with the principles expressed in the Declaration of Helsinki and

approved by the Wayne State University Research Subjects Review Board and the University

of Michigan Medical School Institutional Review Board.

EEG recordings

Scalp electroencephalographic activity was recorded for at least 3 min of resting-state with eyes

closed using Brain Vision (Brain Vision, Inc.) equipment. We used the high-density Acti Cap

(64 active electrodes) modified according to the International 10–20 System. The recording

locations included eight midline sites, with the FCz electrode as an on-line reference and a

ground at midline location AFz. Low and high pass filter settings were 0.1 and 70 Hz Hz,

respectively. The cutoff frequencies for these filters were set at 3 dB down; the roll-off was 12

dB per octave at both sides. Impedances were maintained below 10 kO for each channel and

balanced across all channels within a 5 kO range. The sampling rate was 500 Hz with a 32-bit

resolution.

PLOS ONE Effective differentiation of mild cognitive impairment by brain graph analysis and computerized testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0230099 March 16, 2020 3 / 19

https://doi.org/10.1371/journal.pone.0230099


EEG data analyses

Resting-state eyes-closed EEG was off-line inspected to identify, and segments of EEG contam-

inating either excessive noise, saturation, or lack of EEG activity were removed. The EEG data

were then segmented in consecutive epochs of 2 seconds and were analyzed off-line (1024 data

points; 0.488 Hz resolution; Hanning window). The epochs were identified as acceptable by an

automatic computerized procedure, using a rejection criterion of 100 mV on any channel

affected by artifacts (muscular, instrumental). Per subject, we obtained on average 90 (range,

64–115) 2 seconds of artifact-free segments.

A total of twelve regions of interest (ROI) were selected for further analysis: Right frontal—

RF (Fp1, AF7, AF3, F7, F5, F3), Medium frontal—MF (F1, Fz, F2, FC1, FC2), Left frontal—LF

(F4, Fp2, AF4, AF8, F6, F8), Left temporal—LT (FT9, FT7, T7, TP7, TP9), Left central—LC

(FC5, FC3, C5, C3, CP5, CP3), Medial central—MC (C1, Cz, C2, CP1, CPz, CP2), Right cen-

tral—RC (FC4, FC6, C4, C6, CP4, CP6), Right temporal—RT (FT10, FT8, T8, TP8, TP10), Left

parietal—LP (P7, P5, P3, PO7, PO3), Medial parietal—MP (P1, Pz, P2, POz), Right parietal—

RP (P4, P6, P8, PO4, PO8), occipital—O (PO9, O1, Oz, O2, PO10); see Fig 2.

Computerized neuropsychological assessment

Two standardized, laptop computerized neuropsychological screening batteries, the Brief Cog-

State Battery and the NIH Toolbox-Cognition were chosen to assess specific aspects of cogni-

tive functioning. It was expected that the two batteries, together, might provide the most

sensitive coverage of basic domains of cognition. Also, these measures are easily administered

and highly portable and therefore suitable for use in community settings.

CogState battery. CogState has been demonstrated to be reliable, stable and resistive to

practice effects [32, 33] and sensitive to both MCI [34, 35] and early cognitive changes in

healthy controls [32, 36]. The following subtests comprising the Brief CogState Battery were

administered: Detection Task (DET, speed of processing), Identification (IDN, attention), One

Back-Working Memory (ONB, working memory), and One Card Learning (OCL; learning/

memory). The test battery requires approximately 12–15 minutes to complete. Specific log-

transformed measures are available for each task based on response times and accuracy (c.f.,

[35, 37] for more detail).

NIH Toolbox-Cognition. The NIH Toolbox-Cognition was developed through the NIH

Blueprint for Neuroscience Research as a computer-based assessment program with an

emphasis on measuring outcomes in longitudinal epidemiologic studies and prevention or

intervention trials. The battery has been normed and validated across the lifespan in subjects

ages 3–85. The following subtests of the NIH Toolbox-Cognition were administered: Picture

Vocabulary Test (PVT), Oral Reading Recognition Test (ORRT), List Sorting Working Mem-

ory Test (LSWMT), Dimensional Change Card Sorting Test (DCCST), Pattern Comparison

