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Abstract
1.	 Increasingly, often ecologist collects data with nonlinear trends, heterogeneous 
variances, temporal correlation, and hierarchical structure. Nonlinear mixed‐ef‐
fects models offer a flexible approach to such data, but the estimation and inter‐
pretation of these models present challenges, partly associated with the lack of 
worked examples in the ecological literature.

2.	 We illustrate the nonlinear mixed‐effects modeling approach using temporal dy‐
namics of vegetation moisture with field data from northwestern Patagonia. This 
is a Mediterranean‐type climate region where modeling temporal changes in live 
fuel moisture content are conceptually relevant (ecological theory) and have prac‐
tical implications (fire management). We used this approach to answer whether 
moisture dynamics varies among functional groups and aridity conditions, and 
compared it with other simpler statistical models. The modeling process is set 
out “step‐by‐step”: We start translating the ideas about the system dynamics to 
a statistical model, which is made increasingly complex in order to include differ‐
ent sources of variability and correlation structures. We provide guidelines and R 
scripts (including a new self‐starting function) that make data analyses reproduc‐
ible. We also explain how to extract the parameter estimates from the R output.

3.	 Our modeling approach suggests moisture dynamic to vary between grasses and 
shrubs, and between grasses facing different aridity conditions. Compared to 
more classical models, the nonlinear mixed‐effects model showed greater good‐
ness of fit and met statistical assumptions. While the mixed‐effects approach ac‐
counts for spatial nesting, temporal dependence, and variance heterogeneity; the 
nonlinear function allowed to model the seasonal pattern.

4.	 Parameters of the nonlinear mixed‐effects model reflected relevant ecological 
processes. From an applied perspective, the model could forecast the time when 
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1  | INTRODUC TION

Classic statistical approaches (e.g., linear regression or ANOVA) have 
assumptions that often are not met by ecological data, such as when 
variances change with predictors or responses are nonlinear (Bolker 
et al., 2013; Zuur, Ieno, Walker, Saveliev, & Smith, 2009). Mechanistic 
or semimechanistic descriptions often benefit from nonlinear func‐
tions (Bolker, 2008) because their parameters have an ecologically 
meaningful interpretation (Miguez, Archontoulis, & Dokoohaki, 
2017), helping to clarify system processes. Furthermore, ecological 
processes operate at multiple spatio‐temporal scales (Peters et al., 
2008) producing data sets with hierarchical structures better han‐
dled by the use of random effects (Nakagawa & Schielzeth, 2013). 
Therefore, nonlinear mixed‐effects models can expand capabilities 
by including nonlinear regression and fixed and random effects 
(Lindstrom & Bates, 1990).

While nonlinear mixed‐effects models are not novel (Davidian 
& Giltinan, 2003), they still present several challenges to ecologists 
without formal training in statistics (Bolker et al., 2013). Some of 
these challenges arise from (a) the need to choose a suitable re‐
sponse function; there are many candidate functions and the variety 
can be overwhelming (Miguez et al., 2017); (b) patterns of correlation 
and variance usually occurs when experimental units (e.g., individu‐
als, plots) are measured more than once (Davidian & Giltinan, 2003); 
(c) parameter estimation has no analytical solution and iterative 
methods must be applied (Bates & Watts, 2007) often leading to ad‐
ditional hurdles (e.g., provide reasonable starting values and model 
convergence; Bolker et al., 2013). While the last one represents a 
technical challenge, on the firsts two lies part of the answer to when 
or why to apply this complex modeling approach (Figure 1).

Regarding the first challenge, ecologists seek to match patterns 
to ecological theory or simply models to data (Richards, 2005). A 
large number of ecological process have nonlinear responses, and 
many deterministic functions have been proposed (a list of typical 
examples are found in Table 1). For instance, asymptotic patterns are 
commonly observed in ecology and could be described using ratio‐
nal functions (Bolker, 2008). One well‐known example comes from 
predator–prey dynamics (Kalinkat et al., 2013). Ecological theory 
predicts that per capita consumption rate of predators (y) varies with 
prey density (x) according to predator's capture rate and handling 
time (Rall et al., 2012). When capture rate (a) and handling time (b) 
are not supposed to vary with density, the pattern is called “type‐II 
functional response” (Holling, 1959) and mathematically formalized 

as y = ax/(1 + abx). In addition, it is possible to reparameterize re‐
sponse functions according to ecological questions (Bolker, 2008). 
For example, in the type‐II functional response as presented, the 
parameters to estimate are a, a measure of hunting efficiency or suc‐
cessful search, and b, which indicates the time used to kill, ingest, 
and digest a prey (Jeschke, Kopp, & Tollrian, 2002). However, we 
can rewrite a as 1/a′ and b as 1/a′b′ and re‐express the function as 
y = a′x/(b′ + x). Now, a′ represents the maximum per capita consump‐
tion rate reached when density is large (the asymptote of the func‐
tion) and b′ is the density (x‐value) at the half‐maximum consumption 
rate. In fact, several strategies to address nonlinear patterns are 
widely used in ecology (e.g., transformations, polynomials, “splines”) 
but the main argument against those is that nonlinear models have 
meaningful parameters (other arguments are lack of parsimony and 
nonvalidity beyond range of fit; Pinheiro & Bates, 2000).

Regarding the second challenge, when nonlinear ecological pat‐
terns are, as commonly occurs in ecology, observed from grouped 
data (e.g., observations spatially clustered, subjects measured 
more than once, individuals from the same family, species with 
phylogenetic relationships; Barnett, Koper, Dobson, Schmiegelow, 
& Manseau, 2010), mixed‐effects approaches allow correlations 
within‐group observations to be considered and modeling of het‐
eroscedasticity (Davidian & Giltinan, 2003). For example, we might 
be interested in studying regional fruit production and designing an 
experiment where size of individual fruits was recorded over time 
(growth is usually sigmoidal), allowing for fruits to be nested in trees, 
trees in orchards, and orchards in regions. In such an experiment, a 
nonlinear mixed‐effects model would allow us to fit temporal curves 
to each fruit and to evaluate whether (some parameter of) the curves 
depend on fruit location, tree species, orchard management, or cli‐
mate, all of these being incorporated in the model as predictors at 
different clustering levels (West, Welch, & Galeki, 2007). Indeed, 
one of the most intuitive applications of nonlinear mixed‐effects 
models is to describe temporal within‐individual responses and to 
identify factors determining variability among individual responses 
(Davidian & Giltinan, 2003). In short, nonlinear mixed‐effects mod‐
els are nonlinear response functions allowing among‐groups random 
variation in (one or more) parameters which can be modeled from 
group‐level predictors (Bolker, 2008); these are convenient to apply 
with grouped data to describe a nonlinear ecological response, but 
their use entails more complexity than classical statistics.

