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Abstract: Relationships between interaction energy (Eint) and electron density properties at the
X···X bond critical point or the d(X···X) distance were established for the large set of structures
[(A)nY–X···X–Z(B)m] bearing the halogen bonds Cl···Cl, Br···Br, and I···I (640 structures in total).
The best estimator of Eint is the kinetic energy density (Gb), which reasonably approximates the
whole set of the structures as −Eint = 0.128Gb

2
− 0.82Gb + 1.66 (R2 = 0.91, mean absolute deviation

0.39 kcal/mol) and demonstrates low dispersion. The potential and kinetic energy densities, electron
density, and the d(X···X) distance behave similarly as estimators of Eint for the individual series
Cl···Cl, Br···Br, and I···I. A number of the Eint(property) correlations are recommended for the practical
application in the express estimates of the strength of the homo-halogen bonds.

Keywords: bond critical point properties; interaction energy; bond energy; bond strength; density
functional theory; electron density; energy density; halogen bond; QTAIM

1. Introduction

Halogen bonds (XBs) belong to the most important type of non-covalent interactions (apart
from hydrogen bonds) [1–11]. XB is usually formulated as an interaction of the Y–Hal···X–Z type
where Hal is a halogen atom (Lewis acid, XB donor) bearing a region with the positive electrostatic
potential directed toward the X atom (the co-called σ-hole) and X is a donor of electron density (Lewis
base, XB acceptor) (X = N, O, S, Se, Hal, Hal−, etc.). Halogen bonds play a very important role in
molecular recognition and crystal engineering, synthesis of functional solid materials [12–22], and
drug design [23–25]. They have a broad application in the tuning of useful functional properties such
as redox, magnetic [26,27], or catalytic [28–30] properties, and nonlinear optical (NLO) activity [31,32].
Non-covalent interactions, including XB, are involved in the control of various biochemical processes
participating in the organization of the secondary, tertiary, and quaternary protein structures [33–37].

One of the most important characteristics of XB controlling its functional properties is the halogen
bond energy (EXB). Experimental determination of EXB is usually associated with significant technical
issues [38,39], while its direct theoretical calculations are not always possible or reliable (e.g., for the
intramolecular XBs or molecular associates involving several non-covalent interactions, Watson-Crick
base pairs being among them). One of the most attractive and sometimes the only possible methods
of the approximate express estimate of the bond energy for weak interactions is the application of
appropriate EXB(property) correlations [40–87]. This method has got an impulse after the publication
of an article by Espinosa, Molins, and Lecomte [88]. It was found that the interaction energy (Eint) of
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hydrogen bonds of the X–H···O type correlates with the potential energy density at the bond critical
point (BCP) of the electron density distribution, Vb, as Equation (1)

Eint ≈ 0.5Vb (1)

(the co-called EML formula, the interaction energy between two fragments A and B is defined as
Eint = EA–B − E{A} − E{B}, where EA–B is energy of the fully optimized molecule A–B, E{A}, and E{B}

are energies of the fragments A and B with unrelaxed geometries corresponding to the equilibrium
structure A–B).

Later, similar relationships between Eint and Vb or kinetic energy density at BCP (Gb) were
deduced for the FH···FR hydrogen bonds [89,90] (Equation (2)) and for the Y–Hal···Z(B)m halogen
bonds (Hal = Cl, Br, I; Z = N, S, O, C) [79] (Equations (3)–(5)).

Eint ≈ −0.429Gb (2)

Eint ≈ 0.49Vb ≈ −0.47Gb, for Hal = Cl (3)

Eint ≈ 0.58Vb ≈ −0.57Gb, for Hal = Br (4)

Eint ≈ 0.68Vb ≈ −0.67Gb, for Hal = I. (5)

Since the publication of the EML formula, numerous but usually not justified attempts to apply this
relationship to different types of non-covalent interactions were undertaken. However, it was shown
that these equations may not be universal, and their validity may be restricted only to the type of
interactions for which they were deduced [91,92]. Thus, there is a great practical need to establish the
reliable Eint(property) relationships for the most important types of non-covalent interactions others
than the X–H···O, FH···FR, and Y–Hal···Z(B)m ones.

