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Objectives. This study is aimed at determining whether CT-based radiomics models can help differentiate renal angiomyolipomas
with minimal fat (AMLmf) from other solid renal tumors. Methods. This retrospective study included 58 patients with a
postoperative pathologically confirmed AMLmf (observation group) and 140 patients with other common renal tumors
(control group). Non-contrast-enhanced CT and contrast-enhanced CT data were evaluated. Radiomics features were extracted
from manually delineated volume of interest (VOIs). The least absolute shrinkage and selection operator (LASSO) regression
was used for feature screening. Five classifiers, including logistic regression, multilayer perceptron (MLP), support vector
machine (SVM), k-nearest neighbor (KNN), and logistic regression (LR), were used, with leave-out validation (128 training, 60
testing). The diagnostic performance of the classifier was evaluated and compared by receiver operating characteristic curve
(ROC) analysis. Results. Among the 1029 extracted features, prediction models of AMLmf were composed, by 2, 10, 4, and 9
selected features for precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP), and excretory phase
(EP), respectively. Models of CMP and NP achieved adequate performance after using MLP classifier, with prediction accuracy
of 0.767 (AUC 0.85, sensitivity 0.76, and specificity 0.78) and 0.783 (AUC 0.83, sensitivity 0.79, and specificity 0.78),
respectively. MLP model of features selected from the combination of the all features had the best diagnostic performance
(accuracy 0.8500, sensitivity 0.8095, specificity 0.9444, and AUC 0.9193). Conclusions. Radiomics features may help to
distinguish benign AMLmf from common malignant kidney masses, which may contribute to the selection of interventions for
renal tumors.

1. Introduction

Most renal tumors are asymptomatic and are found inciden-
tally (1). Among them, renal cell carcinomas (RCCs) are the
most common, and 85% of renal masses smaller than 4 cm
are reported to be RCCs (2, 3). Most malignant renal masses
require active intervention of surgical resection or radiofre-
quency ablation. Angiomyolipoma (AML) is the most com-
mon benign solid renal neoplasm which can be diagnosed
accurately by identifying the intratumoral fat component.
However, for AML with minimal fat (AMLmf), the diagno-
sis is challenging as it does not contain any fat cells nor con-

tain an insufficient amount of fat cells to provide a computed
tomography (CT) image-based diagnosis (4–6). Therefore,
AMLmf are often misdiagnosed as RCC and these patients
often have surgeries, which would not only increase their
economic and psychological burden but also increase the
workload of hospitals and waste the cost of medical insur-
ance (7, 8).

Using morphological and enhancement features, Sung
found the predictive values were around 80%, which is not
very satisfactory (9). Using logistic regression analysis,
Zhang et al. found several parameters are valuable in differ-
entiating AMLmf from RCCs, such as unenhanced
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attenuation characteristic and intratumoral vessels (10). A
comparable study using multidetector computed tomogra-
phy (MDCT) found the long-to-short axis ratio, attenuation
and enhancement degree precontrast phase (PCP), cortico-
medullary phase (CMP), nephrographic phase (NP), and
excretory phase (EP) showed significant differences between
AMLmf from RCCs (11). Although many studies and efforts
have been made on the differential diagnosis of AMLmf and
other malignant masses (12), it is still difficult in practice.

In recent years, artificial intelligence and radiomics anal-
ysis techniques have provided new methods for image anal-
ysis. By extracting and analyzing the radiomics features of
renal lesions on routine CT images, it is possible to distin-
guish between benign and malignant tumors of the kidney
(13–16). However, the accuracy and specificity of texture
analysis are inconsistent in various reports, and the sample
size is too small to get convincing outcomes. In the current
study, we included large sample size patients of AML with
minimal fat (AMLmf) and other various pathological types
of renal tumors, who had been operated in our hospital in
the past ten years. The CT images of tumors were retrospec-
tively analyzed and modeled using radiomics techniques for
differential diagnosis. We hypothesized that radiomics strat-
egy combined with large dataset will guarantee fine differen-
tiation of the two renal tumors.

2. Materials and Methods

The study was approved by the ethics committee of the hos-
pital. Because this was a retrospective study based only on
medical records and all data were analyzed in our hospital,
patient consent was waived.

2.1. Patient Selection. The patients were selected from the
pathological and radiological databases of our hospital from
January 2010 to October 2018. We searched for any CT
investigations for renal masses performed before surgery or
biopsy. The CT examinations included four phases of pre-
contrast phase (PCP), corticomedullary phase (CMP),
nephrographic phase (NP), and excretory phase (EP) and
were performed within two weeks before surgery. Patholog-
ical examination was available for each patient and included
both histology (hematoxylin-eosin-safran staining) and
immunohistochemistry. Patients with renal lesions contain-
ing radiologically visible fat or inadequate CT image quality
were excluded.