Live vegetation moisture, termed as live fuel moisture content 
(LFMC) in the fire ecology context, is a typical ecological variable in 

fuel moisture becomes critical to fire occurrence. Due to the lack of worked exam‐
ples for nonlinear mixed‐effects models in the literature, our modeling approach 
could be useful to diverse ecologists dealing with complex data.

K E Y W O R D S

correlation structures, hierarchical modeling, nonlinearity, spatio‐temporal variability, time 
series
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which nonlinearity and correlation structures make it difficult to apply 
classical statistical methods. To burn, an ecosystem requires precipi‐
tation for plant biomass (fuel) to be produced, and dry weather con‐
ditions to make that biomass available for burning (Bradstock, 2010). 
LFMC is an ecological variable determining fuel biomass availability, 
thus influencing outbreak and spread of wildfires (Rossa, 2017). In 
other words, because removing the water from fuel requires energy 
(Jolly et al., 2012), higher moisture content means longer heating time 
to ignition and slower fire spread (Finney, Cohen, McAllister, & Jolly, 
2013). Consequently, LFMC modeling becomes relevant in fire‐prone 
ecosystems, such as those of Mediterranean regions, where it is im‐
portant to predict the vegetation moisture threshold at which fires 
are highly probable (Dennison & Moritz, 2009). Temporal changes in 
LFMC are determined by physiological and phenological factors as‐
sociated with weather seasonality. This seasonality influences plant 
growth rates, water loss by transpiration, and changes in soil water 
availability (Nelson, 2001). Hence, in Mediterranean‐type climate 
regions (cold and humid winters, temperate and dry summers), such 
as northwestern Patagonia (Kottek, Grieser, Beck, Rudolf, & Rubel, 
2006), seasonality causes plants to have a relatively high moisture 

during spring (when sprouting takes place) and then lower values 
during the autumn senescence (Keeley, Bond, Bradstock, Pausas, & 
Rundel, 2012). Therefore, LFMC is expected to reach a maximum 
during the growing season and steadily decrease through the dry 
season (when fires occur), until it stabilizes at a minimum; this is, 
naturally, a nonlinear response. In northwestern Patagonia, for ex‐
ample, vegetation growth season starts in early spring and ends in 
late summer/early autumn (Jobbágy, Sala, & Paruelo, 2002) overlap‐
ping part of the fire season, which starts in late spring/early summer 
(Oddi & Ghermandi, 2016). Since plants develop varied strategies to 
access water and regulate their water content status, LFMC modeling 
should consider how moisture seasonal variation differs among plant 
functional types (Castro, Tudela, & Sebastià, 2003). For example, in 
extra‐Andean Patagonia, grass and shrubs have different water‐use 
strategies (Sala, Golluscio, Lauenroth, & Soriano, 1989); shrubs ob‐
tain water from deeper soil layers (Golluscio & Oesterheld, 2007). 
Furthermore, phenological water‐use strategies within the same 
functional group can vary among coexisting species, as appears to 
occur with the shrubs Mullinum spinosum (Cav.) Pers. and Senecio 
filaginoides DC (Fernández, Nuñez, & Soriano, 1992), the first one 

F I G U R E  1  Decision‐tree scheme 
summarizing when the type of model 
introduced in this article would be useful 
to analyze ecological data. Decisions are 
categorized according to contexts linked 
to classical statistic assumptions (linear 
regression, ANOVA). Classical statistic 
is applied when linearity, independence, 
and homoscedasticity (and normality) can 
be guaranteed (green); otherwise, other 
approaches should be used (blue). This 
decision‐tree does not address all possible 
situations and approaches, for example, 
nonlinear patterns could be well modeled 
by using other linear approaches such as 
polynomials or generalized linear models 
[for more details, see Bolker (2008, p. 
397)]
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with deeper root system (Fernandez & Paruelo, 1988), or along arid‐
ity gradients, in response to changes in water availability dynamics 
in soil (Golluscio & Oesterheld, 2007). Therefore, in this region, it is 
expected that parameters of the LFMC temporal curve depend on 
type of vegetation and aridity conditions. Lastly, because field sam‐
pling must consider LFMC within‐sampling location variability (Yebra 
et al., 2013), observations are commonly clustered in space (Desbois, 
Deshayes, & Beudoin, 1997). Hence, LFMC data obtained through 
field monitoring appear suitable to be analyzed using nonlinear 
mixed‐effects models.

Although nonlinear mixed‐effects approaches are useful in many 
areas (Davidian & Giltinan, 2003), including ecology and environ‐
mental sciences (Crecente‐Campo, Tomé, Soares, & Diéguez‐Aranda, 
2010; Miguez, Villamil, Long, & Bollero, 2008), very few worked ex‐
amples exists (Bolker et al., 2013). In order for statistical methods 
to be gradually applied by users, these must be demonstrated and 
illustrated with examples (Qian, Cuffney, Alameddine, McMahon, 
& Reckhow, 2010). Here, we illustrate the nonlinear mixed‐effects 
modeling approach using an ecological example involving the tempo‐
ral dynamics of live vegetation moisture in northwest extra‐Andean 
Patagonia. From an ecological perspective, we apply a nonlinear 
mixed‐effects approach to model temporal changes in LFMC. In par‐
ticular, we test if moisture content and drying pattern over the fire 

season differ (a) between grasses and shrubs, (b) between coexisting 
species, and (c) between sites with different aridity conditions. From 
a methodological point of view, we aimed to (a) describe a “step‐
by‐step” statistical modeling process and (b) show that, compared 
to other linear and more classical approaches, nonlinear mixed‐ef‐
fects models improve the description of ecological processes with 
seasonality such as temporal dynamics in LFMC. This “improvement” 
is assessed in terms of goodness of fit, model assumptions, and eco‐
logical meaning. We start with a nonlinear function linked to a simple 
statistical model, which is made increasingly complex to include the 
different sources of variability and correlation structures. While the 
modeling process is illustrated on LFMC, the framework is useful for 
other ecological variables with nonlinear patterns and correlation 
structures. To make this procedure easily reproducible, we provide 
the R codes used to perform the statistical analyses.