Recently, the author started the project aimed to establish the Eint(property) relationships for
various types of non-covalent interactions. In the first publication of this research cycle [92], the
halogen bonds of the [(A)nZ–Y···X]− type (X, Y = F, Cl, Br; Z = F, Cl, Br, I, C, N, O, H, S, P, Si, B, totally
441 structure) formed upon interaction of the neutral fragment (A)nZ–Y and the halide anion X− were
considered. It was shown that the Eint(property) correlations are different for each particular type
of the Y···X− interaction and they are also different from Equations (1)–(4). Several Eint(property)
relationships practically important for express estimates of the interaction energy were recommended
for each series of these structures.

In this work, the Eint(property) relationships are analyzed for the homo-halogen bonds of the
[(A)nY–X···X–Z(B)m] type formed upon the interaction of two neutral fragments (A)nY–X and X–Z(B)m

(X = Cl, Br, I; Y, Z = F, Cl, Br, C, N, O, H, S, P, Si, B). For the first time, the Eint(property) relationships
were deduced for the Cl···Cl, Br···Br, and I···I homo-XBs based on a large, statistically significant set of
structures (640 structures in total).

2. Computational Details

Full geometry optimization and energy calculations of all structures were carried out at the DFT
level of theory by using the M06-2X functional [93] with the help of the Gaussian 09 [94] program
package applying the tight optimization criteria and ultrafine integration grid. Cartesian d and f basis
functions (6d, 10f) were used in all calculations. The M06-2X function reasonably describes weak
dispersion forces and is widely and successfully used for the treatment of structures with non-covalent
interactions. It was shown by Kozuch and Martin [95] for a set of 51 structures bearing XBs that the
root-mean-square deviation, the mean signed error, and the maximum error of dissociation energy for
M06-2X are 0.43, 0.01, and 1.58 kcal/mol, respectively, relative to the CCSD(T) method. Additionally, it
was shown [92] that the Eint(Vb) correlation for structures of the [(A)nZ–Y···F]− type (Y = F, Cl, Br) at



Molecules 2019, 24, 2733 3 of 18

the M06-2X level of theory has similar parameters as that for the MP4, CCSD, and CCSD(T) methods
(see Figure 7A in [90]).

Molecular systems of the medium and large dimension are usually computationally treated using
double zeta quality basis sets with corresponding diffuse and polarization functions. Therefore, to
ensure that the results of this work may be successfully transferred to larger molecular systems, the
6-31+G* basis set was used for structures of the Cl···Cl and Br···Br types and the all electron DZP basis
set [96–98] was applied for all atoms of the I···I structures. Previously [92], it was shown that the 6-31+G*
basis set performs similarly to the much more extended triple zeta basis set 6-311++G(3df,3pd) in the
direct calculations of Eint and the electron density based properties of the [(A)nZ–Y···F]− structures.
Coefficients of the Eint(Vb) correlations obtained for these two basis sets are also similar (see Figures
5C, 6C, and 7D in [90]). Meanwhile, the effect of the computational method and basis set is worthwhile
to investigate but this should be the subject of separate work.

The Hessian matrix was calculated for all optimized structures to prove the location of correct
minima. No symmetry operations were applied during the calculations. The stability test was
performed and the stable solutions were achieved for all structures using the keyword STABLE(OPT).
BSSE was corrected using the counterpoise (CP) method [99,100]. A detailed discussion of the BSSE
effect for each Cl···Cl, Br···Br, and I···I series is provided in the Supplementary Material. The topological
analysis of the electron density distribution was performed with the help of the AIM method developed
by Bader [101] using the AIMAll program [102].

3. Computational Models

For this study, structures [(A)nY–X···X–Z(B)m] (X = Cl, Br, I; Y, Z = F, Cl, Br, C, N, O, H, S, P, Si, B)
bearing the homo-halogen bonds Cl···Cl, Br···Br, and I···I and formed upon interaction of two neutral
fragments (A)nY–X and X–Z(B)m were selected as computational models (640 structures in total, among
them 210 structures of the Cl···Cl type, 216 structures of the Br···Br type, and 214 structures of the I···I
type). In this work, the fragment (A)nY–X (at the left side of the complex formula) corresponds to the
XB donor and the fragment X–Z(B)m (at the right side of the complex formula) corresponds to the
XB acceptor.

For each type of halogen bonds, three series were considered, i.e., [(A)nY–X···X–F], [(A)nY–X···X–H],
and [F–X···X–Z(B)m]. In the first two series, the XB donor part is variable while the XB acceptor part is
fixed with the Z(B)m group being either a strong electron acceptor (Z(B)m = F) or an electron donor
(Z(B)m = H). Series of the structures with even stronger electron donor groups Z(B)m = CMe3, CHMe2,
or CH3 were also calculated. However, in most of cases, secondary X···H–C interactions were found
and, therefore, the individual X···X halogen bonds cannot be isolated for the analysis.

