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Scope: As a prebiotic, inulin may have a protective effect on glucose metabolism.
However, the mechanism of inulin treatment on glucose intolerance in offspring exposed
to a maternal high-fat (HF) diet is still not clear. Here, we examined the hepatic DNA
methylation profile to determine how maternal inulin supplementation modified glucose
metabolism in offspring mice.

Procedures: Female mice were fed a HF diet, control diet (CON), or a HF diet with
inulin supplementation (HF-inulin) during gestation and lactation. Upon weaning, pup
livers were obtained. A hepatic genome DNA methylation array was performed.

Results: Pups exposed to a maternal HF diet exhibited glucose intolerance and
insulin resistance. Maternal inulin treatment moderated glucose metabolism. A DNA
methylation array identified differentially methylated regions associated with 970
annotated genes from pups exposed to a HF diet in response to maternal inulin
treatment. In particular, the wingless-type MMTV integration site family member 5A
(Wnt5a) gene was hypermethylated, and the phosphatidylinositol-4-phosphate 3-kinase
catalytic subunit type 2 alpha (Pik3c2a), phosphatidylinositol-4-phosphate 3-kinase
catalytic subunit type 2 beta (Pik3c2b), and phosphoinositide-3-kinase regulatory
subunit 2 (Pik3r2) genes were hypomethylated in inulin-treated pups. Consistently,
hepatic Wnt5a gene expression was reduced and Pik3c2a, Pik3c2b, and Pik3r2 gene
expression were increased in the inulin group.

Conclusion: Maternal inulin treatment improved glucose intolerance by changing
DNA methylation and gene expression of Wnt5a and Pi3k in mice exposed to a
maternal HF diet.

Keywords: prebiotics, methylation, epigenetics, high fat diet, nutrition in utero

INTRODUCTION

Diabetes and its complications have become a major cause of death worldwide. Type 2 diabetes
(T2D) results in great health and social burdens both in developing and developed countries. The
T2D population has grown rapidly in recent years. Approximately 425,000 patients are diagnosed
with T2D each year. In total, the global population of patients affected by T2D has already reached

Frontiers in Physiology | www.frontiersin.org 1 February 2020 | Volume 11 | Article 70

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.00070
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2020.00070
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.00070&domain=pdf&date_stamp=2020-02-07
https://www.frontiersin.org/articles/10.3389/fphys.2020.00070/full
http://loop.frontiersin.org/people/584942/overview
https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00070 February 6, 2020 Time: 16:33 # 2

Zhang et al. Maternal Inulin Offspring Glucose Methylation

415 million. Moreover, this number is estimated to reach 642
million in 2045 (Jaacks et al., 2016). Researchers have tried
to explain the reason for the sharp increase in T2D. Genetic
factors are important for the incidence of T2D. However, these
factors cannot explain the incidence entirely. Environmental and
lifestyle conditions also contribute substantially to this large
increase in the rate of T2D (Dendup et al., 2018). In addition
to adult life environmental factors (lifestyle), increasing evidence
has shown that early-life living conditions also result in the
incidence of metabolic disease (Vaiserman, 2017; Estampador
and Franks, 2018; Zimmet et al., 2018). Research results from
both monozygotic twin studies (Yajnik, 2013) and Pima Indians
(Dabelea et al., 2000) have validated this idea.

Increasing evidence indicates that epigenetic regulation plays
an important role in the linkage between the early environment
and the incidence of metabolic diseases in later life (Bianco-
Miotto et al., 2017). Abundant studies support epigenetic change
as an important factor in the occurrence and development
of metabolic diseases, such as obesity and T2D (Bansal and
Simmons, 2018; Cheng et al., 2018). In 1992, Professors Hales
and Barker raised the “thrifty phenotype” hypothesis (Hales and
Barker, 1992). Until now, accumulating evidence in human and
animal experiments have supported this hypothesis (Ravelli et al.,
1976; Begum et al., 2012). Recent ideas have focused on the
idea that over-nutrition and under-nutrition in early life cause
major tissue and organ dysfunction in the fetal period and lead to
metabolic dysfunction in adults, including effects on pancreatic β

cells and adipose tissue (Godfrey and Barker, 1995; Tarry-Adkins
and Ozanne, 2011). Both low birth weight (LBW, <2,500 g) and
high birth weight (HBW, >4,000 g) will increase the risk of T2D
in adults (Palatianou et al., 2014).