Processing Speed Test (PCPST), and Picture Sequence Memory Test (PSMT). The first two

measures make up the more static Crystalized subtests reflecting premorbid ability and the

remaining the more sensitive Fluid measures. Scores are fully adjusted for demographics of

age, education, race and presented as T-Scores with a mean of 50 and a standard deviation of

10. A recent report [38] describes the development of the Toolbox in addition to results on

test-retest reliability, age effects on performance, and convergent and discriminant construct

validity. The completed test battery takes approximately 30–35 minutes and was administered

on a laptop computer.
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Functional connectivity analysis

The phase lag index (PLI) was used as a measure of functional connectivity [39]. It measures

the asymmetry of the distribution of instantaneous phase differences between two time series

xi(t) and xj(t) (t = 1,2,. . .,m):

PLIðxi; xjÞ ¼ j1=m
Xm

t¼1
signðφiðtÞ � φjðtÞÞj;

where sign(x) is the sign function, and φi(t), φj(t) are the instantaneous phases associated with

xi(t) and xj(t), respectively. For further analysis, the PLI was computed between all pairs of 64

electrodes for each epoch in the following frequency bands: delta (0.5–4 Hz), theta (4–8 Hz),

lower alpha (8–10 Hz), upper alpha (10–13 Hz) and beta (13–30 Hz). The result of computa-

tions was a 64 × 64 PLI matrix in which (i,j)-cell stores the value PLI(xi,xj). For every subject,

the average PLI matrix was calculated over all epoch.

The analysis was done at the global and local levels. To measure the global functional con-

nectivity the global average PLI was computed as the average over off-diagonal elements of the

average PLI matrix for each frequency band. Only if significant group differences were

observed in the global average PLI for a specific frequency band, a local analysis was performed

at the level of the ROI. Based on twelve ROI, the regional average PLI of each region R was

computed as the average over those off-diagonal elements of the average PLI matrix that

belong to pairs of electrodes lying in R. Besides, the regional PLI between each pair of regions

R and L was calculated as the average over those off-diagonal elements of the average PLI

matrix that belong to pairs of electrodes of which one lies in R and another in L. The construc-

tion of PLI matrices was performed using BrainWave software (version 0.9.152.41, available

from http://home.kpn.nl/stam7883/brainwave.html). Global and local functional connectivity

analysis, as well as subsequent analysis of graph topology, were performed in Matlab v2011.

Graph theory analysis

In our study, a brain graph, uniquely represented by the PLI matrix, consists of vertices repre-

senting electrodes, and each pair of vertices is connected by a weighted edge with the weight

equal to the PLI between the corresponding electrodes. Brain graphs associated with the aver-

age PLI matrices were used for further analysis. To characterize brain graph topology, we

applied a traditional graph analysis and MST approach.

Traditional graph analysis. From the average PLI matrices, the average weighted cluster-

ing coefficient and the average weighted characteristic path length were calculated. The

weighted clustering coefficient of a node vi in a weighted graph with the set of vertices V = {v1,

v2,. . .,vn} is defined as

Cw
vi
¼

X

vk; vi 2 V

vk 6¼ vi

X

vi; vk; vl 2 V

vl 6¼ vi; vl 6¼ vk

wi;kwi;lwk;l

X

vk; vi 2 V

vk 6¼ vi

X

vi; vk; vl 2 V

vl 6¼ vi; vl 6¼ vk

wi;kwi;l

;

where wi,j denotes the weight of the edge from vi to vj. The average weighted clustering coeffi-

cient is then computed as

Cw ¼ 1=n
Xn

i¼1
Cw
vi
:

The length of a path in a weighted graph is the sum of weights of the edges in the path. As for
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brain graphs, the weights were defined as the inverses of the average PLI values. Then a short-

est path between two vertices u and v is defined as that path which has the shortest length

among all the paths connecting u and v. The length of a shortest path from u to v is denoted by

d(u,v). The average weighted characteristic path length is computed as

Lw ¼ 1
nðn � 1Þ

X

u2V

X

v2Vu6¼v
dðu; vÞ:

.