In the third series, [F–X···X–Z(B)m], the XB acceptor part is variable whereas the XB donor part is
fixed ((A)nY = F). Most of the attempts to calculate similar series with an electron donor group (A)nY = H
failed because the σ-hole at the terminal X atom of the XB donor is not sufficiently pronounced in this
case, and other interactions prevail in the resulting structures.

Ninety various groups (A)nY or Z(B)m were considered to analyze the effect of the second-order
atoms Y and Z and remote groups A and B as well as the effects of the orbital hybridization and the
oxidation state of the Y and Z atoms on the Eint(property) correlations. The groups A and B vary from
strong electron donors to strong electron acceptors to ensure a broad interval of the interaction energies
within each series (see Table S1 in the Supplementary Material for the complete list of the calculated
structures).

There are two typical geometries of the fragments with halogen bonds [103]. The first one is
characterized by the similar (or equal) angles θ (θ1 ≈ θ2) (type I, Figure 1). The second geometry
corresponds to θ1 ≈ 180◦ and θ2 ≈ 90◦ (type II, Figure 1). In this work, only structures of type II are
discussed since they are typically more stable than structures of type I. Indeed, 54 structures of type II
and only 14 structures of type I were successfully optimized for the [(A)nY–Cl···Cl–H] series (90 various
(A)nY groups were considered, Table S1).
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Only structures which have no other contacts shorter than the sum of van der Waals radii between
the (A)nY–X and X–Z(B)m fragments, apart from the X···X one, are included in the analysis. Additionally,
only structures with θ2 ≥ 70◦ were analyzed because, in those with θ2 < 70◦, the X···Z interaction may
play a significant or even a predominant role compared to the X···X interaction (Sixty eight structures
of the [F–X···X–Z(B)m] type with the X···Z contact shorter the sum of van der Waals radii but with θ2
≥ 70◦ and with no other weak interactions were included in the analysis since no BCPs for the X···Z
contacts were found). Effect of the angle θ2 on the correlations under study is discussed in Section 4.6.
“Effect of angle θ2”.

Further in this work, the series [(A)nY–Cl···Cl–Z(B)m], [(A)nY–Br···Br–Z(B)m], and [(A)nY–I···I–Z(B)m]
are called “large”, while the series [(A)nY–Cl···Cl–H], [(A)nY–Cl···Cl–F], [F–Cl···Cl–Z(B)m],
[(A)nY–Br···Br–H], [(A)nY–Br···Br–F], [F–Br···Br–Z(B)m], [(A)nY–I···I–H], [(A)nY–I···I–F], and [F–I···I–Z(B)m]
are called “small” series.

4. Results and Discussion

The calculated X···X interaction energy with the BSSE correction in the whole set of the structures
varies from 0.34 to −9.24 kcal/mol. All three types of halogen bonds, Cl···Cl, Br···Br, and I···I, have
comparable strengths. The dispersion of Eint increases along the row X = Cl < Br < I (−0.18 to −5.01,
0.08 to −7.10, and 0.34 to −9.24 kcal/mol, respectively). The Cl···Cl interaction is slightly weaker than
the corresponding Br···Br and I···I bonds for the [(A)nY–X···X–H] and [F–X···X–Z(B)m] series (Table S2
in the Supplementary Material). The halogen bonds in the series [F–X···X–Z(B)m] are the strongest ones
while the XBs in the series [(A)nY–X···X–F] are typically the weakest bonds.

In the next sections, the Eint(property) relationships are considered for each estimator [i.e., the
electron density, ρb, its Laplacian, ∇2ρb, the curvature of ρ(r) which is parallel to the bond path direction
(positive), λ||,b, potential, kinetic, and total energy densities, V, Gb, and Hb and the X···X distance,
d(X···X)] within the whole set and various series of the structures.