2  | METHODS

2.1 | Study area

Field data were gathered from northwestern Patagonia (east of 
Nahuel Huapi Lake, Río Negro, Argentina; Figure 2). The area is 
characterized by a semiarid climate with a Mediterranean‐type 

TA B L E  1  Some common nonlinear patterns in ecology and (two possible) response functions for describing them [for a more complete 
list of nonlinear functions see Miguez et al. (2017)]

Pattern Function Ecological context

J‐shaped Exponential y = aebx Population ecology (population growths without resource 
constrains).
Eco‐physiology (temperature responses).
Epidemiology (outbreaks).

Power y = axb

Saturating Michaelis–
Menten

y = ax/(b + x) Population ecology (type‐II functional response in predator–prey 
dynamics).
Community ecology (resource competition).
Eco‐physiology (photosynthetic curves).
Forest ecology (light availability in canopy).
Production ecology (fisheries, fruit quality).
Epidemiology (infection rates).

Monomolecular y = a[1 − e−bx]

S‐shaped 
(sigmoidal)

Logistic y=1∕
[

1+e−(a+bx)
]

Life history (individual biological growths).
Population ecology (population growths with resource con‐
strains, type‐III functional response in predator–prey dynamic).
Forest ecology (stand dynamics).

Gompertz y=ae−e
−bx

Hump‐shaped 
(unimodal)

Ricker y = axebx Population ecology (capture rates varying with prey size in 
predator–prey dynamic).
Community ecology (richness species varying with productivity 
or disturbance gradients).
Eco‐physiology (optimums).
Fire ecology (fire activity along global productivity gradient).

Beta
y=a

[

1+
b−x

b−c

] [

x

b

]
b

b−c

Note: Terms in equations: y = response variable; x = explanatory variable; e = constant (the base of the natural logarithm); a, b, c = parameters. 
Parameter values must be in a certain range to match the pattern (e.g., power functions result J‐shaped curves when b > 1, but inverted J‐shaped 
if b < 0 and decreasing increments with 0 < b < 1). Function names and parameterization vary according to the context in which they are used (see 
Bolker, 2008).
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precipitation regime, and annual precipitation decreases in a steep 
50‐km west–east gradient from 580 to 260 mm (San Ramón and 
INTA Pilcaniyeu weather stations). Along this climatic gradient, we 
established two sampling sites separated by 60 km (Figure 2) with 
different aridity and plant physiognomy. The western (W) site, the 
wettest, is a grass steppe dominated by the perennial grass Festuca 
pallescens (St. Yves) Parodi, and shrub cover is less than 5%. The 
eastern (E) site, the driest, is a shrub–grass steppe with 60% shrub 
cover where communities are codominated by Papostipa speciosa 
and by the shrubs M.  spinosum and S.  filaginoides (Godagnone & 
Bran, 2009).

2.2 | Experimental design

We carried out the field sampling during 80 days (seven sampling 
dates distributed as evenly as possible) from 13 November 2013 
to 10 February 2014. Due to the differences in the plant physiog‐
nomies of the sites, we measured LFMC in grasses at the W site 
and both grasses and shrubs (M. spinosum and S. filaginoides) in 
the E site. In both sites, we established three 500 × 500 m plots 
and average distance between plots was ≈2 km (Figure 1). All plots 
were near the road (National Road No. 23) (Figure 2) and on flat‐
level terrain to avoid changes in LFMC caused by differences in 

F I G U R E  2  The upper map shows the 
study area (located in the northwestern 
region of extra‐Andean Patagonia, in 
Río Negro province, Argentina). At each 
sampling site, we established three plots 
(dark gray squares). The lower figure 
shows the detailed spatial sampling 
design. In each plot, we randomly selected 
three points and harvested biomass from 
the four nearest individuals to the point. 
Sites have different plant physiognomies: 
W site is an herbaceous steppe and E 
site is a grass–shrub steppe where M. 
spinosum and S. filaginoides are the main 
shrub species
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topography. On each sampling date and plot, we randomly selected 
three spatial points (i.e., spatial locations within plots) for each leaf 
type (grasses and the two shrub species); we collected 80–100 g 
of live biomass from the nearest four individuals to these points 
(i.e., each observation came from a composite sample, Figure 2). 
Therefore, our total observations resulted in 252 measurements 
of LFMC (3 leaf types × 3 points × 3 plots × 7 sampling dates in 
the E site, plus 1 leaf type × 3 points × 7 sampling dates in the W 
site) from which five were lost (n = 247). This experimental design 
allowed us to compare plant functional types within the same site 
(grasses vs. shrubs in E site), sites within the same functional type 
(grasses in the W site vs. grasses in the E site), and species within 
the same functional type and site (M. spinosum vs. S.  filaginoides 
in the E site).

We collected all samples between 12:00 and 16:00 hr local time. 
Immediately after collection, we packed the samples in individual 
hermetic plastic bags and transported them to the laboratory in a 
portable fridge. Once in the laboratory, we weighed the samples 
in a precision balance (0.01  g) to obtain their fresh weight (WF). 
Samples were oven‐dried at 80°C for 48 hr and reweighed to ob‐
tain their dry weight (WD). Finally, we calculated the LFMC (%) as: 
(WF − WD)/WD × 100.