To reduce the effect of edge weights, the average weighted clustering coefficient and the average

weighted characteristic path length were normalized by random brain graphs. To this end, fifty

random brain graphs were created by randomly reshuffling the original values in each average

PLI matrix, and the values hCwi and hLwi were computed as the average weighted clustering coef-

ficient and the average weighted characteristic path length, respectively, averaged over all fifty

random graphs. Finally, the normalized average weighted clustering coefficient Ĉw ¼ Cw
= hCwi

and the normalized average weighted characteristic path length L̂w ¼ Lw= hLwi were used in fur-

ther analyses.

To identify if brain graphs show a small-world property, the small-world index was calcu-

lated as. S ¼ Ĉw=L̂w G with S> 1 are considered as graphs with a small-world topology.

Minimum spanning tree analysis. An MST of a brain graph is a subgraph that connects

all vertices such that the sum of all its edge weights is maximized. We used Kruskal’s algorithm

[40] to compute MSTs. For further characterization, the edge weights of the obtained trees

were ignored.

First, the dissimilarity between MSTs of patients and controls was computed for each fre-

quency band. Following [41], the dissimilarity D(G|H) between two trees G and H with the same

set of vertices {v1,v2,. . .,vn} measures how much information is needed to transform G to H:

DðG jHÞ ¼
1=n

Xn

i¼1
log

10

�
�
�
�
�

X

vj2NH ðviÞ
dGðvi; vjÞ

jNHðviÞj

�
�
�
�
�
;

where NH(v) denotes the set of neighbors of v and dG(u,v) is the length of a shortest path from

u to v in G. To compute dissimilarity for both groups the MST obtained from the average PLI

matrix of all controls was used as a reference. Second, only if we found significant group differ-

ences in the dissimilarity for a specific band, we performed posthoc analyses on the following

topological properties of the MST: the maximum normalized vertex degree, the average nor-

malized vertex eccentricity, the maximum normalized vertex betweenness centrality, degree

divergence, normalized diameter, normalized leaf fraction, and tree hierarchy. An overview of

measure definitions is given in Table 1.

Statistical analysis

To assess differences in functional connectivity and brain graph topology between groups

non-parametric randomization/permutation testing (in this study 10000 permutations) was

used, since the data were generally not normally distributed [42]. All the statistical analyses

were performed in Matlab v2011.

Functional connectivity. For each frequency band the global average PLI results between

groups were compared with a permutation test. The value used for significance was set to

P< 0.05. If there was a significant difference in the global average PLI in a specific frequency

band, we performed posthoc analysis at the local level. The regional average PLI and the

regional PLI were tested between groups using permutation tests and the significance level for

the obtained P values was set to 0.01.
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Brain graph topology. For each frequency band between-group differences in Ĉw; L̂w,

and S were tested using a permutation test. The value used for significance was set to P < 0.05

and a correction for multiple comparisons over the three measures was performed by the false

discovery rate [43].

The comparison of MST trees was carried out at two different levels. First, for each fre-

quency band tree dissimilarity measures between groups were compared with a permutation

test. The value used for significance was set to P < 0.05. Then, if there was a significant differ-

ence in dissimilarity in a specific frequency band, we performed posthoc analysis on topologi-

cal properties of MSTs. Between-group differences in k�max, e�avr, BC�max, l�(v), κ, D� and Th

Table 1. Measures on a tree with the set of vertices V = {v1,v2,. . .,vn}.

Symbol Definition

k�(v) Normalized vertex degree. The number of neighbors of v, normalized by the maximal possible number of

neighbors: k�ðvÞ ¼ 1
n kðvÞ= .

k�max Maximum normalized vertex degree. The greatest normalized vertex degree of all vertices:

k�max ¼ maxv2Vk�ðvÞ.
e(v) Vertex eccentricity. The distance of a vertex v to a vertex farthest from v: eðvÞ ¼ maxu2Vdðu; vÞ.
e�(v) Normalized vertex eccentricity. The eccentricity of v, normalized by the maximal possible distance:

e�ðvÞ ¼ 1=n � 1
eðvÞ.

e�avr Average normalized vertex eccentricity. The average normalized vertex eccentricity of all vertices:

e�avr ¼ 1=n
X

v2V

e�ðvÞ.

BC(v) Vertex betweenness centrality. Measures the extent to which a given vertex is situated in paths between

pairs of vertices:

BCðvÞ ¼
X

u;w 2 V

u 6¼ w 6¼ v

sðu;wjvÞ
sðu;wÞ

;

where σ(u, w|v) is the number of all shortest paths between u and w passing v, and σ(u, w) is the number of

all shortest paths between u and w.