In recent years, scientists have found that epigenetic changes
play a central role in the mechanism of early programing
of metabolic diseases (Vaiserman et al., 2009; Davegardh
et al., 2018; Szabo et al., 2018). Through developmental and
differential processes, the epigenome may change dramatically.
Epigenetic changes usually constitute DNA methylation, histone
modification, and microRNA (miRNA) profile changes. DNA
methylation is a phenomenon of the addition of a methyl group
at the 5th position of the cytosine ring (Elhamamsy, 2016).
Methylation in gene promoter regions usually inhibits gene
transcription (Yin et al., 2017).

Prebiotics selectively stimulate the growth and/or activity
of beneficial bacteria and have positive effects on the host
gut tract. Prebiotics can reduce inflammation, improve gut
permeability, and stimulate the growth of beneficial bacteria,
including Bifidobacterium and Lactobacillus, in mice and human
subjects (Roberfroid and Delzenne, 1998; Cani et al., 2009).

As a prebiotic, inulin is naturally present in a large variety of
plants, including chicory. Inulin extracted from chicory includes
a series of fructose molecules, which have 2–60-unit degrees
of polymerization (DPs). Inulin is not digested in the human
gastrointestinal system, but is fermented by gut bacteria. Through
fermentation, the end-products are lactate and short-chain fatty
acids (SCFAs), including acetate (Bornet, 1994; McBain and
Macfarlane, 1997). Both human and animal experiments have
shown that inulin has beneficial effects on metabolism, such

as inhibiting increases in body weight and fat mass, improving
blood glucose control, reducing inflammation, and increasing
the abundance of Bifidobacteria in the gut (Delzenne et al.,
2013). Moreover, inulin can increase satiety (Cani et al., 2005;
Cani et al., 2006a) and increase glucagon-like peptide-1 (GLP-
1) (Cani et al., 2006b), which stimulates insulin secretion after
an oral glucose load, activates pancreatic β-cell proliferation, and
inhibits pancreatic β-cell apoptosis (Meier and Nauck, 2005).
In prediabetic subjects (Guess et al., 2016), individuals with
type 1 diabetes (T1D) (Ho et al., 2016) and T2D patients (Liu
et al., 2017), inulin-type fructans have been shown to moderate
glucose intolerance.

Recently, possible mechanisms involving the gut microbiota
and epigenetic moderation in human metabolic disease have
been addressed (Remely et al., 2015). The free fatty acid
receptor 3 (FFAR3) gene is hypomethylated in obese and
T2D patients; moreover, the abundance of Faecalibacterium
prausnitzii was significantly reduced (Remely et al., 2014).
In pregnant women, blood DNA methylation patterns are
associated with gut microbiota profiles (Kumar et al., 2014).
The Firmicutes:Bacteroidetes ratio and the abundance of
lactic acid bacteria are higher in T2D patients than in
lean controls, which is accompanied by hypomethylated
levels of inflammatory molecules such as the Toll-like
receptor 2 (Tlr2) and Tlr4 genes (Remely et al., 2015).
However, the mechanism of DNA methylation moderation
in the effect of maternal prebiotic supplementation on pups
is still lacking.

Liver is the major organ in glucose metabolism. There
are numerous enzymes and metabolic reaction occurred in
liver (Petersen et al., 2017). Herein, inulin was investigated to
evaluate the effect of prebiotic supplementation in utero on
DNA methylation status in pup livers. We hypothesized that
maternal prebiotic supplementation would lead to beneficial
DNA methylation shifts in pups exposed to an intrauterine high-
fat (HF) diet.