2.3 | Nonlinear mixed‐effects model

According to weather seasonality in northwestern Patagonia, 
LFMC should be maximum during spring and reach a minimum 
at the end of summer. Thus, as the fire season progresses, LFMC 
temporal patterns could be modeled with a declining logistic‐type 
function (Dennison et al., 2003), that is, a sigmoid and asymptotic 
curve. Since it was proposed by Verhulst (1938), different param‐
eterizations have been used to model population growth and other 
physical or social features (Tsoularis, 2001). Among these, a flex‐
ible one is the four‐parameter logistic function (Pinheiro & Bates, 
2000):

where y and t are, respectively, the response and the predictor (time) 
variables, e is a constant (the base of the natural logarithm), A and w 
are respectively the upper and lower horizontal asymptotes, m is the 
value (time) at which y is midway between A and w (the inflection 
point), and s controls the curve steepness (Pinheiro & Bates, 2000). 
Applied to LFMC dynamics (Figure 3), A would represent the maxi‐
mum LFMC reached during the growing season (when the peak oc‐
curs and shortly before the fire season starts), w the level at which 
the moisture is stabilized at the end of the fire season, m the time 
when the highest drying speed occurs (i.e., the maximum in the first 
derivative of the LFMC curve, Figure 3), and s is a parameter control‐
ling the drying rate (it should be negative because LFMC is expected 
to decrease with time). Because LFMC is modeled as a function of 

time, the first derivative of the response function represents the in‐
stantaneous drying speed (∂LFMC/∂t):

The resulting statistical model is:

where i is the observation and, in our model, t is expressed as the 
number of days since the first measurement.

(1)y=
A−w

1+e(m−t)∕s
+w

(2)
�LFMC

�t
=

(

w−A
)

e(m+t)∕s

s
[

2e(m+t)∕s+e2t∕s+e2m∕s
]

(3)LFMCi∼

(

�i;�
2
)

�i=
A−w

1+e(m−ti)∕s
+w

Cor(LFMCi;LFMCi
� )=0

F I G U R E  3  Live fuel moisture content (LFMC) as a function of 
time (t). According to a logistic‐type response function (top), LFMC 
is highest at the beginning of fire season (A) and decreases until 
it stabilizes at the end of season. The midway between A and w 
(point of inflection of the curve) occurs at t = m, when the drying 
speed, which is given by the first derivative of the logistic function 
(∂LFMC/∂t) (bottom), reaches a maximum
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The parameters defining the nonlinear deterministic response 
function (A, m, s, w) in Equation 3 can vary among groups that 
could be considered as fixed or random effects (Pinheiro & Bates, 
2000). Our aim is to understand if moisture content dynamic dif‐
fers between grasses and shrubs, and between sites with different 
aridity conditions. Therefore, the next step was to include “leaf 
type” as a fixed effect with four levels: grasses in the W site (GW); 
grasses in the E site (GE); M.  spinosum shrub in the E site (SM); 
S.  filaginoides shrub in the E site (SS). The clustering imposed by 
the sampling design (observations grouped in plots) could lead to 
data with spatial correlation structure, that is, Cor(LFMCi, LFMCi′) 
≠ 0 (Aarts, Verhage, Veenvliet, Dolan, & Sluis, 2014). Thus, plot 
was considered as a random effect to represent the correlation 
structure induced by the spatial nesting (Zuur et al., 2009). Hence, 
the new model takes into account that all parameters describing 
the temporal changes in LFMC vary with both leaf type (fixed ef‐
fect) and plot (random effect). The nonlinear mixed‐effects model 
can be expressed as:

Of the multiples ways in which mixed‐effects models can be writ‐
ten, we have chosen that termed as “combining separate local regres‐
sions” (Gelman & Hill, 2007). We follow the Gelman and Hill's (2007) 
notation, who use subscript i to represent the smallest unit of observa‐
tion, within‐plot observation (points) in our experimental design (i = 1, 
2, …, 247); and j to indicate groups, plots in this case (j = 1, 2, …, 6). GE, 
SM, and SS are binary variables taking values 1 or 0, used to code leaf 
type (see Table 2 for interpretation of the associated terms) recorded 
for point i. With this notation, we try to establish a clear connection 
between mathematical expression and software output (Appendix S1). 
While this model considers observations (i) within plot j to be correlated 
(ϕ is termed as intraclass correlation, and estimated as a function 
of  among‐groups and within‐groups variability; Aarts et al., 2014), 
residuals are assumed to be independent and normally distributed with 

homogeneous variances. Normal random effects (A0j, w0j, m0j, s0j) and 
independence between the within‐plot observations and random ef‐
fects are also assumed.

However, because measurements near in time tend to be more 
similar than when far apart (Davidian & Giltinan, 2003), correlations 
usually arise in time series violating the independence assumption 
(Lindstrom & Bates, 1990). Such temporal dependence can be ad‐
dressed from a mixed‐effects modeling framework (Zuur et al., 2009). 
We explored ARMA (autoregressive–moving average) structures for 
modeling temporal correlation (Pinheiro & Bates, 2000). ARMA tem‐
poral correlation structures have two components defining their order 
(u, v). In our model, the first component (u) indicates that the within‐
plot observations at time t are modeled as a function of s previous 
times and are named “autoregressive” parameters (ρ). The second com‐
ponent (v) refers to the number of moving average parameters (θ) and 
states that these observations are modeled as a function of v previous 
noise (η). For example, an ARMA(1,1) model (i.e., u = 1 and v = 1) states 
that, in plot j, the moisture content at time t (LFMCji(t)) is influenced by 
that one at time t‐1 (LFMCji(t−1)) according to:

In practice, these correlations are modeled on residuals (sometimes 
are called R‐side effects), in contrast to that induced by grouping (called 
G‐effects) which enter the model in terms of correlation of observa‐
tions (Bolker, 2015). The statistical model is now expressed as:

A0j∼

(

�A0j
;�2

A0

)

; w0j∼

(

�w0j
;�2

w0

)

; m0j∼

(

�m0j
;�2

m0

)

; 

s0j∼

(

�s0j ;�
2
s0

)

It is also important to consider the variance pattern (Davidian 
& Giltinan, 2003); ecological variables are often heteroscedastic 
(Bolker et al., 2013), and, many times, variance components are 
biologically as important as mean values (Schielzeth & Nakagawa, 

(4)LFMCji∼

(

�i;�
2
)

�i=
A−w

1+e(m−ti)∕s
+w

A=A0j+A1GEi+A2SMi+A3SSi

w=w0j+w1GEi+w2SMi+w3SSi

m=m0j+m1GEi+m2SMi+m3SSi

s= s0j+s1GEi+s2SMi+s3SSi

Cor
(

LFMCji;LFMCji�

)