Between January 2010 and October 2018, 318 patients
underwent surgical removal of renal masses with preopera-
tive CT scanning and with minimal fat on CT images were
included (Figure 1). We excluded patients with inadequate
image quality and incomplete scanning phases (n = 120).
Fifty-eight patients with AMLs with minimal fat and 140
patients with other renal tumors were finally included.

2.2. CT Technique. All patients underwent CT scans on mul-
tislice spiral CT devices (SOMATOM, TOSHIBA, GE,
UNITED IMAGING) using a 4-stage protocol: precontrast
phase and then the CMP (30 to 40 s after beginning the
iodine contrast injection), NP (70 to 120 s), and excretory

phase (3 to 6min). The contrast medium was injected intra-
venously into the brachial vein (100ml, not exceeding 2ml/
kg patient body weight; injection rate: 2.5 to 3.5ml/s).

2.3. Segmentation of the Volume of Interests from Images.
The DICOM images of the 198 patients were transferred
into the radiomics platform (Big Data Intelligent Analysis
Cloud Platform, Huiying Medical Technology Co., Ltd., Bei-
jing, https://mics.radcloud.cn/).

One reader within eight years of experience in urological
imaging delineated the lesion boundaries at all slices of each
phase as volumes of interest (VOIs) based on the difference
in attenuation and enhancement pattern between the lesion
and normal renal parenchyma. Lesions on the PCP usually
have lower or equal attenuation and have various patterns
of enhancement, compared with renal parenchyma. The
outer margin of an exophytic lesion could be easily distin-
guished from the surrounding fat. If the lesion contour in
the PCP was unclear, the PCP phases were referred. Another
reader reviewed the VOIs, and if he disagreed with the first
reader, a senior radiologist was consulted for the final deci-
sion. First, the images of 20 patients were randomly selected
for training contour drawing, and then, the interested areas
of all patients were drawn (Figure 2). To minimize the CT
intensity variations, before feature extraction for VOIs, we
normalized by standard deviation ½μ − 3σ, μ + 3σ�, and the
platform then automatically analyzed all delineated VOIs
and put out data of 1029 features.

2.4. Feature Extraction and Screening. First-order statistics,
shape-based features, and texture features deriving from
gray-level cooccurrence matrix (GLCM), gray-level run-
length matrix (GLRLM), gray-level size zone matrix
(GLSZM), and neighborhood gray-tone difference matrix
(NGTDM) were extracted for each VOI. Also, we applied
Laplacian, logarithmic, exponential, and wavelet filters to
images and then extracted features based on the filtered
image. A total of 1029 radiomics features were extracted.
The features were consistent with the imaging biomarker
standardization initiative (IBSI) (17). In this study, the least
absolute shrinkage and selection operator (LASSO) was used
for feature screening and dimension reduction. In high-
dimensional data, the LASSO regression method has been
proved to be effective and efficient (18, 19). The model coef-
ficients were compressed by selecting the optimal harmonic
parameter λ in the model by 10-fold cross-validation, and
the coefficients of the unrelated variables were reduced to
zero while retaining the variables of nonzero coefficients.
Finally, several or a dozen significant highly correlated fea-
tures were retained for further analysis.

2.5. Machine Learning for Model Building. As the value
range of feature may vary greatly, for example, the value of
feature 1 is 1000~2000, and the value of feature 2 is
0.1~0.2, which may affect the contribution of feature to the
model. To ensure the convergence of the training model,
the value range of features should be within the same scale,
so we standardized the value of features (range, 0-1). The
selected features were constructed into a prediction model,
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using leave-out validation (128 training and 60 testing). Five
models including logistic regression, multilayer perceptron
(MLP), support vector machine (SVM), k-nearest neighbor
(KNN), and logistic regression (LR) were used to select the
classifier with the best diagnostic performance. Model pre-
dictive capability is assessed using the receiver operating
characteristic curve (ROC) analysis and area under the curve
(AUC) as well as accuracy, sensitivity, and specificity.

3. Results

3.1. Patient Characteristics. The study included 198 patients
(111 males and 87 females) aged 22~84 years (mean age,
54:84 ± 12:46 years), of which 58 were AMLs with minimal
fat and 140 were other common types of renal tumors,
including clear cell RCCs (n = 63), chromophobe RCCs
(n = 32), papillary RCCs (n = 31), and oncocytomas (n = 14).