BC�(v) Normalized vertex betweenness centrality. The betweenness centrality of v, normalized by the maximal

possible betweenness centrality: BC�ðvÞ ¼ 2=ðn � 1Þðn � 2Þ
BCðvÞ.

BC�max Maximum normalized betweenness centrality. The greatest normalized vertex betweenness centrality of all

vertices: BC�max ¼ maxv2VBCðvÞ.
l� Normalized leaf fraction. The number of leaves, normalized by the maximal possible number of leaves:

l� ¼ l
n � 1= .

κ Degree divergence. Measures the broadness of the degree distribution:

k ¼

X

v2V
kðvÞ2

X

v2V
kðvÞ2

.

D Diameter. The greatest distance between any two vertices: D ¼ maxu;v2Vdðu; vÞ.

D� Normalized diameter. The diameter, normalized by the maximal possible diameter: D� ¼ 1=n � 1
D.

Th Tree hierarchy. Measures the balance between diameter reduction and overload prevention:

Th ¼
l�=2BC

� max.

Two extreme situations are of particular interest in the topological characterization of a tree on n vertices; a star
graph consisting of a central vertex of degree n − 1 and n − 1 leaves on the one hand, and a path graph consisting of n
− 2 vertices of degree 2 and two leaves on the other hand. A star graph has centralized topology and the smallest

possible diameter of 2, thus sharing the basic characteristics of random graph topology. In contrast, a path graph has

decentralized topology and the largest possible diameter of n − 2, thus sharing the basic characteristics of regular

graph topology.

https://doi.org/10.1371/journal.pone.0230099.t001
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were tested using permutation tests. The value used for significance was set to P< 0.05, and a

correction for multiple comparisons over the seven MST measures was performed by the false

discovery rate.

Classification

A linear discriminant analysis [44] was used to classify patients versus controls. The following

were used as features for the analysis: (i) significant between-group differences of local func-

tional connectivity (extracted from those frequency bands where there were significant differ-

ences between groups in the global average PLI), (ii) significant between-group differences of

brain graph topology and (iii) significant between-group differences of cognitive subtest

scores. First, the set of cognitive tests and the set of local functional connectivity, together with

topology measures, were used individually, and classification was performed utilizing these

features. Then, we combined features from both sets to verify whether the combined classifica-

tion is better than prediction obtained on the individual set. To overcome the overfitting prob-

lem due to the many predictors, we used a stepwise variable selection method in each model.

A leave-one-out cross-validation method was used to estimate the performance of each model.

The performance was evaluated using accuracy, sensitivity (defined as the number of correctly

classified MCI patients divided by the number of all MCI patients) and specificity (defined as

the number of correctly classified healthy controls patients divided by the number of all

healthy controls). The classification was performed using SPSS v25. In Fig 1, we summarized

the framework of our proposed method.

Results

The demographic characteristics of participants and individual cognitive tests in each battery

are given in Table 2.

Functional connectivity

Global analysis. The global average PLI was significantly lower in MCI patients in the delta

band; see Table 3.

Local analysis. In subsequent connectivity analysis, the regional average PLI values of 12

regions were overall lower in patients in the delta band, with significance for the RF region (P
= .0014). Also, the regional PLI values between pairs of the 12 regions of interest were overall

lower in MCI participants, reaching significance for pairs between RF and LC regions and RF

and RP regions (P = 0.0036 and P = 0.0020, respectively); see Fig 2.

Graph theory analysis

Traditional measures. No significant differences between patients and controls were

found for Ĉw; L̂w, and S, see Table 4.

Tree dissimilarity. A significant MST dissimilarity between patients and controls was

found in the delta band (P = 0.0015).

Minimum spanning tree measures. For the delta band, k�max, l� and κw were significantly

lower in patients. Group effects on e�avr and D� were significantly higher in patients. Results

and statistics are summarized in Table 5.