MATERIALS AND METHODS

Animal Treatments and Diets
All experiments were performed in accordance with the Guide
for the Care and Use of Laboratory Animals, 8th ed., 2011, using
protocols approved by the Animal Care Committee of Peking
Union Medical Hospital (Permit Number: MC-07-6004). Five-
week-old female C57BL6/J mice were housed under a constant
12-h light and dark cycle at an ambient temperature of 23◦C
with free access to food and water. A total of 30 female mice
were randomly assigned to a control American Institute of
Nutrition-93G (AIN-93G) diet (CON, n = 10; kcal%: 10% fat,
20% protein, and 70% carbohydrate; 3.85 kcal/gm; Research
Diets, Inc.) (Reeves et al., 1993) or a HF diet (HF, n = 20;
kcal%: 45% fat, 20% protein, and 35% carbohydrate; 4.73 kcal/gm;
Research Diets, Inc.). The AIN-93G diets contain 50 g wood
fiber/kg diet as the fiber source (Reeves, 1997). After 4 weeks,
the mice were mated with males. The onset of pregnancy was
determined by the presence of a vaginal plug. Pregnant mice
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in the HF group were randomly divided into the HF group
(continued to be fed a HF diet, n = 10) or the HF-inulin
group [HF diet with 10% wt/wt inulin supplement (VilofTM

Soluble Dietary Fiber; BAHEAL Medical Inc., Qingdao, China
and Fengning Ping’an High-tech Industrial Co., Ltd., Heber,
China), n = 10]. For avoiding sex differences on the effect of
maternal inulin treatment on glucose metabolism (Yokomizo
et al., 2014), male pups were sacrificed by decapitation at
weaning (3-week-old). The livers were immediately frozen in
liquid nitrogen and stored at −70◦C. Figure 1 shows the
experimental protocol.

Body Weight and Fasting Blood Glucose
Analysis
Body weight was measured at 3 weeks of age in pups. Fasting
blood glucose was also measured (Contour TS glucometer, Bayer,
Hamburg, Germany).

Oral Glucose Tolerance Test
After fasting for 12 h, an oral gavage of glucose (2.0 g/kg body
weight) was given to each mouse. Blood glucose levels were
measured before and after glucose loading at 15, 30, 60, and
120 min. The area under the curve (AUC) of the oral glucose
tolerance test (OGTT) was calculated.

Serum Biochemical Measurements
After 12 h of fasting, blood samples were collected from
mice pups at 3 weeks of age. The serum fasting insulin
levels were assayed using a mouse insulin enzyme-
linked immunosorbent assay (ELISA) kit [Millipore,
Billerica, MA, United States, in duplicates, coefficient
of variability (CV) < 9%]. The Homeostasis Model of
Insulin Resistance (HOMA-IR) index was calculated
using the following formula: HOMA-IR = (fasting
insulin× fasting glucose)/22.5.

FIGURE 1 | Animal experiment design.

DNA Preparation and DNA Methylation
Microarray
Genomic DNA was extracted from the livers of the offspring
in the HF, and HF-inulin groups (n = 3 in each group)
using a DNeasy Blood & Tissue Kit (Qiagen, Fremont, CA,
United States). The integrity, purity, and concentration of
each DNA sample were assessed on a NanaDrop ND-1000
Spectrophotometer (Thermo Fisher Scientific Inc., Waltham,
MA, United States). Three micrograms of DNA were sonicated
into 100–500 bp fragments by using a Bioruptor sonicator
(Diagenode). One microgram of fragmented genomic DNA
was immunoprecipitated with a mouse monoclonal anti-
5-methylcytosine antibody (Diagenode). Then, 200 µL of
anti-mouse IgG magnetic beads were used to recover the
immunoprecipitated DNA fragments, which were incubated for
an additional 2 h at 4◦C with agitation. For DNA labeling,
1 µg of DNA from each sample was incubated for 10 min
at 98◦C with Cy5 [immunoprecipitated (MeDIP) samples] or
Cy3 (input samples) primers. Labeled DNA was hybridized
to the Arraystar Mouse ReqSeq Promoter Array (Arrarystar
Inc., Rockville, MD, United States). This array is designed to
investigate the epigenetic modifications and transcription factor
binding sites within RefSeq Gene promoter regions, including
22,327 gene promoter regions. Finally, arrays were washed and
scanned with an Agilent Scanner G2505C (Agilent Technologies,
Waldbronn, Germany).

