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Abstract

Background and Aims: Identifying patients with steatotic liver disease who

are at a high risk of developing HCC remains challenging. We present a

deep learning (DL) model to predict HCC development using hematoxylin

and eosin-stained whole-slide images of biopsy-proven steatotic liver

disease.

Approach and Results: We included 639 patients who did not develop

HCC for ≥ 7 years after biopsy (non-HCC class) and 46 patients who

developed HCC <7 years after biopsy (HCC class). Paired cases of the HCC

and non-HCC classes matched by biopsy date and institution were used for

training, and the remaining nonpaired cases were used for validation. The

DL model was trained using deep convolutional neural networks with 28,000

image tiles cropped from whole-slide images of the paired cases, with an

accuracy of 81.0% and an AUC of 0.80 for predicting HCC development.

Validation using the nonpaired cases also demonstrated a good accuracy of

82.3% and an AUC of 0.84. These results were comparable to the predictive

ability of logistic regression model using fibrosis stage. Notably, the DL

model also detected the cases of HCC development in patients with mild

fibrosis. The saliency maps generated by the DL model highlighted various

pathological features associated with HCC development, including nuclear

atypia, hepatocytes with a high nuclear-cytoplasmic ratio, immune cell infil-

tration, fibrosis, and a lack of large fat droplets.

Conclusions: The ability of the DL model to capture subtle pathological

features beyond fibrosis suggests its potential for identifying early signs of

hepatocarcinogenesis in patients with steatotic liver disease.

INTRODUCTION

With the global obesity epidemic, NAFLD has affected
approximately one-fourth of the global population and is
now the leading cause of chronic liver diseases.[1,2]

NASH is a progressive form of NAFLD that can lead to
fibrosis, cirrhosis, and HCC.[3,4] NASH is characterized
by fat accumulation in the liver, hepatic lobular
inflammation, hepatocellular ballooning, and insulin
resistance.[5,6] Since only a small percentage of patients
with NAFLD develop HCC,[7,8] identifying patients at a
high risk of HCC remains an important clinical need in
prioritizing treatment, eligibility for clinical trials, and
HCC surveillance.

Liver biopsy in patients with suspected NAFLD/
NASH allows confirmation of NASH diagnosis, grading,
and staging. The degree of liver fibrosis is the strongest
predictor of long-term outcomes such as liver-related
mortality, liver failure, and development of HCC in
patients with NAFLD.[9,10] However, up to 50% of cases
of NAFLD-driven HCC occur in patients without
cirrhosis, possibly due to its unique nature of arising

from lipotoxicity-mediated chronic inflammation[11,12];
thus, factors other than fibrosis should not be
underestimated.

In recent years, digital image analysis based on deep
learning (DL) and other forms of machine learning (ML)
algorithms has shown promise for improving the
reliability of the histological evaluation of NASH.[13,14]

This technology has also enabled the identification of
novel histological features associated with clinical
disease progression and indicators of fibrosis severity
based on fibrosis patterns distinct from those of the
conventional collagen proportionate area.[15] Further-
more, owing to its ability to analyze complex patterns
and features of medical images, the DL algorithm may
identify early signs of hepatocarcinogenesis that
have previously been overlooked, other than liver
fibrosis.[16,17] However, no study has examined the
power of DL in predicting HCC development directly
from the histopathological images of patients
with NAFLD.

The coexistence of mild alcohol consumption and
metabolic abnormalities in patients with fatty liver is
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common in clinical practice making it difficult to
determine which is the primary cause of the fatty liver.
To address this issue, a new fatty liver disease
nomenclature, steatotic liver disease (SLD), was intro-
duced following an international consensus.[18,19] The
name chosen to replace NAFLD was metabolic
dysfunction–associated steatotic liver disease, and
metabolic dysfunction–associated steatotic liver dis-
ease with mild alcohol consumption was named
MetALD. Therefore, our study aimed to develop and
validate a DL model that can predict HCC development
in patients with SLD, using hematoxylin and eosin
(H&E)-stained whole-slide images (WSIs) of liver tissue
obtained through needle biopsy, including those with
mild alcohol consumption.