=�

A0j∼

(

�A0j
;�2

A0

)

;w0j∼ (�w0 j
;�2

w0
);m0j∼

(

�m0j
;�2

m0

)

;s0j∼

(

�s0j ;�
2
s0

)

(5)LFMCji(t) = f
(

�∗LFMCji(t−1) +� ∗ �t−1+�t

)

(6)LFMCji∼

(

�i;�
2
)

�i=
A−w

1+e(m−ti)∕s
+w

A=A0j+A1GEi+A2SMi+A3SSi

w=w0j+w1GEi+w2SMi+w3SSi

m=m0j+m1GEi+m2SMi+m3SSi

s= s0j+s1GEi+s2SMi+s3SSi

Cor
(

LFMCji(t);LFMCji� (t)

)

=�

Cor
(

LFMCji(t);LFMCji(t−1)

)

= f
(

ARMA[s,q]

)
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2013). We used variance functions (components of a model with 
Gaussian distribution that allows for heterogeneity) to model 
LFMC variability at the within‐plot level (�2

i
) as a function of leaf 

type:

A0j∼

(

�A0j
;�2

A0

)

; w0j∼

(

�w0j
;�2

w0

)

; m0j∼

(

�m0j
;�2

m0

)

; 

s0j∼

(

�s0j ;�
2
s0

)

Specifically, we used varIdent as variance function (Pinheiro & 
Bates, 2000). In a varIdent function, the groups of a stratification 
variable (e.g., leaf types) are allowed to have different variance:

where σbase is the standard deviation in the W site, and δ1, δ2, δ3 are 
the quotients between the standard deviation of the respective leaf 
types and σbase.

The proposed nonlinear mixed‐effects model, therefore, relaxes 
three of the four assumptions of classical regression (Figure 1): lin‐
earity (through the logistic‐type response function), homogeneity 
(through the variance function), and independence (through the 
random effects—spatial clustering—and the ARMA model—temporal 
correlation structure):

A0j∼

(

�A0j
;�2

A0

)

; w0j∼

(

�w0j
;�2

w0

)

; m0j∼

(

�m0j
;�2

m0

)

; 

s0j∼

(

�s0j ;�
2
s0

)

Equation 9 refers to the more complex or global model, which 
includes variance modeling, temporal correlation, and fixed‐effects 
(leaf type) and random effects (plot) on all parameters of the re‐
sponse function. Nevertheless, not all of these components neces‐
sarily need to be in the model. If any of them is not important but 
included (the predictive capacity is not increased), the model will 
be overparameterized (Aho, Dewayne, & Peterson, 2014), which 
could cause convergence problems (Grueber, Nakagawa, Laws, & 

(7)LFMCji∼

(

�i;�
2
i

)

�i=
A−w

1+e(m−ti)∕s
+w

�2
i
= f (leaf type)

A=A0j+A1GEi+A2SMi+A3SSi

w=w0j+w1GEi+w2SMi+w3SSi

m=m0j+m1GEi+m2SMi+m3SSi

s= s0j+s1GEi+s2SMi+s3SSi

Cor
(

LFMCji(t);LFMCji� (t)

)

=�

Cor
(

LFMCji(t);LFMCji(t−1)

)

= f
(

ARMA[s,q]

)

(8)�2
i
=
(

�baseGWi+�base�1GEi+�base�2SMi+�base�3SSi
)2

(9)LFMCji∼

(

�i;�
2
i

)

�i=
A−w

1+e(m−ti)∕s
+w

�2
i
=
(

�baseGWi+�base�1GEi+�base�2SMi+�base�3SSi
)2

A=A0j+A1GEi+A2SMi+A3SSi

w=w0j+w1GEi+w2SMi+w3SSi

m=m0j+m1GEi+m2SMi+m3SSi

s= s0j+s1GEi+s2SMi+s3SSi

Cor
(

LFMCji(t);LFMCji� (t)

)

=�

Cor
(

LFMCji(t);LFMCji(t−1)

)

= f
(

ARMA[s,q]

)

Model
Number of 
parameters log‐Likelihood AIC ∆AIC

Nonlinear mixed‐effects 
(M1)

15 −950.8 1,931.7 –

Linear mixed‐effects 
(M3)

15 −984.2 19,998.5 66.8

Nonlinear fixed‐effects 
(M2)

27 −1,015.6 2,085.2 153.6

Classical regression (M4) 25 −1,030.5 2,111.0 179.3

Null (M5) 2 −1,423.9 2,851.7 920.1

Note: AIC is a goodness of fit measure (likelihood or log‐likelihood) that penalizes for complexity 
(number of parameters).

TA B L E  2  Akaike information criterion 
(AIC) for contrasting models of the 
temporal dynamics in live fuel moisture 
content (LFMC)
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Jamieson, 2011). When convergence problems occur, reducing the 
model complexity is a possible solution (Bolker et al., 2009).

Therefore, we followed the Zuur's et al. (2009) protocol for fitting 
mixed‐effects models, first assessing the random structure and then 
the fixed effects. We compared models of different complexity level 
by using the Akaike information criterion (AIC), a goodness‐of‐fit mea‐
sure (likelihood) that penalizes for complexity (number of parameters; 
see next section for more detailed discussion about AIC and multi‐
model inference). Although the model with the lowest AIC value can 
be chosen as the best one (Burnham & Anderson, 2002), in order to 
consider model uncertainty, differences in AIC should be large enough 
(Richards, 2005). We used delta AIC > 2, but other cutoffs could be 
chosen as rule of thumb (Harrison et al., 2018). To fit the model (see the 
R code), we first explored the variance–covariance structure (Barnett 
et al., 2010; West et al., 2007). Then, we evaluated if any of the four 
parameters (A, w, m, s) varied across the plots through random effects. 
For instance, to determine whether the maximum LFMC varied with 
plot we compared the model where A is random (A0j in Equation 9) with 
the model where A is unique for all the plots (A0). Later, we decided 
about the inclusion of the temporal correlation and variance functions 
assessing whether the data fit obtained from the model introduced 
in Equation 4 were improved by that from Equations 6 and 9. Lastly, 
we modeled the fixed effects examining what parameters of the re‐
sponse function varied with leaf type. For instance, to assess if leaf 
type influences the maximum LFMC we compared the model in which 
A depends on leaf type (A = A0 + A1GE + A2SM + A3SS) with the model 
where A is unique (i.e., general to all leaf types). When the effect of leaf 
type on any parameter was found important (i.e., delta AIC > 2), we 
assessed differences among its levels (our ecological question).