Data Normalization and Analysis
From the normalized log2 ratio data, a sliding-window
peak-finding algorithm provided by NimbleScan v2.5 (Roche
NimbleGen Inc.) was applied to find the enriched peaks.
NimbleScan detects peaks by searching for at least two
probes above a p-value minimum cutoff (−log10) of 2 and
maximum spacing of 500 bp between nearby probes within
the peaks. To compare differentially enriched regions between
the HF-inulin group and the HF group, the log2 ratios were
averaged and then used to calculate M′ for each probe:
M′ = Average (log2MeDIP(HF−inulin)/Input(HF−inulin))−Average
(log2MeDIP(HF)/Input(HF)). The NimbleScan sliding-window
peak-finding algorithm was run on these data to find the
differential enrichment peaks (DEPs). The DEPs, identified
by the NimbleScan algorithm, were filtered according to the
following criteria: (1) At least one of the two groups has a
median log2 MeDIP/Input ≥ 0.3 and a median M′ > 0. (2)
At least half of the probes in a peak may have a CV ≤ 0.8 in
both groups. To separate strong CpG islands from weak CpG
islands, promoters were categorized into three levels: high
CpG promoters/regions (HCP, high CpG density promoter),
intermediate CpG promoters/regions (ICP, intermediate CpG
density promoter), and low CpG promoters/regions (LCP, low
CpG density promoter) (Weber et al., 2007).

Pathway and Bioinformatics Analysis of
Array Results
Differentially methylated genes (DMGs) were annotated using
Gene Ontology (GO) terms [biological process (BP), cellular
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component (CC), and molecular function (MF)] as well as KEGG
pathway enrichment using DAVID Bioinformatics Resources
6.71 (Dennis et al., 2003). An adjusted P-value < 0.01 for GO
term analysis and adjusted P-value < 0.05 for KEGG pathway
analysis after the Benjamini–Hochberg procedure is considered
as significant difference.

Bisulfite Sequencing PCR
Bisulfite sequencing PCR (BSP) primers were designed using
Methyl Primer Expression software 1.0 (Applied Biosystems,
Foster City, CA, United States), as shown in Table 1. Genomic
DNA extractions of the three groups (n = 10 in each
group) were performed using the same method mentioned
above. One microgram of DNA samples was converted using
an EZ DNA Methylation Kit (Zymo Research, Irvine, CA,
United States). The converted DNA was then amplified by PCR.
PCR products were purified using a QIAquick Gel Extraction Kit
(QIAGEN) and ligated to the pMD18-T Vector (Takara, Shiga,
Japan). The plasmids were then purified using the PureLink
Miniprep Kit (Invitrogen, Thermo Scientific Inc., Waltham, MA,
United States). A minimum of 10 clones from each mouse were
sequenced on the ABI 3730 sequence. Sequence analysis was
performed using QUMA (Kumaki et al., 2008).

RNA Isolation and Quantitative Real
Time-PCR Analysis
Hepatic RNA from three groups (n = 10 in each group) was
extracted using an RNeasy Mini Kit (Qiagen, Germantown, MD,
United States), and cDNA was synthesized using oligo-dT and
random primers (TaKaRa, Shiga, Japan). Quantitative real time-
PCR (qPCR) was performed using a SYBR green real-time PCR
master mix (Applied Biosystems, Foster City, CA, United States)
on the ABI 7900 detection system (Applied Biosystems, Foster
City, CA, United States). Gapdh was used as the internal control.
Primers are listed in Table 2.