4.1. Whole Set of Structures

Potential energy density at BCP (Vb). A rough correlation between Eint and the potential energy
density at the X···X BCP is observed for the whole set of the structures (Figure 2A). Very curiously,
this dependence is obviously nonlinear and may be approximated with the similar quality by either a
quadratic or an exponential function −Eint = 0.0315Vb

2
− 0.219Vb − 0.31 or −Eint = 3.67e−0.09Vb

− 4.19.
Such behavior is unusual since most of the Eint(Vb) correlations reported in literature obey a linear law.
The R2 values (0.80) indicate that the correlations are of rather poor quality. Meanwhile, the mean
absolute deviation (MAD) for these fittings is ~0.60 kcal/mol. This value is well within the typical
accuracy of the DFT methods (several kcal/mol) and this is almost three times less than the average
interaction energy for this structural set (1.72 kcal/mol).
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Thus, in the case of structures [(A)nY–X···X–Z(B)m] with the homo-halogen bonds formed upon
interaction of the neutral fragment, Eint may be roughly estimated from Vb using a single formula
for all X = Cl, Br, and I. This situation is very different from that found recently for the set of anionic
structures [(A)nZ–Y···X]− (Y, X = F, Cl, Br) [92]. In the latter case, the Eint(Vb) relationship is much more
sensitive to the nature of the interacting X and Y atoms, and there is no single dependence which could
approximate Eint through Vb for the whole set.

Kinetic energy density at BCP (Gb). The quadratic and exponential relationships between Eint

and Gb (−Eint = 0.1280Gb
2
− 0.824Gb + 1.66 and − Eint = 0.144e0.39Gb

− 0.13) display significantly lower
dispersion and have noticeably better quality than the Eint(Vb) dependence (Figure 2B). The R2 value is
quite reasonable (0.91) and MAD is 0.39 and 0.40 kcal/mol that is more than four times lower than the
average interaction energy for this structural set (1.72 kcal/mol). Thus, the kinetic energy density at
BCP is a better estimator of Eint compared to Vb, and a single function may be used for the reasonable
approximation of interaction energy for the whole set of structures bearing the homo-halogen bonds
Cl···Cl, Br···Br, and I···I. Meanwhile, both Eint(Vb) and Eint(Gb) correlations found here, being strongly
nonlinear, are qualitatively different from the EML formula and other relationships published in the
literature for other types of non-covalent interactions (Equations (1)–(5)) [79,88–90].
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Figure 2. Plots of −Eint against −Vb (A), Gb (B), ρb (C), ∇2ρb (D), λ||,b (E), Hb (F), and d(X···X) (G)
for the whole set of the structures [(A)nY–X···X–Z(B)m] and the “large” series [(A)nY–Cl···Cl–Z(B)m],
[(A)nY–Br···Br–Z(B)m], and [(A)nY–I···I–Z(B)m].

Electron density at BCP (ρb). The correlation of Eint against ρb is also clearly nonlinear that
is different from most of the cases reported in the literature. Quality of the Eint(ρb) relationship is
intermediate between the Eint(Vb) and Eint(Gb) dependencies (Figure 2C).

Other estimators. There are no single Eint(property) trends for other estimators [∇2ρb, λ||,b, Hb,
and d(X···X)] which could describe the whole set of structures. At least two various dependencies are
clearly visible on each Eint(property) plot (Figure 2D–G).

4.2. Series [(A)nY–Cl···Cl–Z(B)m], [(A)nY–Br···Br–Z(B)m], and [(A)nY–I···I–Z(B)m]

Potential energy density at BCP. The Eint(Vb) correlations for each specific type of the halogen
bond are of significantly better quality than those for the whole set in terms of both R2 (0.92–0.96)
and MAD (0.18–0.45 kcal/mol) (Figure 2A). The Cl···Cl structures are clearly better described than
the Br···Br or I···I structures. Both series [(A)nY–Cl···Cl–Z(B)m] and [(A)nY–Br···Br–Z(B)m] may be well
approximated by a single quadratic or exponential function, the former performing slightly better with
R2 = 0.92 and MAD = 0.32 kcal/mol. The [(A)nY–I···I–Z(B)m] series lies below the series with the Cl···Cl
and Br···Br bonds on the −Eint(–Vb) plot.

Kinetic energy density at BCP. The kinetic energy density behaves similarly to the potential
energy density for the estimate of Eint within these series with the MAD values being only slightly
worse (R2 = 0.92–0.96, MAD = 0.18–0.47 kcal/mol) (Figure 2B). However, Gb demonstrates lower
dispersion compared to Vb. Indeed, the Eint(Gb) relationships for all series [(A)nY–Cl···Cl–Z(B)m],
[(A)nY–Br···Br–Z(B)m] and [(A)nY–I···I–Z(B)m] have similar parameters despite the application of
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different basis sets (6-31+G* for the Cl···Cl and Br···Br structures and DZP for the I···I structures,
although both these basis sets are of a double zeta quality). Meanwhile, the Eint(Vb) relationship for
the iodine halogen bonds is quite different from those for the Cl···Cl and Br···Br structures. Thus, the
application of Gb as an estimator of Eint is preferable over Vb also from this point of view.

