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ABSTRACT

Background: While standard RNA expression tests stratify patients into risk 
groups, RNA-Seq can guide personalized drug selection based on expressed mutations, 
fusion genes, and differential expression (DE) between tumor and normal tissue. 
However, patient-matched normal tissue may be unavailable. Additionally, biological 
variability in normal tissue and technological biases may confound results. Therefore, 
we present normal expression reference data for two sequencing methods that are 
suitable for breast biopsies. 

Results: We identified breast cancer related and drug related genes that are 
expressed uniformly across our normal samples. Large subsets of these genes are 
identical for formalin fixed paraffin embedded samples and fresh frozen samples. 
Adipocyte signatures were detected in frozen compared to formalin samples, prepared 
by surgeons and pathologists, respectively. Gene expression confounded by adipocytes 
was identified using fat tissue samples. Finally, immune repertoire statistics were 
obtained for healthy breast, tumor and fat tissues. 

Conclusions: Our reference data can be used with patient tumor samples that are 
asservated and sequenced with a matching aforementioned method. Coefficients of 
variation are given for normal gene expression. Thus, potential drug selection can be 
based on confidently overexpressed genes and immune repertoire statistics.
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Materials and Methods: Normal expression from formalin and frozen healthy 
breast tissue samples using Roche Kapa RiboErase (total RNA) (19 formalin, 9 frozen) 
and Illumina TruSeq RNA Access (targeted RNA-Seq, aka TruSeq RNA Exome) (11 
formalin, 1 frozen), and fat tissue (6 frozen Access). Tumor DE using 10 formalin total 
RNA tumor samples and 1 frozen targeted RNA tumor sample.

INTRODUCTION

Breast cancer is the most common cancer affecting 
women, with over 265,000 newly diagnosed cases in the 
USA [1] and over 70,000 in Germany [2], respectively. 
On initial diagnosis, patients are treated according to the 
histological, molecular and in some cases even genetic 
classification of their cancer. Routine classification in the 
US and Germany comprises tumor size and lymph node 
involvement, as well as immunohistological staining for 
the estrogen, progesterone and Her2 receptors. Tumor 
tissue based DNA testing with targeted next-generation 
sequencing panels is additionally performed in a growing 
number of centers. Genetic counselling and blood tests 
for hereditary breast cancer risk variants in BRCA1, 
BRCA2, TP53 and other genes are also routinely offered. 
Standard treatment with curative intent contains surgical 
resection of the tumor (segmentectomy or mastectomy) 
and lymph node staging. Patients with hereditary risk 
variants in BRCA1, BRCA2 or other core breast cancer risk 
genes may be offered bilateral subcutaneous mastectomy 
and ovarectomy. Adjuvant treatment with drugs and/
or radiotherapy follows, depending on many factors 
including staging, menopausal status and molecular 
findings. 

RNA expression profiling of breast cancer FFPE 
samples is well established to classify patients into low 
risk, intermediate risk and high risk groups [3] and has 
been introduced into the standard of care guidelines in 
some countries as e.g. a 21-gene real-time PCR assay 
(Oncotype DX, Genomic Health). More recently, whole 
exome and whole transcriptome sequencing of tumor 
versus normal tissue is increasingly being considered to 
help guide drug selection, especially for aggressive forms 
of breast cancer, metastatic breast cancer, and recurrences 
[4, 5]. Whole exome sequencing can inform of actionable 
mutations, tumor mutation burden and pharmacogenomic 
variants. Whole transcriptome sequencing with paired-end 
reads can additionally inform of actionable fusion genes, 
expressed mutations (especially neoantigenic mutations), 
and loss or gain of gene expression compared to healthy 
normal tissue. However, currently, patient-matched normal 
breast tissue is not routinely asservated and therefore not 
routinely available when needed, especially when the 
patient experiences a relapse after bilateral mastectomy 
[5]. Even when a patient-matched sample of normal 
breast tissue is available, additional healthy samples are 
required to distinguish normal gene expression variability 
in healthy breast tissue from pathological gene expression 
in tumor tissue. To address these problems and allow 

RNA based differential expression analysis to be carried 
out for breast cancer patients with or without patient-
matched healthy breast tissue, we collected healthy normal 
ductal tissue from breast reduction operations and from 
resected healthy tissue that was adjacent to tumor tissue. 
We focused on two specific RNA sequencing library 
preparation kits because each is suitable for the small 
amounts of RNA that can be recovered from fine needle 
aspirates. The Roche KAPA stranded RNA-Seq kit with 
RiboErase worked well for most samples that we tried 
with 50 to 100 ng of RNA. The Illumina TruSeq RNA 
Access kit worked well for all samples that we tried, with 
only 10 to 100 ng of RNA. 