METHODS

Study design and participants

The cohort of patients was enrolled in a nationwide
registry study focusing on steatotic liver without heavy
alcohol consumption (STEAtotic Liver registry for inves-
Tigating clinical outcomes including HCC, STEALTH
study), which is a multicenter retrospective cohort study
that included patients aged 18 years or older with
clinically suspected SLD who underwent liver biopsy
between 2003 and 2018. We excluded patients with liver
diseases of other etiologies, including alcohol-associated
liver disease (ALD) (>60 g/d), viral hepatitis (positive
serology for HBsAg or hepatitis C antibody), autoimmune
hepatitis, drug-induced liver disease, primary biliary
cholangitis, or biliary obstruction. Importantly, we did

not exclude patients with SLD who consumed significant
amounts of alcohol (≥30 g/d in men and ≥20 g/d in
women), which falls under the MetALD category. The
study complied with the human studies guidelines, and
was conducted in accordance with the World Medical
Association Declaration of Helsinki and the ethical
guidelines for epidemiological research of the Japanese
Ministry of Education, Culture, Sports, Science, and
Technology and the Ministry of Health, Labor, and
Welfare. The study protocol was approved by the
University of Tokyo Medical Research Center Ethics
Committee (Approval No. 2018037NI) and the Institu-
tional Review Board or Ethics Committee of each
participating institution. The requirement for individual
informed consent was waived due to the retrospective
design of the study, and opt-outs were permitted. The
study was registered in the University Hospital Medical
Information Network (UMIN) Clinical Trial Registry
(UMIN-CTR 000049068). All authors had access to
the study data and reviewed and approved the final
manuscript.

Data set

Of the 2432 cases with SLD collected in the “STEALTH
study,” those who did not develop HCC for ≥ 7 years of
follow-up after biopsy were defined as the non-HCC
class, and those who developed HCC <7 years after
biopsy were defined as the HCC class. Next, cases
from the non-HCC and HCC classes with close biopsy
dates (within 1 y) from the same institution were
selected on a one-to-one basis to form a paired case
group for the discovery set. This pairing was carried out

Patients with SLD
who underwent liver biopsy

N = 2432

non-HCC class N = 639
HCC class N = 46

Paired case group
non-HCC class N = 29
HCC class N = 29

Non-paired case group
non-HCC class N = 126
HCC class N = 17

Inclusion criteria
those who did not develop HCC > 7yrs
those who develop HCC ≤ 7yrs

1:1 matching
(institution, time of 

biopsy)

F IGURE 1 Flow diagram of the study population. Abbreviation: SLD, steatotic liver disease.
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to avoid learning the features of the staining methods of
each institution and the paleness of the color tones that
changed over time.[20] Some of the remaining cases
were used as the nonpaired case group in the test set
(Figure 1).

Deep learning model

Preparation of images

The WSIs of the H&E-stained liver biopsy specimens
were randomly cropped into small image patches (256 ×
256 pixels) at a ×10 magnification. Images with more
than 30% of pixels and a hue of 120–180, saturation of
10–100, and brightness of 180–255 were adopted, and
those containing little or no tissue were excluded. The
number of image patches obtained from 1 WSI was
400, and 28,000 patch images were used to train the DL
model. Supplemental Figure S1, http://links.lww.com/
HEP/I430 shows the sample image patches.

Evaluation

Cross-validation. N-fold cross-validation is a widely
used technique to evaluate the generalization perform-
ance of models.[21] In this method, the data set is
divided into N equal parts (folds), with (N−1) of them
being used as training data and the remaining one as
test data. This process is repeated N times, ensuring
each fold is used as test data once. This approach
effectively uses the entire data set, allowing for a more
accurate evaluation of the model’s performance. In our
study, we adopted 5-fold cross-validation. This involves
dividing the data set into 5 distinct parts, using 4 of them
as training data and the remaining one as test data in
each iteration. By repeating this process five times,
every data piece is used as test data once, ensuring the
model’s generalization performance is verified. Further-
more, within each cross-validation cycle, ~80% of the
selected training data was randomly allocated as the
training set, and about 20% as the validation set. The
training set included images from 3 types of image
folders (normal images, Mixup images, and CutMix
images) to ensure data diversity. This diversity is crucial
for enabling the model to adapt to various real-world
scenarios. The validation set was used to adjust the
model’s hyperparameters and monitor for overfitting.
The test set, in each cycle of cross-validation, was not
used for training or validation but for the final evaluation
of the model’s performance. This allows for a fair and
accurate assessment of the model’s generalization
ability. Through this method, overfitting during model
training is avoided, and high performance on actual
unknown data is ensured, safeguarding the model’s
generalization capability.