Electron density at BCP. The Eint(ρb) relationships for these series are similar to Eint(Vb) and
Eint(Gb) (Figure 2C). In contrast to Vb, both series [(A)nY–Br···Br–Z(B)m] and [(A)nY–I···I–Z(B)m] may
be approximated by a single function (R2 = 0.91, MAD = 0.43 kcal/mol), while the fitting for the
[(A)nY–Cl···Cl–Z(B)m] series has quite different parameters.

Laplacian and curvature of electron density distribution at BCP. Both Eint(∇2ρb) and Eint(λ||,b)
relationships for these series have similar features and are described by either quadratic or exponential
function (Figure 2D,E). Quality of the approximations for the Cl···Cl series is similar to the Vb, Gb,
and ρb estimators. However, both ∇2ρb and λ||,b perform worse for the Br···Br and, in particular, I···I
series. Both Cl···Cl and Br···Br series may be quite well treated by a single function, whereas the fitting
parameters for the I···I series are very different. Various basis sets used for the Cl···Cl + Br···Br and I···I
structures are conceivably responsible for this effect.

Total energy density at BCP. The Eint(Hb) relationships demonstrate different behavior for the
Cl···Cl and Br···Br series, on one side, and for the I···I series, on the other side (Figure 2F). For the
Cl···Cl series, the negative interaction energy increases with the enhancement of Hb. This series may
be approximated by a single exponential function but with rather poor quality for this type of the
halogen bond (R2 = 0.87 and MAD = 0.31 kcal/mol). For the Br···Br series, the Eint(Hb) function is not
well-defined. Finally, for the I···I structures, −Eint increases with the decrease of Hb. The −Eint(Hb)
relationship is nearly linear with R2 = 0.93 and MAD = 0.42 kcal/mol and may be used for the estimate
of Eint for this type of halogen bonds.

Internuclear distance d(X···X). The −Eint(d(X···X)) dependencies are exponential with rather
different parameters for the Cl···Cl, Br···Br, and, in particular, I···I structures (Figure 2G). The quality of
this estimator is similar to Vb, Gb, and ρb.

4.3. Series [(A)nY–X···X–H], [(A)nY–X···X–F], and [F–X···X–Z(B)m]

Typically, there are no statistically meaningful trends describing these series (Figure S1 in the
Supplementary Material). Several dependencies corresponding to the “small” series with quite different
parameters are clearly visible on the Eint(property) plots. The best Eint(Gb) approximation was found
for the [F–X···X–Z(B)m] series with R2 = 0.86 and MAD = 0.44 kcal/mol (Figure 3A). The Eint(ρb) function
also reasonably describes each of the pairs “[(A)nY–Br···Br–H] + [(A)nY–I···I–H] and “[(A)nY–Br···Br–F]
+ [(A)nY–I···I–F] (Figure 3B) but the fitting parameters for the corresponding Cl···Cl series are quite
different. This situation demonstrates that the Eint(property) relationships significantly depend on the
nature of the interacting atoms X.
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4.4. “Small” Series

Potential energy density at BCP. The Eint(Vb) relationship for each of nine “small” series may be
reasonably approximated by a linear function. The quadratic fitting is noticeably better than the linear
one only for the [F–Cl···Cl–Z(B)m], [(A)nY–I···I–H], and [(A)nY–I···I–F] series (Figure 4A–C). The points
corresponding to Br–Cl···Cl–H and Br–Cl···Cl–F are clearly out of the trends and they were excluded
from the further analysis. Analysis of the correlations indicates the following.

First, the slope and negative interception of the −Eint(−Vb) relationships for the [F–Cl···Cl–Z(B)m],
[F–Br···Br–Z(B)m], and [F–I···I–Z(B)m] series are significantly higher than for the other series, whereas
those for the [(A)nY–Cl···Cl–F], [(A)nY–Br···Br–F], and [(A)nY–I···I–F] structures are the lowest.