Classification

Given the significant between-group differences of local functional connectivity, MST topol-

ogy in the delta band and the significant between-group differences of cognitive tests, we tested
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whether these measures could be used as features to classify MCI patients versus controls

using linear discriminant analysis. The outcomes for all three classification models, namely the

one based on cognitive tests, the one based on functional connectivity and MST topology

Fig 1. Schematic illustration of the proposed method in this study. (A) For each subject, resting-state EEG data were acquired. (B) A

functional connectivity matrix was obtained from the EEG time-series data by computing the phase lag index. From the connectivity matrix,

global and local connectivity measures were derived. (C) The connectivity matrix uniquely represents a brain graph, from which traditional

measures were computed. (D) A minimum spanning tree of the brain graph was constructed and several tree measures were computed. (E)

Two laptop computerized neuropsychological screening batteries, CogState and NIH Toolbox-Cognition were chosen to assess specific aspects

of cognitive functioning. (F) Statistical differences between controls and MCIs in functional connectivity, traditional measures, MST measures,

and cognitive tests were computed. (G) The obtained significant between-group differences were used as features in a stepwise linear

discriminant analysis.

https://doi.org/10.1371/journal.pone.0230099.g001

PLOS ONE Effective differentiation of mild cognitive impairment by brain graph analysis and computerized testing

PLOS ONE | https://doi.org/10.1371/journal.pone.0230099 March 16, 2020 9 / 19

https://doi.org/10.1371/journal.pone.0230099.g001
https://doi.org/10.1371/journal.pone.0230099


measures, and the combined one are shown in Table 6. The performance of each model is

given in Table 7. Combined features classified our participants as controls vs MCI noticeably

better than features from single cognitive or EEG domains (86.5% vs 72.2%, 77.5%, respec-

tively). Box plots of discriminant score distributions are shown in Fig 3.

Discussion

We addressed the question of whether we could detect differences in EEG functional connec-

tivity and brain graph organization between MCI and healthy controls by applying the PLI

and the MST analysis. We were able to identify global and local differences in functional con-

nectivity and MST topology between the two groups. Then, we showed that these abnormali-

ties in combination with cognitive tests, if used as features in a classification model, can

Table 2. Demographic characteristics and computerized neuropsychological tests of control and mild cognitive impairment subject groups.

Controls (N = 27) MCI (N = 13) SD

Mean SD Mean SD P value�

Age (years) 73.0741 6.9333 73.6154 5.9096 0.8848

Years of education 15.1111 2.2927 14.2308 2.2418 0.2563

Gender (% female) 93% - 85% - -

CogState test

DET 402.09 92.22 444.39 166.939 0.6614

IDN 577.57 99.99 693.81 178.90 0.0241

ONB 0.94 0.06 0.85 0.09 0.0031

OCL 0.9828 0.08 0.59 0.09 0.0067

Toolbox tests

PVT 58.16 8.08 53.10 10.63 0.1047

ORRT 56.05 6.29 52.23 6.13 0.0855

LSWMT 51.73 9.82 45.36 6.20 0.0336

DCCST 56.15 9.94 48.76 12.30 0.0231

PSMT 48.33 12.43 40.13 5.51 0.0426

PCPST 50.55 12.87 43.23 9.75 0.1155

DET, Detection Task; IDN Identification; ONB, One Back-Working Memory; OCL, One Card Learning; PVT, Picture Vocabulary Test; ORRT, Oral Reading

Recognition Test; SWMT, List Sorting Working Memory Test; DCCST, Dimensional Change Card Sorting Test; PSMT, Picture Sequence Memory Test; PCPST, Pattern

Comparison Processing Speed Test; SD, standard deviation; MCI, mild cognitive impairment.

�The P value was obtained using Mann-Whitney U-tests for independent samples.

Bold = significant difference between the two groups.

https://doi.org/10.1371/journal.pone.0230099.t002

Table 3. Group descriptive for the global average PLI measure.

Frequency band Controls (N = 27) MCI (N = 13)

Mean SD Mean SD P value

delta 0.1399 0.0081 0.1344 0.0098 0.0439

theta 0.1329 0.0250 0.1267 0.0189 0.4038

lower alpha 0.2433 0.0963 0.2048 0.0609 0.1496

upper alpha 0.1604 0.0371 0.1713 0.0596 0.5609

beta 0.0738 0.0091 0.0725 0.0087 0.6770

SD, standard deviation; MCI, mild cognitive impairment.