It is important to note that RNA expression values 
obtained with two different kits should not be mixed into 
the same differential expression analysis, because each 
kit may introduce its own biases. Specifically, the Roche 
KAPA RNA RiboErase kit is used to generate sequencing 
libraries that, in sum, cover the entire transcript and 
also include non-coding genes. In contrast, the Illumina 
TruSeq RNA Access kit protocol is used to generate 
targeted RNA sequencing libraries. The TruSeq RNA 
Access protocol includes random primer amplification 
and exome baits to capture just the protein-coding regions 
of protein coding genes. It should further be noted that 
the asservation method may introduce some differential 
expression bias. We therefore generated healthy normal 
breast ductal tissue reference expression data from 
formalin fixed paraffin embedded samples as well as from 
fresh frozen samples (see Figure 1). For quality control, 
we performed extensive differential expression analyses 
as summarized in Figure 1, (a) within each group of 
healthy samples, (b) between groups of healthy samples, 
(c) between patient-matched pairs of left and right healthy 
breast tissue, and (d) between tumor and healthy samples. 
After we identified adipocyte signatures in the fresh frozen 
breast ductal tissue samples, we investigated the extent by 
which fat cells in the healthy tissue may confound known 
drug-gene associations. Therefore, we also sequenced a 
batch of fresh frozen pure fat tissue samples, and a single 
breast ductal tissue sample that we split into a fresh frozen 
piece (macro-dissected from fat tissue, but not entirely 
without fat tissue) and a formalin-fixed piece (laser-micro-
dissected).

We annotated the quality-controlled normal healthy 
breast ductal tissue data with coefficients of variation. 
Additionally, we annotated genes that were highly 
differentially expressed between patient-matched left 
and right breast tissue pairs, or between tissues with and 
without adipocytes. These annotations allow the highly 
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variable genes to be identified or excluded from differential 
expression analysis between patient tumor and our normal 
tissue data. Table 1 summarizes the numbers of genes with 
low gene expression variability in healthy tissue (log2 of 
fold change less than or equal to 2), depending on kits and 
asservation methods. Supplementary Tables 1–5 detail the 
quality-controlled genes and their annotation. Supplementary 
Tables 6–9 summarize the immune repertoire statistics of 
T-cell receptors (TCR) and B-cell receptor immunoglobulins 
(IG). Our reference data will allow personalized differential 
expression and immune repertoire analyses to be performed 
for breast cancer patients who have no remaining healthy 
breast tissue, with the aim of matching the differential 
expression data to suitable drugs.

RESULTS

Overview

We generated the healthy normal ductal breast tissue 
expression data from 20 formalin fixed paraffin embedded 

tissue biopsies (FFPE) and 10 fresh frozen (FF) tissue 
biopsies. These included 7 pairs of left and right breast 
tissue samples from the same patients. For comparison, we 
added 10 breast cancer tissue biopsies and 6 pure fat tissue 
biopsies. Sequenced read counts per million (CPM) are 
available in Supplementary Table 10. To compare our fat 
sample findings from our targeted RNA-Seq sequences with 
previously available data, we also analysed GTEx mRNA-
Seq expression data from subcutaneous fat (n = 442) and 
breast tissue (n = 290) (https://www.gtexportal.org). 

Sequencing statistics

Healthy tissue samples were sequenced with 
40 million and 60 million paired-end 75 base-pair reads per 
frozen and formalin sample, respectively, using the Roche 
Kapa RiboErase RNA-Seq kit, and 50 million reads per 
formalin sample using the Illumina TruSeq RNA Access 
kit (detailed numbers in Supplementary Table 11). Tumor 
samples were sequenced with 60 to 80 million reads, and 
the pure fat samples were sequenced with 20 million reads. 

Figure 1: Overview of samples, RNA-Seq and data quality control.

https://www.gtexportal.org
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The alignments to hg19 with RefSeq annotation for 23686 
genes and subsequent filtering of low count genes resulted 
in 16808 genes that were useable for differential expression 
analysis between normal and tumor tissue. 