Following the method described above, the paired
case group was used for training and evaluation with a
5-fold cross-validation. To perform a 5-fold cross-
validation, the paired cases were equally divided into
5 groups (Figure 2A). Paired patients were included in
each group. Four of the 5 groups of cropped images
were used to train the classifier, and the remaining
group was used as the test set. The training images
were randomly divided into the training and validation
data sets. The ratios of the number of images in the
training and the validation sets were 80% and 20%,
respectively. The validation set was not used for training
but instead to assess the classifier performance at each
epoch during training. An epoch is the training unit and
a classifier is trained once with the training set in 1
epoch. The training of a classifier was terminated when
the change in the validation loss was <0.05 within 3
epochs. After training, the classifier was evaluated
using a test set. Five classifiers were created by
repeating this process 5 times, using alternating
training, validation, and testing sets. Consequently, all
images were used at least once as the test set.

We predicted the probabilities of these patches using
the trained classifier and averaged all probabilities as
the final probability. Figure 2B shows the detailed
procedures and images of the tiled predictions. Areas
with red squares were predicted to be the HCC class
with at least 60% confidence. On the other hand, areas
with blue squares were predicted to be the non-HCC
class, with <40% confidence. Areas with gray squares
had confidences ≥ 40% and <60%, indicating that they
were not unambiguously predicted. The probabilities of
all tiles were averaged to form the final probability; if the
final probability was ≥0.5, the case was judged to be in
the HCC class; and if it was 0.50 or less, the case was
judged to be in the non-HCC class.

Test with the nonpaired case group. In addition, we
evaluated the classifiers using the nonpaired case
group. We used a model ensemble, which is a method
for creating a better classifier using multiple classifiers
in the field of ML. We chose the “Averaging” method,
which averaged the predictions of all classifiers
(Figure 2C).

Classifier

In this study, we adopted a DL model based on deep
convolutional neural networks (CNNs), EfficientNetB0.[22]

The classifier consisted of 9 layers, including 7 convolu-
tional layers and 1 fully connected layer. This has been
demonstrated in several tasks that analyze medical
images. EfficientNet is a widely recognized network
architecture in the field of ML, fundamentally designed to
enhance performance efficiently and effectively by using
scaling laws to balance the model’s size, depth, and
resolution. Specifically, EfficientNetB0, the initial model in
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this architecture series, was chosen for its scalability and
efficiency. This model is particularly suitable for process-
ing large image data sets as it achieves high accuracy

while minimizing the number of parameters and compu-
tational cost. EfficientNetB0 is designed using a unique
method called Compound Scaling, which optimizes the

Final Probability
p ≥ 0.5 : HCC class
p < 0.5 : non-HCC class

HCC class
Cropping

Averaging

Probabilityof HCC class
p ≥ 0.6 0.4 ≤ p< 0.6 p < 0.4

Averaging entire
probabilities of HCC

Cropping Averaging

CNN1

CNN2

CNN3

CNN4

CNN5

Ensemble

Probability of HCC class

non-HCC class

Five-fold cross-validation

Paired cases

train/val

train/val

train/val

train/val

test

1

2

3

4

5

train/val

train/val

train/val

test

train/val

train/val

train/val

test

train/val

train/val

train/val

test

train/val

train/val

train/val

test

train/val

train/val

train/val

train/val

CNN1 CNN2 CNN3 CNN4 CNN5

Non-paired cases

Classifiers

Multiple classifiers

Paired cases were
included in the same group

(A)

(C)

(B)

F IGURE 2 Schematic representation of the image-based deep learning model. (A) Method for model development using the paired case
group. Patches were cut in order from top left to bottom right in a 256 × 256 size and divided into 5 groups. The cropped images from paired
patients were included in the same group. Four of the 5 groups of cropped images were used as training and validation data sets, and the
remaining group was used as the test set. After training, the classifier was evaluated using a test set. Five classifiers (CNN1–5) were created by
repeating this process 5 times, using alternating training, validation, and testing sets. (B) Prediction of the probabilities of HCC development. The
classifier based on deep convolutional neural networks (CNN) calculated the predictive cancerous value for the patches. The predicted probability
of the HCC class is shown in each tile, where red represents ≥ 60%, gray represents between 40% and 60%, and blue represents <40%. The
probability of each tile was averaged across the entire image to give the final probability. (C) Method for test with a model ensemble using the
nonpaired case group. Each of the 5 classifiers calculated predictions for the test image in a similar way to (A). Those predictions were soft-
ensembled into the final predictions of the image.
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balance between model accuracy and efficiency by
scaling the network’s width, depth, and the resolution of
the input images simultaneously. Furthermore, Efficient-
NetB0 has proven its versatility and reliability across
various medical image analysis tasks. In our research,
we used this model to predict the risk of HCC
development from liver biopsy images of patients with
fatty liver disease. Themodel was implemented using the
PyTorch Lightning framework,[23] enabling efficient train-
ing on graphics processing units.