Bold = significant difference between the two groups.

https://doi.org/10.1371/journal.pone.0230099.t003
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predict best whether a person belongs to the MCI or healthy control groups with high

accuracy.

Fig 2. Schematic illustration of statistical analyses for regional average PLI (non-parametric permutation test; the significant difference is indicated by

red region) and regional PLI (non-parametric permutation test; the significant difference is indicated by red line) in the delta band. The regional average

PLI significantly decreased over the right frontal region in MCI patients. Also, the regional PLI significantly decreased between the right frontal and left central,

and between right frontal and right parietal regions.

https://doi.org/10.1371/journal.pone.0230099.g002
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We found that the global average PLI was decreased in MCI patients in the delta band.

Post-hoc analysis revealed that the regional average PLI significantly decreased over the right

frontal region in patients, and the regional PLI decreased between the right frontal and left

central, and between right frontal and right parietal regions. Parietal and frontal cerebral areas

are particularly sensitive to brain changes very early on among participants with cognitive

Table 4. Group descriptive for traditional measures.

Controls (N = 27) MCI (N = 13)

Mean SD Mean SD P value

delta

Ĉw 1.0061 0.0041 1.0043 0.0023 0.0751

L̂w 1.0004 0.0013 1.0001 0.0004 0.2166

S 1.0056 0.0031 1.0042 0.0020 0.0770

theta

Ĉw 1.0090 0.0087 1.0060 0.0047 0.1957

L̂w 1.0015 0.0040 1.0005 0.0007 0.3387

S 1.0075 0.0063 1.005 0.0040 0.2462

lower alpha

Ĉw 1.0198 0.0164 1.0152 0.0145 0.3814

L̂w 1.0128 0.0248 1.0029 0.0111 0.0903

S 1.0071 0.0145 1.0125 0.0163 0.3479

upper alpha

Ĉw 1.0121 0.0148 1.0136 0.0171 0.8035

L̂w 1.0071 0.0219 1.0096 0.0250 0.6036

S 1.0052 0.0097 1.0042 0.0088 0.7714

beta

Ĉw 1.0121 0.0151 1.0080 0.0054 0.2514

L̂w 1.0053 0.0127 1.0010 0.0018 0.1491

S 1.0068 0.0035 1.0070 0.0055 0.8989

Ĉw, normalized average weighted clustering coefficient; L̂w, normalized average weighted characteristic path length; S, small-world index; MCI, mild cognitive

impairment.

https://doi.org/10.1371/journal.pone.0230099.t004

Table 5. Minimum spanning tree descriptives in the delta band.

Measure Controls (N = 27) MCI (N = 13)

Mean SD Mean SD P value

k�max 0.1769 0.0715 0.1232 0.0284 0.0017

e�avr 0.1550 0.0372 0.1817 0.0221 0.0102

BC�max 0.7341 0.0956 0.6905 0.0721 0.1194

κ 3.6837 0.9523 3.0417 0.2523 0.0015

D� 0.2010 0.0494 0.2344 0.0326 0.0198

l� 0.5720 0.0517 0.5324 0.0314 0.0054

Th 0.3937 0.0458 0.3895 0.0471 0.7874

k�max, maximum normalized vertex degree; e�avr, average normalized vertex eccentricity; BC�max, maximum normalized vertex betweenness centrality; κ, degree

divergence; D�, normalized diameter; l�, normalized leaf fraction; Th, tree hierarchy; MCI, mild cognitive impairment.

Bold = significant after correcting for the seven global minimum spanning tree measures by false discovery rate.

https://doi.org/10.1371/journal.pone.0230099.t005
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impairment. Our findings are in agreement with previous EEG studies. In MCI patients the

decrease of synchronization likelihood in the delta band was most apparent between the right

fronto-parietal regions [45]. Similar results were also reported in amnestic MCI patients using

PLI [11]. The current study thus supports the hypothesis that MCI may be viewed as a discon-

nection syndrome, as well.