2.4 | Alternative models

We fitted four alternative models, which were compared to the 
nonlinear mixed‐effects model. The first one was a (logistic‐type) 
nonlinear fixed‐effects model. In this case, time, leaf type, and 
plot are treated as fixed effects, and normality and independence 
among data are assumed (M2). The second alternative (M3) was a 
linear mixed‐effects model with time and leaf type (and its inter‐
action) as fixed effects and plot as random effect (spatial nesting). 
This model included an ARMA temporal structure and the same 
variance function as the one used in the nonlinear mixed‐effects 
model. The third alternative model (M4) was a classical regression 
(i.e., assuming that the relation with time is linear, residuals follow 
a normal distribution and data are independent in space and time 
and show homogeneous variances). We also fitted a null model (i.e., 
without predictors, M5) which was considered as the baseline in the 
comparisons. In short, we compared five models: nonlinear mixed‐
effects (M1), nonlinear fixed‐effects (M2), linear mixed‐effects 
(M3), classical regression (M4), and null (M5). M1 and M2 share the 
deterministic response function (logistic‐type) but differ in the sto‐
chastic structure; similarly, M3 and M4 share a linear deterministic 
response function but differ in the stochastic structure. M1 and M3 
share the random structure (mixed‐effects) and differ in the type 

of temporal relationship assumed (nonlinear vs. linear), similarly, M2 
and M4 share the random structure and differ in temporal relation‐
ship assumptions. Before comparison, each alternative model was 
fitted according to parsimony, just as the nonlinear mixed‐effects 
model (M1).

Model comparison was carried out under a multimodel inference 
framework (Burnham & Anderson, 2002) using the AIC (Burnham, 
Anderson, & Huyvaert, 2011). This inference framework is espe‐
cially suitable for selecting among non‐nested models (Burnham & 
Anderson, 2004); the fitting process of each model also involved 
model comparison but in this case, they were nested (see previous sec‐
tion). Our modeling approach was carried out using AIC as an index of 
parsimony but other related statistics exist (modifications of AIC, such 
as AICc, and others, such as BIC or DIC). All of these criterions share a 
similar goal, that is, to find a balance between goodness of fit and com‐
plexity. They have advantages and limitations and should be chosen 
according to the context and needs (statistical paradigm, assumptions, 
data structure; Barnett et al., 2010). For instance, Bayesian approaches 
could provide advantages when fitting complex models with few data 
points by incorporating prior distribution for parameters (Davidian & 
Giltinan, 1995; Gelman et al., 2013). Our approach, however, is useful 
beyond the information criteria chosen to select models (for further 
discussions, see Aho et al., 2014; Murtaugh, 2009; Richards, 2005; 
Spiegelhalter, Best, Carlin, & Linde, 2014; Yang, 2005).

The models were fitted using the nlme(), lme(), and gls() func‐
tions of the nlme package (Pinheiro, Bates, DebRoy, Sarkar, & 
Core Team, 2016) in R 3.3.5 (R Core Team, 2017). When the ef‐
fects of leaf type were found important, we used the emmeans() 
function of the emmeans package (Lenth, 2018). Pearson residuals 
were visually assessed (residuals vs. fitted values plot, residuals 
vs. predictors plot, and normal Q‐Q plot) for checking the mod‐
els' assumptions. The analysis is available in the Supplementary 
Material.

3  | RESULTS AND DISCUSSION

3.1 | Model comparison

We found stronger support (lower AIC) for the nonlinear mixed‐ef‐
fects model with these datasets (M1, Table 2). Both the residual 
analysis and the visual analysis of the fitted curves confirm a tem‐
poral pattern of LFMC during the fire season to be well‐described 
by a declining logistic‐type function. Indeed, the (nonlinear) deter‐
ministic component of this model was enough to capture all the tem‐
poral changes suggesting it is not necessary to include the temporal 
correlation structure. According to the residual pattern (Figure 4), 
assumptions are reasonable under the linear mixed‐effects model 
(M3). In this model, however, the LFMC nonlinear temporal pattern 
was captured by the residuals' autocorrelation (ARMA). On the other 
hand, neither the nonlinear fixed‐effects model (M2) nor the classi‐
cal regression (M4) was appropriate to model temporal changes in 
LFMC (the residual analyses show violation to the assumptions of 
these models, see Figure 4).
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F I G U R E  4  Residual analyses to evaluate model assumptions. In both mixed‐effects models (nonlinear and linear), residuals indicate that 
the model assumptions are reasonable. On the contrary, in the fixed‐effects models, assumptions are violated. Mixed‐effects models, which 
include correlation structures and variance modeling, remove the variance heterogeneity (standardized residuals vs. fitted values and vs. 
leaf type), the temporal autocorrelation (standardized residuals vs. time), and the lack of normality (observed vs. normal quantiles). The four 
levels of the leaf‐type factor are grasses in the site W (GW); grasses in the site E (GE); M. spinosum shrub (SM); S. filaginoides shrub (SS)
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The fact that both linear and nonlinear mixed‐effects mod‐
els were suitable highlights the importance for variables such as 
LFMC to be addressed from a mixed‐effects modeling approach. 
Nonetheless, the nonlinear strategy was better than the linear one. 
While the general mixed‐effects approach accounts for spatial nest‐
ing, temporal dependence, and heterogeneity among leaf types, the 
nonlinear response function adds the capability to model seasonal 
patterns. In this regard, the logistic‐type model answers questions 
such as “what is the minimum moisture content of a species and 
when is it reached?” and enables estimation of the instantaneous 
drying speed (in a linear model it is only possible to know the aver‐
age drying speed; the first derivative is constant; Paine et al., 2012). 
Hence, the nonlinear temporal relationship is not only underpinned 
by data but is also conceptually more relevant. In fact, nonlinear 
approaches allow statistical models based on physical, biological or 
ecological ideas (Jonsson et al., 2014).