Second, quality of the dependencies for the “small” series is usually worse than for the “large”
ones in terms of R2. However, the MAD values for the [(A)nY–{Cl,Br,I}···{Cl,Br,I}–{H,F}] “small” series
(0.05–0.21 kcal/mol) are significantly lower than for the corresponding “large” series (0.18–0.45 kcal/mol).
The estimate of Eint for the structures [F–Br···Br–Z(B)m] and [F–I···I–Z(B)m] is preferable using equations
for the “large” series because both MAD and R2 parameters are worse for these “small” series than for
the corresponding “large” ones.

Third, among all “small” series, only one, [(A)nY–Cl···Cl–H], is described by an equation similar
to the EML formula (Eint = 0.47Vb + 0.27). Equations (3)–(5) obtained for the halogen bonds of the X···D
type (X = Cl, Br, I; D = N, S, O, C) [79] are also not applicable to structures of the [(A)nY–X···X–Z(B)m]
type discussed in this work (except the same [(A)nY–Cl···Cl–H] series).
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Total energy density at BCP. For the Cl···Cl structures, the −Eint(Hb) function shows similar
quadratic or exponential behavior for all three “small” series [(A)nY–Cl···Cl–H], [(A)nY–Cl···Cl–F]
and [F–Cl···Cl–Z(B)m] (Figure 4D) although with quite different parameters: interaction energy −Eint

increases with the enhancement of Hb. For the Br···Br structures, the −Eint(Hb) relationship is of the
same type for [(A)nY–Br···Br–H] and [(A)nY–Br···Br–F] (Figure 4E). However, −Eint increases with the
reduction of Hb as a quadratic/exponential function for [F–Br···Br–Z(B)m] and as a linear function for
the I...I structures (Figure 4F). The quality of all Eint(Hb) dependencies for the “small” series is worse
than for the other estimators.

Other estimators. The main features of the Eint(Gb), Eint(ρb), Eint(∇2ρb), Eint(λ||,b), and Eint(d(X···X))
relationships for the “small” series are similar to the corresponding Eint(Vb) dependencies (Figure S2
in Supplementary Material). Laplacian describes the series [F–I···I–Z(B)m] particularly poor.

4.5. Estimate of Eint from an Integral of Electronic Virial over Interatomic Zero-Flux Surface (IAS)

Recently, Romanova, Lyssenko, and Ananyev [104] reported that the integral of electronic virial
V(r) over IAS (

s
IAS V(r)dr, r ∈ IAS) may be a better estimator of Eint than the potential energy density

at BCP (Vb). This result was obtained for a set of 50 structures with very different types of non-covalent
interactions. Here, the quality of this estimator was verified for structures of the [(A)nY–Cl···Cl–Z(B)m]
type. The calculations indicated that the IAS integral of electronic virial field behaves similarly as Vb for
the [(A)nY–Cl···Cl–H] and [(A)nY–Cl···Cl–F] series (compare Figures 4A and 5A). However, the former
estimator works much worse for the [F–Cl···Cl–Z(B)m] series providing unacceptably poor R2 value
(0.77) and relatively high MAD (0.36 kcal/mol). Correspondingly, the Eint(

s
IAS V(r)dr) correlation for

the whole series [(A)nY–Cl···Cl–Z(B)m] is also significantly worse than the Eint(Vb) relationship with R2

= 0.89 vs. 0.96 and MAD = 0.28 vs. 0.18 kcal/mol.
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The plot of Vb against
s

IAS V(r)dr demonstrates a nice linear correlation for [(A)nY–Cl···Cl–H]
(R2 = 0.99), a quite good relationship for [(A)nY–Cl···Cl–F] (R2 = 0.96) but a poor dependence for
[F–Cl···Cl–Z(B)m] (R2 = 0.75) (Figure 5B). Thus, the integral of electronic virial over IAS cannot
be recommended as an acceptable estimator of Eint at least for the structures bearing the Cl···Cl
halogen bond.

4.6. Effect of Angle θ2

Although no BCP was found for the X1···Z contact in structures [(A)nY–X1···X2–Z(B)m] included
in the analysis, some of them have the angleX1X2Z (θ2) lower than 90◦. This may point out some
interaction between the atoms X1 and Z. To verify if this possible interaction affects the Eint(property)
dependencies, all structures were divided into three groups, i.e., those with θ2 ≥ 90◦, 80◦ ≤ θ2 < 90◦,
and 70◦ ≤ θ2 < 80◦. In the second and third groups, structures with the X1···Z distance shorter than
the sum of van der Walls radii were also separated from those with the X1···Z distance longer than
this sum.