Metrics

The performance of the algorithm was evaluated using
3 indices: accuracy (number of correct predictions
divided by the total number of predictions), receiver
operating characteristic (ratio of true positives to false
positives), and AUROC. The accuracy was calculated
using the following formula:

Accuracy
TP TN

TP TN FP FN
,= +

+ + +

where TP is true positive, TN is true negative, FP is
false positive, and FN is false negative.

Tuning

Data augmentation. Data augmentation is used to
improve the generalization performance of a model. For
example, image data similar to the existing image data
were created and added to the training data. This is a
useful technique that can generate sufficient training data
using a small amount of data without changing the model
architecture. In this study, we used data augmentation
techniques called Mixup (a weighted linear combination
of 2 randomly selected images)[24] and Cutmix (which
combines a Mixup with a rectangle masking a portion of a
randomly selected image) during the training phase.[25]

Specifically, the Mixup and Cutmix images were gener-
ated from 256 × 256 image patches and these images
were used to train the classifier.

Hyperparameters and optimizers. The classifier was
trained using cross-entropy loss with a learning rate of
0.0001 using the AdamW optimizer.[26]

Visualization

Class Activation Mapping is a well-known method for
creating saliency maps that highlights the image parts
the model focuses on, visualizing the model’s inference
basis. GradCam ++ was used to create the saliency
map.[27] For a CNN with a Global Average Pooling layer,
if the model determines that the input image is class c,

the classification score Yc can be calculated using the
Global Average Pooling layer feature map Aij

k as
follows:

Y w A ,c

k
k
c

i j
ij
k∑ ∑∑=

where Aij
k is the activity at position i j,( ) in the kth

channel.
This equation is transformed as follows:

Y L ,c

i j
ij
c∑∑=

where

L w A ,ij
c

k
k
c

ij
k∑=

Lij
c can be considered as the saliency at position i j,( )

of class c. From this, a saliency map can be created.
In GradCam++,

wk
c is defined as follows:

⎧
⎨⎩

⎫
⎬⎭

A2

.ij
kc

Y

A

Y

A
a b ab

k Y

A

c

ij
k

c

ij
k

c

ij
k

2

2

2

2

3

3

( )

( ) ( )

α =

+ ∑ ∑

∂

∂

∂

∂

∂

∂

The method of the benchmark

Logistic regression was used as the benchmark test.
Logistic regression is one of the most popular algo-
rithms for solving binary classification problems. Let Y
denote the binary response variable of interest and X
denote the random variables considered as explanatory
variables. The logistic regression model relates the
conditional probability P(Y= 1|X) to X through

P Y X1, ,
exp X

1 exp X
,0 1

0 1

β β
β β

( = | ) =
( + )

+ ( + )

where 0β and 1β are regression coefficients, which
are estimated by maximum-likelihood from the consid-
ered data set. The probability that Y = 1 for a new
instance is then estimated by replacing the βs by their
estimated counterparts and the Xs by their realizations
for the considered new instance in the above equation.
The new instance is then assigned to class Y = 1 if P(Y
= 1) > c, where c is a fixed threshold and to class Y =
0 otherwise. The commonly used threshold is c = 0.5,
which was also used in this study. We used the fibrosis
stage as an explanatory variable because liver fibrosis
is a key factor that determines the prognosis of chronic
liver diseases, including SLD.[9,10] The benchmark
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method for training and evaluation is similar to that used
in our image-based classifier. In other words, the cases
for training and evaluation matched our image-based
classifier with the fibrosis stage-based classifier, and a
model ensemble was implemented. The hypothesis that
“the coefficient corresponding to a term is zero” was
tested using the Wald test. These analyses were
performed using the Statsmodels library (version
0.13.2) in the Python software.

Pathological evaluation

Liver histology was assessed according to Kleiner
fibrosis stage (0 = none, 1a = mild perisinusoidal,
1b = moderate perisinusoidal, 1c = portal/periportal, 2
= zone 3 and portal/periportal, 3 = bridging fibrosis,
and 4 = cirrhosis).[28] The grading of steatosis,
ballooning, and lobular inflammation were graded using
the NAFLD activity scoring system and the NASH
Clinical Research Network criteria.[28,29] The histologic
evaluation of the present data set was carried out by 3
board-certified liver pathologists (Rie Irie, Hanako
Tsujikawa, and Michiie Sakamoto), who were blinded
to the clinical data and patient outcomes, and this was
meticulously validated.