3.2 | Interpreting the nonlinear mixed‐effects model

Nonlinear functions provide an interesting approach to understand‐
ing the temporal dynamics of ecological variables (Pascual & Ellner, 
2000). The proposed logistic‐type curve described LFMC temporal 
changes (Figures 4 and 5) using four parameters (A, w, m, s) varying 
with leaf type as a fixed effect. LFMC of both shrubs and grasses 
decreased from mid‐spring to summer, tracking the temporal trend 
of the Mediterranean‐type precipitation regime. The same over‐
all sigmoidal pattern is observed for all of the leaf types, although 
considerable variation among them exists (Figure 5). In particular, 
our modeling effort suggests that leaf types differed in their maxi‐
mum (A) and minimum LFMC (w) (Table 3). In Patagonian steppes, 
soil moisture increases with depth (Sala et al., 1989) and water from 
deeper soil layers is available for longer periods than shallow water 
since it is less affected by evaporative demand (Ferrante, Oliva, & 
Fernández, 2014). Because shrubs can reach water from deeper soil 
layers (Golluscio & Oesterheld, 2007), higher LFMC in shrubs than 
grasses should be expected. Accordingly, shrubs moisture content 
at the beginning of the fire season (Â) was, on average, four times 
higher than for grasses and the stabilization value (ŵ) was three 
times higher (Figure 5, Table S4). This implies different drying speed 
(slopes) between the functional groups, as inferred from the deriva‐
tives of their temporal curves (Figure 5).

Grass LFMC dynamics differed between sites (Figure 5). 
Specifically, grasses showed different saturation moisture and mini‐
mum moisture content (A1 ≠ 0, and w1 ≠ 0, respectively; see Table 3 
and Appendix S1 to interpret both parameters). These different re‐
sponses could be caused by environmental differences between sites 
and/or functional differences between grass species. At the begin‐
ning of the study (mid‐spring, when water availability begins to de‐
crease in Patagonia; Sala et al., 1989), moisture content was higher in 
grasses from the E site (Â = 85%) than that from the W site (Â = 54%). 
The 95% confidence interval for such difference (31%) in the maxi‐
mum LFMC between the grasses of the both sites (A1) spanned from 
13% to 48% (Table 3), reflecting the degree of uncertainty in the 

true value of the point estimate. While the W site is dominated by 
F. pallescens, the dominant grass in the E site is P. speciosa. Both spe‐
cies have xerophytic foliar traits associated to resistance to water 
stress (Latour, 1979), but P. speciosa has more convoluted blades and 
stomatal crypts with higher trichome density (L. Ghermandi, data 
not published) and thus would prevent water loss more efficiently. 
In addition, in arid and semiarid areas, shrubs act as thermal buf‐
fers, increasing water availability (Villagra et al., 2011). Hence, shrub 
presence could benefit superficial soil water availability in the E 
site (shrubs are not present in the W site), increasing grass LFMC. 
These factors could allow grasses at the E site to maintain relatively 
high moisture during the initial phase of water stress (i.e., higher A; 
Figure 5). However, as the dry period (i.e., the fire season) progresses, 
greater aridity at the E site could overcome the initial advantages. 
The model suggests higher drying speed in site E grasses, mainly in 
the middle of the fire season (Figure 5), causing late December LFMC 
to become lower than that of grass growing in the W site (i.e., lower 
w; Figure 5). The effect of shrubs on the grasses LFMC dynamics, 
and thus on fire probability, could be other of the ecological inter‐
actions commonly observed in Patagonia between these two func‐
tional groups (Cipriotti, Aguiar, Wiegand, & Paruelo, 2014; Gonzalez 
& Ghermandi, 2019). Although both shrubs species have different 
root systems (Fernandez & Paruelo, 1988), their LFMC dynamics 
appear similar (Â = 295%, ŵ = 56% in S. filaginoides, and Â = 278%, 
ŵ = 61% in M. spinosum) (Figure 5). Again, it is worthy to recognize 
uncertainty around estimates (A2 and A3 in this case) and, hence, 
given the confidence intervals (Table 3).

In contrast to that observed in A and w, the steepness of the 
curves (s) was similar for all the leaf types and the time when the 
drying was highest (m) occurred simultaneously (31 days since begin‐
ning of the experiment). In other words, it is reasonable to assume s1, 
s2, s3, m1, m2, and m3 (Equation 9) to be zero. These results suggest 
absolute levels of moisture content to be leaf‐type‐specific while 
the drying rate could be a functional trait operating at ecosystem or 
plant community level. In ecological terms, selecting a simpler model 
implies that we are treating the different leaf types as behaving as a 
group with similar drying responses.

Mixed‐effects models allow us to understand and predict ecolog‐
ical variables at different hierarchies (Qian et al., 2010). In our exam‐
ple, the proposed model considered LFMC temporal curves varying 
with plot as a random effect (Figure 5); the results indicate that the 
random effect of plot was only important for A (i.e., �2

w0
=�2

m0
=�2

s0
=0

). The later, along with the fact that plots had similar minimum LFMC 
(i.e., data suggested w not to vary with plot), could have implica‐
tions for the behavior of fires occurring at different times along the 
fire season. Fires occurring at the beginning of the season (higher 
LFMC variability) should be more heterogeneous and less severe 
than at the end, when LFMC is lower and its spatial pattern is less 
variable. Nonetheless, because vegetation water status responds to 
rainfall variability, particularly in arid and semiarid regions such as 
extra‐Andean Patagonia (Golluscio, Sigal Escalada, & Pérez, 2009), 
LFMC dynamics models should incorporate interannual variability in 
precipitation as an explanatory variable. While our sampling period 
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covered only one fire season, the proposed model allows adding 
precipitation (or other climatic variable) as a fixed effect (A, w, m, 
s = f[precedent precipitation]) or via a random effect (incorporating 
year (k) as an additional hierarchy: A0k, w0k, m0k, s0k) (Bolker, 2015). 
Both strategies would represent different conceptual models. If 
precipitation is incorporated as a fixed effect (i.e., a covariate), the 
model would be rather mechanistic (we would model the effect of 
water availability). If precipitation gets into the model as a random 
effect of year, we would estimate among‐years variability due to cli‐
matic differences. In addition, it would be possible to incorporate 
a plot‐level predictor (e.g., productivity) to model spatial variability 
in parameters at this level (�A0j

,�w0j
,�m0j

,�s0j  =  f[plot productivity]) 
or even to add other spatial hierarchies (e.g., site) and to quantify 
spatial variability at greater scales. The unexplained variance could 
be reduced because of adding a plot‐level predictor, allowing more 
precise estimation of fixed effects (Schielzeth & Nakagawa, 2013).