Besides the functional connectivity, we also studied brain graph topology. We started with

two traditional graph measures. The simplest and most commonly used measure that reflects

global integration in a graph is the characteristic path length. It is defined as the minimum

number of edges required to traversed from one vertex to another, on average [19]. Another

traditional measure is the clustering coefficient that describes local specialization in a graph. It

measures the average probability that two vertices, having a common neighbor, are themselves

connected by an edge. These two measures are sufficient to distinguish random graphs from

regular graphs. In random graphs, the characteristic path length and the clustering coefficient

are low, whereas regular graphs are associated with long characteristic path length and high

clustering coefficient [46]. Previous studies have revealed that healthy brain graphs show the

topology of small-world graphs [2, 47, 48]; the class of graphs that lies between random and

regular graphs. On the one hand, small-world graphs possess a high level of local integration,

such as regular graphs, while on the other hand, a high level of global efficiency, such as ran-

dom graphs. We found that brain graphs of MCI and healthy controls all showed the small-

world property and that the clustering coefficient and the characteristic path length did not

differ between the two groups. Other studies, however, have presented controversial results in

terms of the characteristic path length and the clustering coefficient. For example, these two

measures did not distinguish between groups in a recent magnetoencephalography study as

well [25]. Next, a recent diffusion tensor imaging study found longer characteristic path length

and a higher clustering coefficient in the amnestic MCI group [18], indicating more regular

topology. Similarly, a functional brain graph study reported abnormally increased characteris-

tic path length with preserved clustering coefficient in amnestic MCI [14]. On the contrary,

another magnetoencephalography study found shorter characteristic path length in MCI

patients and thus a shift towards more random organization [49].

Table 6. Wilks’ λ and selected features of linear discriminant analyses.

Model Wilks’ λ Χ2 df P value Selected features

Cognitive tests 0.719 10.394 1 0.001 ONB

Local functional connectivity and MST topology measures 0.587 19.079 2 < .001 k�max

Combined measures 0.458 23.821 3 < .001 OCL

RF-RP regional PLI

k�max

ONB, One Back-Working Memory; RF-RP regional PLI, regional PLI between right frontal and right parietal regions; k�max, maximum normalized vertex degree, OCL,

One Card Learning.

https://doi.org/10.1371/journal.pone.0230099.t006

Table 7. Overview of classification results.

Model Accuracy Sensitivity Specificity

Cognitive tests 0.722 0.417 0.875

Local functional connectivity and MST topology measures 0.775 0.538 0.889

Combined measures 0.865 0.667 0.96

https://doi.org/10.1371/journal.pone.0230099.t007
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In addition to traditional graph analysis, we also used the MST approach to characterize

brain graph topology. Our results revealed changes in a tree dissimilarity between patients

with MCI and controls in the delta band. Subsequent post-hoc analysis showed lower vertex

degree, degree divergence and leaf fraction, and higher average vertex eccentricity and diame-

ter for MCI patients, reflecting a less integrated graph topology in this frequency band. The

results showed that the MST topology of MCI patients tends to deviate from a more central-

ized star-like topology towards a more decentralized path-like topology and that the MST

approach is more sensitive to detect the subtle differences between healthy and MCI groups

than the traditional graph approach.

An interesting consideration that is relevant to the interpretation of our findings is the rela-

tionship between MST measures and traditional graph measures. To date, the empirical evi-

dence has been somewhat limited, but studies that compared MST measures to the traditional

ones provided contradictory results, indicating that topological changes of MST cannot be eas-

ily explained in terms of changes in the characteristic path length and the clustering coefficient.

A study of brain graphs in children identified that a more path-like MST with longer diameter

and smaller leaf fraction relates to a more regular graph topology with longer characteristic

path length and higher clustering coefficient, while a more star-like MST with shorter diameter

and higher leaf fraction relates to a more random graph topology with shorter characteristic

path length and smaller clustering coefficient [50]. This is in agreement with a simulation

study which demonstrated that the characteristic path length and the clustering coefficient

have a strong positive correlation with the MST diameter, but both have a strong negative

Fig 3. Box plots of each classification model illustrate the distribution of the discriminant function scores for the control and MCI groups.