Statistical analysis

Data are expressed as medians with the 25th to 75th
percentiles or as numbers and percentages. Student
t test or the Wilcoxon rank-sum test was used to
analyze continuous variables. Differences between
groups were assessed using the chi-square test or
Fisher exact test for categorical data. The accuracy was
compared using a proportion Z-test, and the signifi-
cance of the difference in AUCs was evaluated using
the DeLong test. The trend toward a higher probability
of increase was evaluated using the Cochran-Armitage
trend test. Statistical analyses were performed using
R software (version 4.2.3; R Development Core Team),
and p values <0.05 were considered significant.

RESULTS

Data set creation

Among 2432 patients with SLD, 639 were in the non-
HCC class (those who did not develop HCC ≥ 7 y after
biopsy) and 46 were in the HCC class (those who
developed HCC <7 years after biopsy). To prevent
learning about the differences in staining methods
between facilities and the extent of color fading over
time, one-to-one pairs were created from the non-HCC
and HCC classes from the same institution with a

biopsy date difference of <1 year. Finally, 58 cases
(29 pairs of non-HCC and HCC) were extracted as
paired case groups for the discovery set. Of the
remaining nonpaired cases, 126 non-HCC and 17
HCC cases were used as nonpaired case groups for
the test set (Figure 1).

Model development from the paired case
group

The group of 29 pairs of non-HCC and HCC cases was
used to develop and test the image-based DL model.
Each pair of non-HCC and HCC cases was matched for
both the time and facility at which the liver biopsy was
performed. Detailed characteristics of the paired groups
are presented in Table 1. The HCC class was
significantly older; had higher bilirubin, aspartate
aminotransferase, gamma-glutamyltransferase, alpha-
fetoprotein, and FIB-4 index; and lower albumin and
platelet counts.

The results of the cross-validation with the paired
case group are shown in Figure 3A and Table 2. The
average accuracy was 81.0% (95% CI: 0.71–0.88) and
the AUC was 0.80 (95% CI: 0.69–0.92). The DL model
was trained to correctly predict 8 out of 9 cases of HCC
development in patients with mild fibrosis (F0-2)
(Supplemental Figures S2A and S2B, http://links.lww.
com/HEP/I431).

Test with the nonpaired case group

We assessed the robustness of our image-based DL
model by testing it against a nonpaired case group.
Detailed characteristics of the nonpaired groups are
presented in Table 1. The patterns observed in clinical
data were comparable to those observed in the paired
case group.

The results of the test for the nonpaired case group
are shown in Figure 3B and Table 2. The accuracy was
82.3% (95% CI: 0.75–0.88) and the AUC was 0.84
(95% CI: 0.72–0.96). Importantly, in patients with mild
fibrosis (F0-2), the DL model was able to correctly
classify 3 of 6 patients who developed liver cancer as
HCC class (positive predictive value 0.50), while 91 of
100 patients who did not develop liver cancer were
correctly classified as non-HCC class (negative predic-
tive value 0.91) (Supplemental Figures S2C and S2D,
http://links.lww.com/HEP/I431).

Visualization of pathological features
involved in HCC development

Saliency maps were created to investigate where the
DL model focused on predicting HCC development in
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TABLE 1 Baseline characteristics

Paired cases Nonpaired cases

Variable Non-HCC class HCC class p Non-HCC class HCC class p

Number of patients 29 29 126 17

Age (y) 59.0 (50.0–65.0) 65.0 (59.0–70.0) 0.008 59.5 (46.5–66.0) 68.0 (65.0–74.0) < 0.001

Males, n (%) 17 (58.6) 12 (41.4) 0.29 56 (44.4) 7 (41.2) 1.00

BMI (kg/m2) 27.2 (24.3-29.0) 27 (26.1-30.0) 0.45 26.9 (24.3-29.8) 27.7 (23.9-28.8) 0.68

Diabetes mellitus, n (%) 15 (51.7) 23 (79.3) 0.05 69 (54.8) 15 (88.2) 0.01

Hypertension, n (%) 13 (44.8) 18 (62.1) 0.29 65 (51.6) 13 (76.5) 0.07

Dyslipidemia, n (%) 21 (72.4) 15 (51.7) 0.18 92 (73.0) 8 (47.1) 0.046

Alcohol consumers, n (%) 3 (10.3) 3 (10.3) 1.00 10 (7.9) 2 (11.8) 0.64

Albumin (g/dL) 4.3 (4.0–4.6) 4.0 (3.6–4.2) 0.01 4.4 (4.1–4.7) 4.0 (3.6–4.4) 0.001