0.8
Cross-validated MSE of lasso fit

0.7

0.6

0.5

0.4

M
SE

0.3

0.2

0.1
10–4 10–3

Lambda

PCP

10–2 10–1

MSE with error bars
LambdaMinMSE
Lambda1SE

(a)

0.8
Cross-validated MSE of lasso fit

0.7

0.6

0.5

0.4

M
SE

0.3

0.2

0.1
10–4 10–3

Lambda

CMP

10–2 10–1

MSE with error bars
LambdaMinMSE
Lambda1SE

(b)

Cross-validated MSE of lasso fit

M
SE

0

0.5

1

1.5

2

2.5

NP

10–4 10–3

Lambda
10–2 10–1

MSE with error bars
LambdaMinMSE
Lambda1SE

(c)

Cross-validated MSE of lasso fit

M
SE

0

0.5

1

1.5

EP

10–4 10–3

Lambda
10–2 10–1

MSE with error bars
LambdaMinMSE
Lambda1SE

(d)

Figure 1: Least absolute shrinkage and selection operator (LASSO) was used for feature screening and dimension reduction. PCP:
precontrast phase; CMP: corticomedullary phase; NP: nephrographic phase; EP: excretory phase.
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3.2. Selected Radiomics Features and Machine Learning
Models. A total of 1029 radiological features, including 19
first-order statistics, 15 shape-based features, 59 texture fea-
tures, and features extracted from filtered data, were
extracted from each VOI. The texture features included fea-
tures of GLRLM (n = 16), GLCM (n = 27), and GLSZM
(n = 16).

The LASSO regression was used to reduce the data
dimension. From the extracted features of PCP, CMP, NP,
and EP, 2, 10, 4, and 9 features were selected, respectively
(Figures 1 and 2). Thirteen features were selected from the
combination of the all features (Figures 3(a) and 3(b)).

The classification performance of the models was
explored by ROC. The optimal model was MLP, as shown
in Figure 3(c). MLP model of features selected from the
combination of the all features had the best diagnostic per-
formance (accuracy 0.8500, sensitivity 0.8095, specificity
0.9444, and AUC 0.9193) (Table 1).

4. Discussion

The detection rate of renal masses has increased in the last
decades owing to the widespread use of abdominal imaging.
Although RCC accounts for the majority of renal masses (20,
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Figure 2: The number of features selected for each phase: 2, 10, 4, and 9 features were selected, for PCP, CMP, NP, and EP, respectively.
PCP: precontrast phase; CMP: corticomedullary phase; NP: nephrographic phase; EP: excretory phase.
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21), 20% of all surgically treated cases are benign, and half of
these are AMLs with minimal fat, resulting in unnecessary
invasive treatment (22–24). AML is pathologically com-
posed of fat, smooth muscle, and vascular components in
different proportions (25). AMLs with minimal fat are
mainly composed of smooth muscle and vascular compo-
nents, and there is no visible fat.

At present, CT is the primary method for diagnosing
renal masses, and CT diagnosis of renal angiomyolipoma
mainly depends on the intramass visible fat. However, this
is not available in cases of AMLs with minimal fat. Current
imaging methods have not yet been sufficient to identify
AMLs with minimal fat. Radiomics may provide new diag-
nostic pathways by obtaining and analyzing a large number
of features from images. Recent studies have shown that

radiomics is important in identifying tumor heterogeneity
in several kinds of tumors. Because AMLs with minimal fat
is relatively rare compared to renal clear cell and renal pap-
illary cell carcinoma, radiomics studies of renal tumors are
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Figure 3: (a) Least absolute shrinkage and selection operator for the combination of the four phases. (b) Thirteen features were selected
from the combination of the all features. (c) ROC for each phase and the combination of the four phases using MLP model. MLP:
multilayer perceptron.

Table 1: The classification performance of the models using
features from different phases.

Phase AUC Sensitivity Specificity Accuracy

PCP 0.7500 0.7143 0.7222 0.7167

CMP 0.8492 0.7619 0.7778 0.7667

NP 0.8254 0.7857 0.7778 0.7833

EP 0.7394 0.7381 0.7222 0.7333

ALL 0.9193 0.8095 0.9444 0.8500
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focused on relatively common renal tumors. Studies on the
most frequently occurring are in (2, 3, 5, 9).

A total of 1029 features for each CT imaging phase were
extracted from each manually delineated VOI, and 2 to 10
valid features were selected using the LASSO method. We
also combined the extracted features of all phase and ulti-
mately selected thirteen optimal features using the LASSO
method. We found that in the five data groups of MSCT
phases (PCP, three postcontrast phases, and combined), the
ultimately selected features contained first-order statistics
and GLCM features, suggesting variations in the gray scale dis-
tribution of each entity. First-order statistics describe the dis-
tribution of voxel intensities of preset VOI regions through
commonly used and basic metrics. The statistics used in this
study were mean (mean of image intensity values), median
(median of image intensity values), skewness (asymmetry of
intensity distribution), and 10 percentile. By calculating the
correlation of gray scale between two points of a certain dis-
tance and a certain direction in the image, GLCM reflects
the comprehensive information of the image in direction,
interval, and change. Maximum probability was included in
the effective GLCM features of all the five groups, indicating
that the distribution of gray value between adjacent pixels of
different types of lesions was different.