Variance heterogeneity is expected in many ecological variables 
(Benedetti‐Cecchi, 2003). Within‐plot LFMC variability was three times 

higher in shrubs than in grasses but was similar between grasses from 
the two sites (𝛿1 = 0.97) and between the two shrub species (𝛿2 = 2.79; 
𝛿3 = 3.17). Certainly, the model could be further simplified by applying 
a two‐level variance function (grasses/shrubs, that is, �2

i
 as a function 

of plant functional type or growth form). The observed heteroscedas‐
ticity between growth forms could respond to differences in LFMC 
(higher values in shrubs), as commonly the variances tend to increase 
with the mean of the response variable. However, it could be also re‐
lated to environmental conditions such as more homogeneous soil 
water availability for grasses than for shrubs (Golluscio & Oesterheld, 
2007). In fact, variation in water availability is minimal in superficial 
soil layers (where grasses obtain the water) and increases with depth 
(Bucci, Scholz, Goldstein, Meinzer, & Arce, 2009). In addition, variance 
components of a LFMC mixed‐effects model could contain relevant 
information for planning field sampling linked to vegetation moisture 
monitoring from remote sensing. For instance, plot‐level informa‐
tion should be prioritized if random‐effect variance was significantly 
larger than residual variance (Schielzeth & Nakagawa, 2013). Here, 

F I G U R E  5  Overall (upper panels) and plot‐level (medium panels) predictions from the nonlinear mixed‐effects model (M1) for each leaf 
type. The drying rate (lower panels) was obtained analytically as the first derivative of each logistic‐type curve. The x‐axis shows the number 
of days since the first measurement (13 November 2013), which was close to the beginning of the fire season
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random‐effect variance (among‐plot variability) was quantified from 
the standard deviation of A (𝜎̂A0

 = 9%), which was similar to intraplot 
standard deviation of grasses from the W site (𝜎̂base = 7%). This type of 
information is critical for developing sampling protocols that improve 
estimates of plant moisture content (Yebra et al., 2013) and other sea‐
sonal variables (Watson, Restrepo‐Coupe, & Huete, 2019) from satel‐
lite images.

4  | CONCLUSIONS

Our work covers a poorly addressed topic in ecology: illustrate the 
statistical modeling process using a nonlinear mixed‐effects frame‐
work. Similar to many other ecological variables, time series of veg‐
etation moisture do not fit into classical statistical methods. We 

applied a nonlinear approach to model vegetation moisture dynamics 
proposing a logistic‐type function based on ideas about the dynam‐
ics of the system. Our model had greater support than alternative 
(and less complex) models. Parameter interpretation can be linked 
to vegetation features and environmental conditions showing how 
nonlinear mixed‐effects models could be used to advance ecological 
theory and practice. For instance, we addressed ecological questions 
about LFMC dynamic of grasses and shrubs under different aridity 
conditions, which could have applications in fire management. In 
this respect, we encourage researchers to propose statistical mod‐
els based on conceptual ideas rather than adjusting data to standard 
models that many times involve data transformation to meet model 
assumptions. Due to the lack of worked examples in the literature, 
our approach can be useful to researchers addressing different eco‐
logical problems.

Parameter Estimate Meaning

�A0
54.3% [42.5:66.0] Maximum LFMC (Â) of grasses in the W site. A 

varies with plot and therefore a hyperparameter 
is estimated.

A1 30.9% [13.5:48.3] Difference between Â of grasses in the E site and Â 
of grasses in W site.

A2 223.4% 
[191.9:254.6]

Difference between Â of M. spinosum and Â of 
grasses in the W site.

A3 240.3% 
[207.1:273.5]

Difference between Â of S. filaginoides and Â of 
grasses in the W site.

w0 29.1% [25.7:32.4] Minimum LFMC (ŵ) of grasses in the W site.

w1 −20.7% [−25.8: 
−15.6]

Difference between ŵ of grasses in the E site and ŵ 
of grasses in the W site.

w2 31.7% [16.4:47.0] Difference between ŵ of M. spinosum and ŵ of 
grasses in the W site.

w3 26.7% [11.1:42.9] Difference between ŵ of S. filaginoides and ŵ of 
grasses in the W site.

m 30.9 days 
[26.9:35.0]

Day when the LFMC half‐maximum occurs (m̂) in 
the study area (data suggest one general value for 
all the leaf types).

s −16.1 [−20.8: −11.5] Parameter controlling speed of change (Ŝ) of the 
LFMC (data suggest one general value for all the 
leaf types, the negative value indicates vegetation 
to be drying during the fire season).

�base 7.1% [6.0:8.6] LFMC variability within‐plots (residual standard 
error) of grass (𝜎̂gw) in Site W at the beginning the 
fire season.

δ1 0.9 [0.7:1.2] Ratio between the within‐plots standard error of 
the LFMC of grasses in Site E (𝜎̂ge) and grasses in 
W site (𝜎̂gw)

δ2 3.2 [2.4:4.0] Ratio between the within‐plots standard error of 
the initial LFMC M. spinosum (𝜎̂sm) and grasses in 
W site (𝜎̂gw)

δ3 3.0 [2.4:3.9] Ratio between the within‐plots standard error of 
the initial LFMC S. filaginoides (𝜎̂ss) and grasses in 
W site (𝜎̂gw)

�A0
9.4% [3.9:15.8] Variability among plots (standard deviation) in the 

maximum LFMC (random effects on A).

TA B L E  3  Parameter estimates with 
their units (95% confidence intervals in 
square brackets) and their meaning for the 
fitted nonlinear mixed‐effects model of 
live fuel moisture content (LFMC)
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