Statistical Analysis
Prism 5.0 (GraphPad Software Inc., San Diego, CA,
United States) was used for all statistical analyses. Data are
presented as the mean± SEM. Comparisons between two groups

1http://david.abcc.ncifcrf.gov/

TABLE 2 | Primers for qPCR.

Gene Accession Primer sequences Production
number (from 5′ to 3′) size

Wnt5a NM_009524 F: 5′-GTTGCTCCGGCCCAGAAG-3′ 112

R: 5′-AGAAAAACGTGGCCAAAGCC-3′

Pik3c2a NM_011083 F: 5′-CAGTCGAAGCTCTCCTCAGC-3′ 132

R: 5′-AAATACCAGGACCTCACGCT-3′

Pik3c2b NM_001099276 F: 5′-GACTAGGCGATTCGGCGTTG-3′ 146

R: 5′-TGAGACAATAGCGCGAACGG-3′

Pik3r2 NM_008841 F: 5′-TGGAGTTCCTAGGACCCGTG-3′ 113

R: 5′-TGGGAGTATGTGGCCTGACT-3′

Wnt5a, wingless-type MMTV integration site family, member 5A; Pik3c2a,
phosphatidylinositol-4-phosphate-3-kinase catalytic subunit type 2 alpha; Pik3c2b,
phosphatidylinositol-4-phosphate-3-kinase catalytic subunit type 2 beta; Pik3r2,
phosphoinositide-3-kinase regulatory subunit 2.

were performed using Student’s t-tests. One-way ANOVA was
used to detect differences among comparison groups followed
by Tukey’s post hoc test for comparing groups. P < 0.05 was
considered statistically significant.

RESULTS

Maternal Inulin Supplementation
Ameliorated Body Weight, Blood
Glucose, and Insulin Resistance in
Offspring
Pups from HF dams exhibited a 22.5% higher bodyweight
at weaning (P < 0.01, Figure 2A). Inulin supplementation
decreased body weight at weaning (P < 0.01, Figure 2A).
Both serum fasting glucose levels and glucose levels from the
OGTT increased significantly in the HF group pups (P < 0.01,
Figures 2B,C). The AUC of the OGTT increased by 49.7%
(P < 0.01, Figure 2D). Compared with the HF group, fasting
blood glucose concentrations were lower in the HF-inulin
group pups (P < 0.01, Figure 2B). Serum insulin levels were
higher in the HF group pups than in the CON pups at
3 weeks of age (P < 0.01, Figure 2E). Glucose tolerance and
insulin resistance tests revealed decreased glucose tolerance
(P < 0.01, Figures 2C,D) and increased insulin resistance
(P < 0.01, Figure 2F) in the HF group pups, respectively.

TABLE 1 | Primers for bisulfite sequencing.