Total bilirubin (mg/dL) 0.8 (0.7–1.1) 1.1 (0.9–1.3) 0.03 0.9 (0.7–1.1) 0.9 (0.7–1.4) 0.23

AST (IU/L) 41.0 (30.0–51.0) 61.0 (45.0–72.0) 0.001 43.5 (32.3–68.8) 54.0 (41.0–81.0) 0.13

ALT (IU/L) 48.0 (38.0–76.0) 55.0 (39.0–65.0) 0.89 65.5 (43.3–104.0) 42.0 (37.0–82.0) 0.12

GGT (IU/L) 52.0 (34.0–75.0) 87.0 (45.0–175.0) 0.04 58.5 (37.0–93.8) 142.0 (65.0–209.0) 0.01

Platelet count (×104/µL) 18.6 (15.2–22.9) 15.1 (11.1–17.2) 0.008 21.2 (15.9–25.3) 13.9 (11.3–15.2) < 0.001

AFP (ng/mL) 3.3 (2.8–4.3) 7.7 (5.2–10.4) <0.001 4.1 (2.5–5.0) 4.2 (3.4–7.2) 0.18

FIB-4 index 1.76 (1.18–2.31) 4.19 (2.69–4.73) <0.001 1.54 (0.91–2.63) 4.20 (3.09–4.53) < 0.001

Institution, n (%) 1.00 < 0.001

Saga University Hospital 0 (0.0) 0 (0.0) 1 (0.8) 6 (35.3)

Kyoto Prefectural University of Medicine 0 (0.0) 0 (0.0) 0 (0.0) 2 (11.8)

Hiroshima University 4 (13.8) 4 (13.8) 29 (23.0) 3 (17.6)

The University of Tokyo 5 (17.2) 5 (17.2) 17 (13.5) 4 (23.5)

Tokyo Women’s Medical University 3 (10.3) 3 (10.3) 12 (9.5) 0 (0.0)

Saiseikai Suita Hospital 17 (58,6) 17 (58,6) 67 (53.2) 2 (11.8)

Note: Data are expressed as the median (25th–75th percentiles) or number (percentages). HCC class: Patients who developed HCC <7 y after biopsy. Non-HCC class: Patients who did not develop ≥ 7 y after biopsy. Alcohol
consumers were defined as those who drink ≥30 g/d for men and ≥ 20 g/d for women.
Abbreviation: GGT, gamma-glutamyltransferase.
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the images. Figure 4A shows saliency maps of the
cropped images predicted to belong to the HCC class.
Darker red color indicates more salient predicted
tumorigenic features. Saliency tended to be higher in
areas with nuclear atypia, hepatocytes with a high
nuclear-cytoplasmic ratio, fibrosis, and high infiltration
of immune cells. Figure 4B shows the saliency maps of
the cropped images predicted to belong to the non-HCC
class. The darker the red color, the more salient the
predicted nontumorigenic features. The saliency tended
to be higher in areas with large fat droplets.

Comparison with logistic regression model
(fibrosis stage)

As liver fibrosis is the most useful prognostic factor in
chronic liver disease, the pathological fibrosis stage was
used as a variable in the benchmark model, logistic
regression, and was compared with our image-based DL
model. The results of the logistic regression analysis for
cross-validation with the paired case group are shown in
Figure 3C and Table 2. The accuracy was 79.3% (95%
CI: 0.69–0.90) and the AUC was 0.87 (95% CI:
0.77–0.96). It implies that the probability of the HCC
class increases according to increased fibrosis stage
(coefficient: 1.82, 95% CI: 0.95–2.69, p < 0.01). There
were no significant differences in accuracy (Z value: 0.23,

p = 0.82) or AUC (p = 0.30) between the image-based
DL model and the fibrosis model.

The results of the logistic regression analysis for the
test with the nonpaired case group are shown in
Figure 3D and Table 2. The accuracy was 78.2%
(95% CI: 0.71–0.85) and the AUC was 0.81 (95% CI:
0.68–0.94). There were no significant differences in
accuracy (Z value 0.89, p = 0.37) or AUC (p = 0.48)
between the image-based DL model and the
fibrosis model.