The Eint(Vb) dependencies for all these groups of structures are shown in Figure 6A–C. All
structures fit very well the same trends within each series independently on the angle θ2 and the X1···Z
distance. If considering only structures with θ2 ≥ 90◦, R2 and MAD values are similar to those for
the complete structural series except the Br···Br structures (compare Figures 2A and 6D). In the latter
case, exclusion of the structures with θ2 < 90◦ results in a much poorer R2 value of 0.85 compared
to the complete set for which R2 = 0.93. All this indicates no effect of the angle θ2 and the X1···Z
distance (within the selected ranges) on the Eint(Vb) dependencies. Similar results were obtained for
all other estimators.
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5. Final Remarks

In this work, the Eint(property) correlations were established and analyzed for the first time
for the large statistically significant sets of the homo-halogen bonds Cl···Cl, Br···Br, and I···I formed
upon interaction of two neutral fragments at the M06-2X/6-31+G* (the Cl···Cl and Br···Br bonds) and
M06-2X/DZP (the I···I bond) levels of theory. Electron density, its Laplacian, curvature of the electron
density distribution, potential, kinetic, and total energy densities at BCP, integral of electronic virial
over IAS and the d(X···X) internuclear distance were examined as estimators of the interaction energy.
The correlations obtained in this work have a significant practical potential since they lead to interaction
energies of the entire classes of the halogen bonds with the electron density distribution or even only
the d(X···X) internuclear distance being in the hands. This is particularly important for the systems
with multiple intermolecular non-covalent interactions or those bearing intramolecular XBs because
a direct determination or calculation of Eint for such systems is an extremely difficult or often even
impossible task. The following conclusions can be made.

First, the whole set of structures can be reasonably approximated by a single quadratic function
−Eint = 0.128Gb

2
− 0.82Gb + 1.66 with R2 = 0.91 and MAD = 0.39 kcal/mol. For other estimators, no

reasonable single correlation was found for the whole structural set.
Second, each of the series Cl···Cl, Br···Br, and I···I can be well described individually by the Eint(Vb),

Eint(Gb), Eint(ρb), Eint(λ||,b), and Eint(d(X···X)) relationships, all of them being nonlinear (R2 = 0.90–0.96,
MAD = 0.18–0.50 kcal/mol). Quality of these relationships is better for the Cl···Cl structures compared
to the Br···Br and I···I ones. Total energy density behaves well only for the I···I structures while the
−Eint(Hb) function is not well-defined for the Br···Br structures. Laplacian ∇2ρb works well for the
Cl···Cl and Br···Br series but not for the I···I one.
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Third, the kinetic energy density at BCP can be recommended as the best estimator of Eint due to
lower dispersion of the Eint(Gb) functions.

Fourth, typically, there are no statistically meaningful trends describing the series [(A)nY–X···X–H],
[(A)nY–X···X–F], and [F–X···X–Z(B)m].

Fifth, quality of correlations for the “small” series is usually worse than that for the “large”
series Cl···Cl, Br···Br, and I···I in terms of R2 but it is better in terms of MAD (with exception of the
[F–Br···Br–Z(B)m] and [F–I···I–Z(B)m] structures).

Sixth, the obtained here Eint(Vb) and Eint(Gb) relationships are close to Equations (1)–(5) only for
the [(A)nY–Cl···Cl–H] structures. Additionally, the Eint(property) correlations obtained here for the
Cl···Cl and Br···Br bonds are significantly different from those found previously for the Cl···Cl− and
Br···Br− interactions between the neutral fragments (A)nY–Hal and the halide anion Hal− [92]. This
once again demonstrates that these dependencies are not universal and they should be established for
each particular type of non-covalent interactions.

Seventh, the IAS integral of electronic virial
s

IAS V(r)dr cannot be recommended as an Eint

estimator at least for the Cl···Cl bond.
Eighth, the BSSE effect is insignificant for the Cl···Cl structures but becomes important for the I···I

and, in particular, Br···Br structures.
The Eint(property) relationships recommended for the Cl···Cl, Br···Br, and I···I interactions are given

in Table 1 (for the whole set and “large” series”) and Table 2 (for the “small” series). Two directions
toward the further extension of investigations in this field can be mentioned, i.e., (i) establishment of
the Eint(property) relationships for the hetero-halogen bonds Hal1···Hal2 (Hal1 , Hal2) and other types
of the non-covalent interactions (chalcogen, pnictogen, tetrel bonds, metallophilic interactions, etc.)
and (ii) analysis of the effect of computational method, basis set and effective core pseudopotentials on
these correlations. The corresponding studies are currently underway.