Gene Accession number Primer sequence (from 5′ to 3′) Production size CpG number

Wnt5a NM_009524 F: 5′-TATTTAGAGGTGTTTAGAAGTTTTGGAGTTTGGATTTTYGGTTTATTTAAAT-3′ 276 6

R: 5′-AACTACATTTACTAACACCTCTACAAAAAAAACCTCACTAACATAAATCCTA-3′

Pik3c2a NM_011083 F: 5′-TYGYGTTTAYGAGAAAGGTATGATTATTATGGGGTTTGGGTGTGATGTTTGGT-3′ 296 22

R: 5′-CTTACRATTACCTAATTTAAAATTTTAACCCCAAACCRCCCAAAAATTAACT-3′

Pik3c2b NM_001099276 F: 5′-GGAAAATGTTTGATATAGGTGTTTTAAGGGAGGTGTTYGGAGAAAATAATAT-3′ 311 9

R: 5′-AACAAATTATCRTCRTTTTCCAAACTAAAACCCCTTACTCTAAATCAAATAA-3′

Pik3r2 NM_008841 F: 5′-GTAATTTATTGAATTTGGATTTTGTGTAAGAGTAGTGAGTATGTTTAATTGTY-3′ 419 31

R: 5′-AAAAAACCRAACRACCTCAACTCCAAACCTTAAAAATTAACTCRAAAACCRC-3′

Wnt5a, wingless-type MMTV integration site family, member 5A; Pik3c2a, phosphatidylinositol-4-phosphate-3-kinase catalytic subunit type 2 alpha; Pik3c2b,
phosphatidylinositol-4-phosphate-3-kinase catalytic subunit type 2 beta; Pik3r2, phosphoinositide-3-kinase regulatory subunit 2.
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FIGURE 2 | The effect of maternal early inulin treatment on metabolic variables of male mice offspring. (A) Body weight at weaning; (B) fasting blood glucose; (C)
oral glucose tolerance test (OGTT); (D) area under curve (AUC) in OGTT; (E) serum insulin; (F) HOMA-IR. **P < 0.01 vs. CON group; ##P < 0.01 vs. HF group.
Values are mean ± SEM (n = 10). CON, control diet; HF, high-fat diet; HF-inulin, high-fat diet with 10% wt/wt inulin supplement.

Inulin supplementation ameliorated glucose tolerance (P < 0.01,
Figure 2D) and insulin resistance (P < 0.01, Figure 2F).

Maternal Inulin Supplementation
Affected Hepatic DNA Methylation in
Offspring
DNA methylation array data are available from the NCBI’s
Gene Expression Omnibus repository2 (GEO) under the series
accession number GSE136766. HF-inulin group and HF group
hepatic DNA methylation status were compared. A total of
1081 DMRs (970 annotated genes) were identified in 20
chromosomes (Figure 3), particularly on chromosomes 2, 4,
5, 7, 8, and 11. Among these DMRs, 582 (53.84%) were
located in HCP, 264 (24.42%) in ICP, and 235 (21.74%) in LCP
(Figure 3A). Five hundred sixty-two hypermethylated DMRs
(51.99%) and 519 hypomethylated DMRs (48.01%) were found

2http://www.ncbi.nlm.nih.gov/geo/

in the HF-inulin group compared with the DMRs of the HF
group (Figure 3B).

Maternal Inulin Supplementation
Affected Several Signaling Pathway in
Offspring Liver
Differentially methylated genes were annotated with GO
terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. The top five significant BPs in GO
terms were multicellular organism development, positive
regulation of transcription from the RNA polymerase II
promoter, dendrite development, negative regulation of
protein localization to the cell surface, and regulation
of multicellular organism growth (adjusted P < 0.01,
Supplementary Table 1).

The investigation of KEGG pathways demonstrated that
the top 14 significant pathways were HTLV-1 infection,
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FIGURE 3 | Differentially methylated promoters between HF-inulin group and HF group. (A) CpG density of differentially methylated promoters. (B) Chromosomal
distribution of differentially methylated promoters. Red, differentially hypermethylated promoters; green, differentially hypomethylated promoters. Classification of all
promoters with high (HCP, high CpG density promoter), intermediated (ICP, intermediate CpG density promoter), and low (LCP, low CpG density promoter) CpG
content.

proteoglycans in cancer, systemic lupus erythematosus,
ubiquitin-mediated proteolysis, amoebiasis, Chagas disease,
hippo signaling pathway, malaria, pathways in cancer, regulation
of actin cytoskeleton, intestinal immune network for IgA
production, nucleotide excision repair, WNT signaling pathway,
and Jak-STAT signaling pathway (adjusted P < 0.05, Figure 4
and Supplementary Table 2).