Principle component analysis

Figure 2 shows a principal component analysis 
(PCA) plot of the samples based on read counts per million 
using all unfiltered 23686 genes. We included a previously 
published triple-negative breast cancer sample sequenced 
with TruSeq RNA Access [5]. The PCA plot shows very 
strong differences between total RNA and targeted RNA 
in the first principal component (Figure 2). Looking at 
the pairs of left and right breast tissue samples from the 
same patients, the PCA separated some pairs distinctly. In 
contrast, the PCA shows no separation between the tumor 
group and the normal group.

Identification of genes with high expression 
variability in normal tissue

Next, we identified the genes with high expression 
variability in healthy normal tissue. Firstly, differential 

expression analysis was performed within each group 
by comparing each sample versus the remaining samples 
in the group. Using the statistical models in DESeq2 or 
Limma/voom, no significantly differentially expressed 
genes were detected. Secondly, using normalized gene 
expression (in read counts per million) to compare 
patient-matched left and right breast tissue samples, we 
found 2287 genes (FFPE) and 3745 genes (FF), that were 
differentially expressed with a log2 fold change of more 
than 2 in one or more patients (Supplementary Tables 
12 and 13). Thirdly, expression variability within each 
group of normal data was computed on the basis of the 
normalized standard deviation or coefficient of variation 
(CV) of read counts per million. A CV of less than 0.30 
was used as the threshold to separate low expression 
variability from high expression variability. This threshold 
corresponds to a maximal log2 fold expression change of 
2 within a group of healthy normal samples, with a 95% 
confidence interval, for data that has a normal distribution. 
Table 1 summarizes the number of genes with low 
variability according to the CV threshold of 0.30. The 
PCA plot in Supplementary Figure 2 is based on gene 
expression where just these genes with low expression 
variability are considered. 

Table 1: Number of genes with low expression variability in healthy breast ductal tissue

Asservation RNA-Seq Samples All genes BrCa genes Cancer 
biomarker

BrCa 
biomarker

Supp 
table

FFPE KAPA 19 10259 (43%) 250 (48%) 118 (64%) 50 (65%) 1
FF KAPA 9 6720 (28%) 147 (28%) 86 (47%) 38 (49%) 2
FFPE vs FF KAPA 19 vs 9 6465 (27%) 143 (28%) 83 (45%) 36 (47%) 3
FFPE Access 10 6981 (29%) 204 (39%) 110 (60%) 49 (64%) 4
FFPE (epi) vs FF (fat) Access 10 vs 6 3038 (13%) 98 (19%) 54 (30%) 21 (27%) 5

Percentages are given with respect to 23686 RefSeq genes, 518 BrCa associated genes, 183 Cancer biomarker genes, or 77 
BrCa biomarker genes, respectively. FFPE (epi) formalin fixed paraffin embedded epithelial ductal breast tissue, FF (fat) 
fresh frozen pure fat tissue.

Table 2: KEGG pathway analysis of differential expression between FFPE and FF (Kapa)
Name pSize NDE pGFdr pGFWER Status
Neuroactive ligand-receptor interaction 154 50 3.2E-12 3.2E-12 Inhibited
PPAR signaling pathway 60 28 2.5E-10 5.1E-10 Inhibited
ECM-receptor interaction 77 23 9.6E-04 2.9E-03 Activated
Dilated cardiomyopathy 76 18 1.1E-02 4.7E-02 Inhibited
Cytokine-cytokine receptor interaction 186 31 1.1E-02 6.7E-02 Inhibited
Adipocytokine signaling pathway 64 13 1.1E-02 6.8E-02 Inhibited
Calcium signaling pathway 143 27 3.1E-02 2.2E-01 Inhibited
Basal cell carcinoma 47 12 4.5E-02 3.6E-01 Activated

pSize: Number of genes per pathway. 
NDE: Number of differentially expressed genes per pathway.  
pGFdr/pGFWER: False Discovery Rate and respectively Bonferroni adjusted global p-values.  
Status: Direction in which the pathway is pertubated.
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Identification of differentially expressed genes 
between FFPE and FF samples

Differential expression analysis was performed 
between the formalin fixed paraffin embedded samples 
and the fresh frozen samples that we sequenced using 
the total RNA method, in order to identify genes that 
were not highly differentially expressed between these 
two asservation methods. Pathway analyses based on 
the differentially expressed genes uncovered adipocyte 
signatures in the fresh frozen samples (Table 2). The 

bioinformatic finding of suspected fat cell content in the 
breast ductal tissue sample was confirmed to be true by the 
breast tissue biobank curator and surgeons. 