The detailed pathological findings are shown in
Table 3. The HCC class tended to have higher grades
of fibrosis, lobular and portal inflammation, and
ballooning, and lower steatosis stages. Mallory-Denk
bodies and small- and large-cell dysplasias were
detected in a higher proportion in the HCC class.

DISCUSSION

In this study, we developed a novel DL-based CNN-
assisted system to predict HCC development in patients
with SLD using an algorithm trained with limited image
data (H&E-stained WSI of liver biopsy samples). The
predictive ability of the image-based DL model was
comparable to that of the logistic regression model
using pathological fibrosis stage as an explanatory
variable. Furthermore, the DL model can predict HCC

Image-based DL model on paired case Image-based DL model on non-paired case

Logistic model (fibrosis) on paired case Logistic model (fibrosis) on non-paired case
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F IGURE 3 Predictive ability for HCC class. The confusion matrix and AUC for each group are shown for (A) predicted results of cross-
validation using the image-based DL model on the paired case group; (B) predicted results of ensemble using the image-based DL model on the
nonpaired case group as an additional test; (C) predicted results of cross-validation using the logistic regression model on the paired case group;
and (D) predicted results of ensemble using the logistic regression model on the nonpaired case group as an additional test.
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development even in patients with mild liver fibrosis.
Our findings demonstrate the potential of DL-based
image analysis in predicting HCC development in
patients with SLD. Studies have shown the promise of
DL-based approaches in improving the reliability of the
histological evaluation of NASH,[13,14] as well as
identifying novel histological features associated with
disease progression and fibrosis severity.[15] However,
this study specifically examines the utility of DL models
in predicting HCC development directly from histopath-
ological images of patients with SLD.

The use of ML in the analysis of pathological images
for predicting carcinogenesis and prognosis has
attracted significant attention in the scientific commu-
nity. Numerous studies have explored the potential of
ML algorithms, particularly DL techniques, to demon-
strate their efficacy and relevance. In the hepatology
practice. The combination of DL and digital pathology
could lead to transformative changes in the clinical
practice of hepatology, including standardization of
pathological diagnoses of SLD; personalized risk
stratification and efficient allocation of medical
resources; provision of remote diagnosis, improving
medical access, and reducing regional disparities; and
the potential discovery of new insights into the
progression and prognosis of SLD. In the context of
HCC prognostication, several studies have demon-
strated the potential of ML algorithms for predicting
HCC prognosis and recurrence based on histopatho-
logical images. Saillard et al[17] developed a model
using HCC digital slides that outperformed traditional
scores in predicting patient survival following surgical
resection. Yamashita et al[30] confirmed the effective-
ness of ML algorithms in predicting outcomes
using HCC digital slides. Lu and Daigle[31] used
advanced CNNs for feature extraction from the histo-
pathological slides of HCC. Saito et al[32] achieved
promising results in predicting HCC recurrence using
handcrafted WSI features. Despite the growing interest
in prognostic and recurrence prediction using HCC
digital slides, no studies have investigated the predic-
tive potential of HCC development using noncancerous
liver tissue.

Progression from chronic liver disease to hepatocar-
cinogenesis involves continued cell death and regener-
ation associated with inflammation, leading to an
increased potential for carcinogenesis.[33] Liver fibrosis
is an indicator of the accumulation of such changes and
is an important factor in assessing the hepatocarcino-
genic potential of chronic liver diseases, including
NAFLD.[9,10] However, in NASH-related liver pathology,
multiple changes occur, including not only fibrosis but
also inflammation, steatosis, and ballooning.[34] DL
algorithms harness the power to analyze complex
patterns and features in medical images, allowing them
to potentially capture subtle details that may not be
easily recognizable by the human eye.[16,17] This canT
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enable the DL model to provide a more comprehensive
assessment of liver pathology and to identify early signs
of liver carcinogenesis that may not be evident from
fibrosis staging alone.

In this study, we created saliency maps using the
GradCam++ method to visualize the pathological
features involved in HCC development. These maps
highlight the areas of the image on which the DL model
focused during the inference process. The saliency map
indicated that the DL model focused on pathological
findings other than fibrosis, such as nuclear atypia,
hepatocytes with a high nuclear-cytoplasmic ratio, and
high infiltration of immune cells, as features which lead
to HCC development. Notably, a detailed evaluation of
the pathological findings revealed that inflammation,
ballooning, Mallory-Denk bodies, and small- and
large-cell dysplasia were detected at high rates in the
HCC class. The DL model also focuses on steatosis,

suggesting a low risk of carcinogenesis. This may
reflect the burned-out of hepatic steatosis in patients
with a high risk of carcinogenesis.[35] Although the short-
term risk of HCC development is higher in patients with
advanced fibrosis, the results reiterate that ballooning,
inflammation, and nuclear atypia are also important
findings in the subsequent long-term exacerbation of
SLD. The importance of these pathological findings may
have been demonstrated in the present study, as the
control group consisted of patients who did not develop
HCC for at least 7 years.