Maternal Inulin Supplementation
Activated Wnt5a Methylation and
Inhibited Pik3c2a, Pik3c2b, and Pik3r2
Methylation in Offspring Livers
To further validate the inulin supplementation-induced DNA
methylation changes described above, four DMGs associated
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FIGURE 4 | Top 14 significant KEGG pathways of differentially methylated genes between HF-inulin group and HF group (adjusted P < 0.05).

with the Wnt and Pi3k signaling pathway genes Wnt5a,
Pik3c2a, Pik3c2b, and Pik3r2 were selected for technical
validation using independent bisulfite sequencing in three
groups. Consistent with the methylation array results, the BSP
results showed that Wnt5a gene methylation was decreased
(P < 0.01, Figure 5A), while Pik3c2a, Pik3c2b, and Pik3r2
gene methylation was increased in mice in the HF group
(P < 0.01, Figures 5C,E,G). Inulin supplementation increased
Wnt5a gene methylation (P < 0.05, Figure 5A) and reduced

Pik3c2a, Pik3c2b, and Pik3r2 gene methylation (P < 0.05 or
P < 0.01, Figures 5C,E,G).

Maternal Inulin Supplementation
Changed Wnt5a, Pik3c2a, Pik3c2b, and
Pik3r2 Gene Expression in Offspring
In line with the alteration of DNA methylation, gene expression
analysis using qPCR showed reduced mRNA expression of
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FIGURE 5 | Validation of methylation array using bisulfite sequencing. Methylation ratio of Wnt5a (A), Pik3c2a (C), Pik3c2b (E), and Pik3r2 (G) in different groups and
relative gene expression of Wnt5a (B), Pik3c2a (D), Pik3c2b (F), and Pik3r2 (H) in different groups. **P < 0.01 vs. CON; #P < 0.05, ##P < 0.01 vs. HF. Values are
mean ± SEM (n = 10). CON, control diet; HF, high-fat diet; HF-inulin, high-fat diet with 10% wt/wt inulin supplement.

Wnt5a and increased mRNA expression of Pik3c2a, Pik3c2b,
and Pik3r2 in mice exposed to HF-inulin compared with mice
in the HF group (P < 0.01, Figures 5B,D,F,H). Together, our
results suggested that inulin supplementation might alter Wnt5a,
Pik3c2a, Pik3c2b, and Pik3r2 gene methylation and mRNA
expression in mouse pups from HF-exposed dams.

DISCUSSION

In this study, we investigated the effect of maternal inulin
treatment on offspring glucose metabolism at weaning. The
results revealed that a maternal HF diet induced early-onset
diabetes among male offspring at weaning. Maternal inulin
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FIGURE 6 | Potential effect of inulin treatment reversed epigenetic changes on gene expression affected by maternal high fat diet. Maternal high fat diet led
hypomethylated Wnt5a, hypermethylated Pik3c2a, Pik3c2b, and Pik3r2 in pup livers. Maternal inulin reversed these epigenetic changes in pup livers exposed to
maternal high fat diet.

treatment moderated glucose intolerance and insulin resistance
caused by maternal HF diet exposure. Several studies had drew
the similar conclusion about the benefit of inulin (Hallam
and Reimer, 2014; Dennison et al., 2017). However, recent
one study found that C57BL/6J mice fed a HF diet could be
susceptible to liver cancer upon consumption of inulin (Singh
et al., 2018). In clinical trials, it did not show adverse effects
of inulin on liver function in human (Wang et al., 2019).
The reason might be the duration of inulin treatment and HF
diet. In Singh’s study, mice fed with HF diet and inulin for
6 months.