Table 1. Relationships recommended for the estimates of Eint (in kcal/mol) for the whole set and “large”
series of structures [(A)nY–X···X–Z(B)m] at the M06-2X/6-31+G* (X = Cl, Br) and M06-2X/DZP (X = I)
levels of theory.

Series Estimator Equation

Whole set Gb, kcal/(mol•bohr3) −Eint = 0.128Gb
2
− 0.824Gb + 1.66

Cl···Cl

Vb, kcal/(mol•bohr3) −Eint = 0.1006Vb
2 + 0.218Vb + 0.55

Gb, kcal/(mol•bohr3) −Eint = 0.0841Gb
2
− 0.367Gb + 0.84

ρb, e/Å3
−Eint = 535.9ρb

2
− 31.13ρb + 0.87

∇
2ρb, e/Å5

−Eint = 0.09e2.405∇2ρb + 0.17

λ||,b, e/Å5
−Eint = 0.099e1.762λ||,b + 0.17

d(X···X), Å −Eint = 3.66×109e−6.98d(X···X) + 0.43

Br···Br

Vb, kcal/(mol•bohr3) −Eint = 0.0926Vb
2 + 0.173Vb + 0.16

Gb, kcal/(mol•bohr3) −Eint = 0.1178Gb
2
− 0.73Gb + 1.50

ρb, e/Å3
−Eint = 380.6ρb

2
− 24.78ρb + 0.42

∇
2ρb, e/Å5

−Eint = 0.07e2.624∇2ρb
− 0.10

λ||,b, e/Å5
−Eint = 0.30e1.306λ||,b

− 0.71

d(X···X), Å −Eint = 1.05×109e−6.35d(X···X) + 0.19

I···I

Vb, kcal/(mol•bohr3) −Eint = 0.0635Vb
2 + 0.217Vb + 0.25

Gb, kcal/(mol•bohr3) −Eint = 0.1564Gb
2
− 1.138Gb + 2.25

ρb, e/Å3
−Eint = 305.2ρb

2
− 21.78ρb + 0.44

λ||,b, e/Å5
−Eint = 0.031e2.818λ||,b

− 0.25

Hb, kcal/(mol•bohr3) −Eint = −2.35Hb + 1.87

d(X···X), Å −Eint = 1.03×108e−5.15d(X···X) + 0.07
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Table 2. Relationships −Eint(Vb) recommended for the estimates of Eint (in kcal/mol) for the “small”
series of structures [(A)nY–X···X–H] and [(A)nY–X···X–F] at the M06-2X/6-31+G* (X = Cl, Br) and
M06-2X/DZP (X = I) levels of theory [Vb in kcal/(mol•bohr3)].

Series Equation

[(A)nY–Cl···Cl–H] −Eint = −0.47Vb − 0.27

[(A)nY–Cl···Cl–F] −Eint = −0.21Vb + 0.07

[(A)nY–Br···Br–H] −Eint = −0.79Vb − 1.61

[(A)nY–Br···Br–F] −Eint = −0.49Vb − 1.22

[(A)nY–I···I–H] −Eint = 0.0581Vb
2 + 0.007Vb − 0.19

[(A)nY–I···I–F] −Eint = 0.0360Vb
2 + 0.025Vb − 0.31

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/15/2733/s1,
discussion of the BSSE effect, Figure S1: plots of −Eint against −Vb, Gb, ρb, ∇2ρb, λ||,b, Hb and d(X···X) for the series
[(A)nY–X···X–H], [(A)nY–X···X–F] and [F–X···X–Z(B)m], Figure S2: plots of −Eint against Gb, ρb, ∇2ρb, λ||,b and
d(X···X) for the “small” series of structures [(A)nY–X···X–Z(B)m], Figure S3: plots of −Eint with the CP correction
against −Eint without the CP correction and plots of −Eint with and without the CP correction against −Vb for the
“large” series of structures [(A)nY–X···X–Z(B)m], Table S1: calculated structures [(A)nY–X···X–Z(B)m], Table S2:
negative X···X interaction energies, −Eint, with BSSE correction calculated for the [(A)nY–X...X–Z(B)m] structures at
the M06-2X/6-31+G* (X = Cl, Br) and M06-2X/DZP (X = I) levels.
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