Among the five classifiers of logistic regression, KNN,
LR, MLP, and SVW, the classifier with the best performance
was MLP, whose AUC were above 0.73 to 0.85 in the dataset
of the four phases. The AUC of combined all phases reached
0.9193, with an accuracy of 0.8500. At present, there were
many studies on the use of machine learning to assist in
the identification of renal tumors (14, 26, 27), and there were
also many studies focused on the differential diagnosis of
AMLs with minimal fat (13, 28, 29). Among them, the accu-
racy of the SVM classifier for identifying AMLs with mini-
mal fat and clear cell carcinoma was 72.3% and 72.1%,
respectively. Our study had similar results. In our study,
multiphase data were analyzed, and the regions of interest
were obtained by volumetric delineation, which was more
reflective of the spatial characteristics of tumors than some
single-layer delineation, making the extracted features more
valuable for differential diagnosis. In the process of VOI
delineation, two abdominal radiologists with ten years of expe-
rience were present at the same time. When there was incon-
sistency, a senior abdominal radiologist was consulted. We
applied five classifiers, adopted leave-out cross-validation
(128 training and 60 testing), for the feature selection of mul-
tiphase and combined phase data, making the selected features
more valuable for differential diagnosis.

Our study was retrospective and had a large time span;
there was some variance in CT scanner, scanning protocol,
and contrast agents. The data was not completely unified.
Although our results were not the best, they were more con-
sistent with the actual clinical situation, and the results were
more suitable for popularization. Among the patients who
underwent surgery for renal masses within eight years, a
total of 75 cases of AMLs with minimal fat with preoperative
misjudgment were found. All these patients underwent
unnecessary surgical treatment, which was caused by the
limitations of diagnosis. Only 58 cases were included in the

study, and the remaining cases were excluded from the study
due to incomplete data. The disease accounts for a lower
proportion of patients undergoing surgery for renal masses,
which may lead to misclassification. Some studies adopted
data amplification method to solve this problem (28, 30,
31). In the absence of data amplification, we found little dif-
ference between the predicted results and the actual results.

Unlike some literatures (13, 20, 28, 32), we did not sep-
arately compare AMLs with minimal fat with a distinct
pathological type of renal tumors. We compared AMLs with
minimal fat with common renal tumors as a whole, which
was consistent with the real diagnostic situation. When we
found a small renal mass with minimal fat, clear cell carci-
noma was the most likely diagnosis. However, it was difficult
to determine the diagnosis; when the mass was located
superficially, the attenuation of the unenhanced scan was
relatively high, the enhanced scan had no typical enhance-
ment pattern of wash-in and washout, and there were no
surrounding fat stranding sign, increased vessels, or lymph
nodes. Although relatively rare, we need to consider the pos-
sibility of benign lesions, especially AMLmf, with the highest
proportion of benign lesions, and thus, the identification of
AMLmf with renal carcinoma is consistent with the diagnos-
tic procedure. Finally, we included 198 patients with renal
tumors (63 cases of renal clear cell carcinoma, 31 cases of
papillary renal cell carcinoma, 32 cases of chromophobe cell
carcinoma, 58 cases of AMLmf, and 14 cases of oncocy-
toma), who underwent surgical resection in our hospital
during the same period. Benign tumors accounted for
22.73% in our study, of which AMLmf accounted for
approximately 64.44% of benign tumors, which is roughly
the same as reported in the literature (20, 23).

The study had some limitations. First of all, the total
sample size was not very large, mainly because of the low
incidence of AMLmf, and we had only chosen patients
who had surgery in our hospital without multicenter cooper-
ation, which may increase the risk of overfitting. Working
with more medical centers to obtain more cases will lead
to better models. Second, we did not select all the clear cell
carcinomas operated in our hospital at the same period,
but only selected the cases with radiographic manifestations
similar to those of AMLmf in this group of patients, which
were not particularly typical clear cell carcinomas on CT
images. Third, the cases included in this study had a large time
span, and different CT machines and scanning technologies
were used, which was consistent with the clinical practice.
However, the early scanning equipment and technologies
may have reduced the overall diagnostic accuracy. Third, the
cases included in this study had a large time span, and differ-
ent CT machines and scanning technologies were used, which
was consistent with the clinical practice. However, the early
scanning equipment and technologies may have reduced the
overall diagnostic accuracy.

In conclusion, the machine learning model established
by radiomics features extracted from multiphase MSCT
images can be used to identify AMLmf from other renal
masses. These models are expected to assist manual diagno-
sis and improve work efficiency and accuracy, which is a
noninvasive and effective method for differential diagnosis.
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