The “first 1000 days” concept states that the intrauterine
year and the first two years of a child’s life is a critical stage
of human development and health that impacts the rest of the
child’s life (Berg, 2016). Numerous interventions have shown
the bifidogenic effects of inulin in infants and children (Meyer
and Stasse-Wolthuis, 2009; Roberfroid et al., 2010), and inulin is
widely applied in infant formula today for its prebiotic properties
and more recently in milk for toddlers. Inulin supplementation
during the first 1000 days has an important effect on the
health of the infant, such as effects related to infections and
the immune system (Thorburn et al., 2015; Firmansyah et al.,
2016). Moreover, the potential of inulin in metabolic programing
has also been addressed. Maternal dietary inulin affects the
intestinal microbiota in suckling piglets (Passlack et al., 2015).
Postnatal inulin intake in offspring exposed to maternal protein
restriction moderated insulin resistance in male rat offspring
(Hallam and Reimer, 2014). Additionally, a maternal high-
prebiotic-fiber diet could reduce the incidence of obesity induced
by a HF diet in adulthood (Hallam and Reimer, 2013). Unlike the
postnatal period, few studies have focused on the effect of inulin
treatment in utero on infants. Maternal oligofructose treatment
in obese female rats during gestation and lactation reduced

offspring blood glucose in 17-week-old rats through the gut
microbiota (Dennison et al., 2017). Metabolite production by the
gut microbiome may affect epigenetic changes. Butyrate is a SCFA
and is a potent inhibitor of histone deacetylases (HDACs) (Davie,
2003). Some recent research has focused on the linkage of the
gut microbiota and host epigenetic modification. In a pilot study
among pregnant women, the dominant abundance of Firmicutes
or Bacteroidetes in the gut microbiota was associated with
differential blood DNA methylation linked to lipid metabolism
and obesity (Kumar et al., 2014).

In this study, maternal inulin treatment increased Wnt5a
gene methylation expression in the livers of mice exposed to a
maternal HF diet. Moreover, Wnt5a gene expression decreased
in the inulin group. Some recent research revealed a direct
effect of disturbed WNT signaling on metabolic diseases, such
as insulin resistance, inflammation, and T2D (Kikuchi et al.,
2012). Schulte et al. (2012) showed that serum WNT5A increased
dramatically in obese subjects with low-grade inflammation via
non-canonical signaling. In rats with T2DM associated with non-
alcoholic steatohepatitis (NASH), Wnt5a mRNA and protein
expression increased in the liver (Tian et al., 2014). C-Jun
N-terminal kinase (JNK) is a downstream molecule in the
non-canonical WNT signaling pathway (Veeman et al., 2003).
Inhibition of the WNT5A/JNK1 axis improved insulin sensitivity
and metabolic function (Ouchi et al., 2010). Therefore, early
maternal inulin intervention may moderate insulin resistance by
inhibiting Wnt5a in male offspring.

In the inulin group, we also observed lower methylation and
higher gene expression of Pik3c2a, Pik3c2b, and Pik3r2, three
genes involved in a phosphorylation cascade. Phosphoinositide
3-kinase (PI3K) is a key switch in the insulin signaling pathway.
PI3K regulates the phosphorylation of protein kinase (PKB)
and phosphoinositide-dependent protein kinase (PDK) cascades
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(Shepherd et al., 1998). A maternal HF diet led to PI3K regulatory
subunit 1 (Pi3kr1), PI3K regulatory subunit 3 (Pi3kr3), and PI3K
catalytic subunit type 2 beta (Pi3kc2b) hypermethylation and
lower expression than that in rats fed a normal diet (Remely
et al., 2014). Inulin may inhibit Pi3k methylation to activate Pi3k
expression to moderate glucose metabolism.

CONCLUSION

In summary, this paper utilized a genome-wide DNA
methylation array to identify epigenetic modifications in
offspring affected by maternal early inulin treatment for
the first time. Maternal inulin intervention may improve
glucose intolerance and insulin resistance resulting from
maternal HF diet exposure by modifying DNA methylation
of Wnt5a and Pi3k in the liver (Figure 6). This finding
may help to identify the therapeutic target molecule to
manage diabetes, especially for offspring exposed to maternal
obesity and diabetes. Further work is needed to underline
the detail mechanism of maternal inulin on these signaling
pathway and the relationship with gut microbiome and
metabolites. Moreover, the effect of maternal inulin treatment
on female offspring and F2 generation glucose metabolism
remain to be explored.
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