https://doi.org/10.1371/journal.pone.0230099.g003
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correlation with the MST leaf fraction when the underlying graph topology is changed from a

random to a regular one [51]. More precisely, the diameter was short and the leaf fraction was

high for MST derived from random graph topology, while the diameter increased and the leaf

fraction decreased as graph topology became more regular. However, a study on graph topol-

ogy in Parkinson’s disease gives evidence for the contrary, namely a more path-like MST with

longer diameter and smaller leaf fraction corresponded to a more random graph topology

with shorter characteristic path length and smaller clustering coefficient [23]. For this reason,

we performed an additional analysis to check whether the strong correlations reported in [51]

are evident in our data (S1 Table). We found that the characteristic path length and the diame-

ter were positively correlated but not significant, while the clustering coefficient and the diam-

eter were strongly negatively correlated which is not in agreement with Tewarie and co-

workers [51]. Moreover, the characteristic path length and the leaf fraction were positively cor-

related but not significant, while the clustering coefficient and the leaf fraction were strongly

positively correlated which is again in conflict with Tewarie and co-workers [51]. A possible

reason for this is that MST does not contain cycles, and so there is probably no direct relation-

ship to the clustering coefficient. Consequently, our significant findings in MST parameters

cannot be simply compared with studies based on traditional graph measures, and therefore

we cannot conclude that our results show a more regular topology in the MCI group.

By combining cognitive tests with measurements of functional connectivity and MST topol-

ogy, the prediction accuracy of the model was improved by almost 10% compared to a single

approach. It is not at all surprising that One Card Learning, the regional PLI between right

frontal and right parietal regions and degree divergence were found to be the most important

predictors for the equation. First, the regional PLI measures functional connectivity between

different regions of the brain. As already mentioned, various studies have confirmed that func-

tional connectivity is reduced in MCI and AD patients compared to controls. Next, One Card

Learning is the primary learning measure included in the CogState Brief Battery. Learning

measures are the primary clear areas of impairment noted in patients with MCI and going on

to develop AD. In this case, no measures from the NIH Toolbox-Cognition came into play,

most likely because One Card Learning explained the primary difference across the groups in

terms of learning impairment. Then, the degree divergence is a measure that emphasizes the

existence of high degree vertices. A loss of such vertices is commonly observed in neurological

disorders [52]. Moreover, the importance of One Card Learning may be highlighting the asso-

ciations not only found in terms of frontal connections but also highlighting the finding of

lower degree divergence in MCI patients indicating more linear relationships in those patients.

Last but not least, these three selected features came from three different domains, further sug-

gesting that it is promising to combine measurements of functional connectivity, graph topol-

ogy and cognition together for diagnosing MCI.

Our study has several strengths. First, we used the PLI as a measure of functional connectiv-

ity. The PLI has been shown to reduce the effects of volume conduction and active reference

electrodes [39]. Second, to identify brain graph topology in MCI and control African Ameri-

can elders, we applied both the traditional measures, which are commonly used in the litera-

ture, and the MST approach that allows unbiased identification of graph changes. Also, our

study indicates that the MST approach is sensitive enough to detect differences between

healthy and MCI groups and supports previous research [25]. Third, statistical results in this

study were assessed using permutation tests together with the false discovery rate for multiple

comparisons. In this way, we achieved more reliable results.

The current report should be interpreted not only in the context of its strengths but also in

the context of possible limitations. This convenience sample was recruited from ostensibly

normal controls in the community (with memory self-concerns) and actually, the finding of
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the high percentage of MCI in the population was not expected. Additional research will be

needed to replicate our findings on other ethnic representative samples of non-African Ameri-

cans and may provide opportunities to examine additional factors relevant to differences in

cognitive aging. In this regard to an additional limitation, within our sample of older African

Americans, 90% were females. Unfortunately, this is a common issue in research [53].

In conclusion, our findings demonstrated that African American elders in a community

setting find EEG and computerized testing acceptable and results are promising in terms of

differentiating between healthy controls and persons with MCI. Utility in identifying persons

at risk for MCI and the cognitive decline appears more sensitive when both electrophysiologi-

cal and objective cognitive test measures are combined. This procedure may be especially

important when considering a community sample, where individuals are more reluctant to

take part in studies with large demands of time, as well as being potentially intrusive in terms

of their evaluation approaches. Basic EEG and sensitive computer-based cognitive assessments

may be critical in screening large numbers of persons living in the community to highlight

those for whom more costly and complex amyloid and tau imaging approaches would be

appropriate. Also, our approach holds much promise for its ability to identify patients who

may be good candidates for interventional clinical trials for MCI and neurodegenerative dis-

ease while also screening out healthy controls without clear cognitive impairment.
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