The strengths of this study are: First, while the
assessment of fibrosis and other findings related to
NASHmay vary between institutions and pathologists,[36]

the DL model can predict the risk of developing HCC
using only H&E-stained slides, allowing for risk stratifi-
cation for HCC without special staining to assess liver
fibrosis. Furthermore, it is possible to predict HCC

FibrosisImmune cells infiltrationCellular atypia
High nuclear-cytoplasmic ratio

Large fat droplets

(A)

(B)

HCC class feature

Non-HCC class feature

F IGURE 4 Saliency map. (A) Predicted HCC class cropped images (left images) and its saliency maps (right images). The darker the red
color, the more salient the predicted tumorigenic feature is. (B) Predicted non-HCC class cropped images (left images) and its saliency maps (right
images). The darker the red color, the more salient the predicted nontumorigenic feature is.
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development from SLD with mild fibrosis, since patho-
logical factors other than fibrosis are also considered.
Second, as DL models have been created using H&E-
stained slides produced in different years with different

staining protocols at different sites, our results have the
potential to be generalized across diverse clinical
settings and institutions. Finally, our cohort includes
~10% of patients with SLD who consume alcohol
(≥30 g/d in men and ≥20 g/d in women); therefore,
the results of this study may be widely applicable in
patients with SLD who consume mild amounts of alcohol
(ie, MetALD).

This study has some limitations. First, the study was
retrospective, which may have introduced bias and
limited causal inferences. Prospective studies with
larger sample sizes are required to validate our findings.
Second, because this study focused on a specific
Japanese population of patients with suspected SLD,
future studies should aim to validate the model using
diverse patient cohorts from around the world. Address-
ing these limitations through further research and
technological advancements will help refine and expand
the utility of DL-based models for predicting HCC
development in patients with SLD.

In conclusion, our study demonstrated the potential
of DL-based image analysis for predicting HCC
development in patients with SLD. The DL model
revealed good performance in identifying patients at
high risk of HCC, which has important implications for
clinical decision-making and patient management.
Further research is required to validate and refine the
DL model and explore its integration into clinical
practice to improve the care and outcomes of patients
with SLD.
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TABLE 3 Distributions of pathological findings

All cases

Variable
Non-HCC
class

HCC
class p

No. of patients 155 46

Fibrosis stage, n (%) <0.001

0 12 (7.7) 0 (0.0)

1 66 (42.6) 1 (2.2)

2 48 (31.0) 14 (30.4)

3 19 (12.3) 18 (39.1)

4 9 (5,8) 13 (28.3)

Steatosis, n (%) 0.008

0 3 (1.9) 3 (6,5)

1 62 (40.0) 25 (54.3)

2 53 (34.2) 13 (28.3)

3 37 (23.9) 5 (10.9)

Lobular inflammation,
n (%)

<0.001

0 9 (5.8) 1 (2.2)

1 135 (87,1) 29 (63.0)

2 11 (7.1) 16 (34.8)

3 0 (0.0) 0 (0.0)

Portal inflammation,
n (%)

<0.001

0 4 (2.6) 1 (2.2)

1 110 (71.0) 18 (39.1)

2 41 (26.5) 22 (57.8)

3 0 (0.0) 5 (10.9)

Ballooning, n (%) <0.001

0 56 (36.1) 5 (10.9)

1 54 (34.8) 17 (37.0)

2 45 (29.0) 24 (52.2)

Mallory-Denk bodies,
n (%)

0.002

No 97 (62.6) 17 (37.0)

Yes 58 (37.4) 29 (63.0)

Small cell dysplasia,
n (%)

0.13

No 152 (98.1) 43 (93.5)

Yes 3 (1.9) 3 (6.5)

Large cell dysplasia,
n (%)

0.08

No 138 (89.0) 36 (78.3)

Yes 17 (11.0) 10 (21.7)

Note: Data are expressed as number (percentages). Non-HCC class: Patients
who did not develop HCC ≥ 7 y after biopsy. HCC class: Patients who devel-
oped HCC <7 y after biopsy. The trend toward a higher probability of increase
was evaluated using the Cochran-Armitage trend test.
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