Identification of differentially expressed genes 
between high-fat and fat-free samples

To identify gene expression that may be confounded 
by adipocyte content, two experiments were performed: (a) 
comparison of formalin fixed paraffin embedded normal 
healthy breast tissue samples with available fresh frozen 

Figure 2: Principal component analysis based on gene expression. The plot shows four distinct clusters of samples: The 
sequencing methods segregate on the first dimension. The adipocyte content or asservation methods segregate on the second dimension, 
where the pure adipocyte samples including the fat-rich sample half P48NB segregate in the lower left quadrant and the adipocyte-rich 
breast tissue samples in the lower right quadrant. The low-fat samples segregate on the upper half, including the fat-free sample half 
P48NA. Tumor segregation is not distinct.
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normal healthy pure subcutaneous fat tissue samples, and (b) 
halving a fresh breast reduction tissue sample and comparing 
a macroscopically prepared fresh frozen half with the other 
half that was prepared by microdissection after formalin 
fixation and paraffin embedding. The sequencing experiment 
with these samples succeeded only with targeted RNA 
libraries, but not with total RNA libraries whose yield was 
too low for sequencing. The results are summarized in the 
Venn diagram in Supplementary Figure 3. Using a log2 fold 
change threshold of 2 and eliminating highly variable breast 
tissue genes with CV > 0.3, the comparison of breast tissue 
versus fat tissue resulted in 86 genes that were differentially 
expressed (Supplementary Table 14). 7 of these genes (8%) 
overlapped with the 3819 differentially expressed genes 
in the total RNA groups between formalin fixed paraffin 
embedded samples and fresh frozen samples (Supplementary 
Table 15). In the targeted RNA sequencing experiment with 
the halved samples, we filtered out the previously identified 
highly variable genes with CV > 0.3 in FFPE breast tissue 
TruSeq RNA Access libraries. After this filtering step, 
116 genes were differentially expressed between the two 
halves (Supplementary Table 16). 55 of these genes (47%) 
overlapped with the differentially expressed genes between 
formalin fixed paraffin embedded breast tissue samples and 
the fresh frozen subcutaneous fat samples (Supplementary 
Table 15). In the principal component analysis plot based on 
unfiltered genes (Figure 2), the fresh frozen subcutaneous fat 
tissue samples are clearly separated from the formalin fixed 
breast tissue samples by the second principal component. 
In the same plot, the macroscopically prepared fresh-frozen 
ductal breast tissue sample “half” is clearly separated from 
its corresponding half that was microdissected, clustering 
with the subcutaneous fat tissue samples. The PCA plot 
in Supplementary Figure 4 is based on gene expression 
where only genes were considered that had low expression 
variability in healthy breast tissue and where the expression 
difference between high-fat and fat-free samples was no 
greater than the log2 fold change threshold of 2.

Qualitative support of our RNA-Seq findings 
using GTEx data

Our own findings are supported by our analysis of 
GTEx expression data (Supplementary Figure 1) that were 
generated by the GTEx Project using Illumina TruSeq 
non-stranded mRNA (polyA) sequencing. Our PCA plot 
in Supplementary Figure 1 is based on read counts per 
million per gene. It shows that the GTEx mRNA data 
segregate from our whole transcriptome and targeted 
RNA-Seq clusters in a distinctly different location of the 
plot. Within the GTEx clusters, the fat samples cluster to 
the lower left of the healthy breast tissue samples. This 
supports our targeted RNA-Seq results where our pure fat 
samples cluster to the lower left of our healthy breast tissue 
cluster. The GTEx healthy breast sample cluster overlaps 
with the GTEx fat sample cluster, whereas our clusters are 

distinctly separated. Looking at the GTEx breast tissue 
gene expression data, there are only 2791 genes with 
a coefficient of variation less than 0.3 (Supplementary 
Table 17), and these do not overlap with our non-highly-
variable genes. Looking at differentially expressed genes 
between GTEx breast and GTEx adipocyte data, 6366 are 
downregulated and 6624 upregulated (Supplementary Table 
18), an overlap of 79% with our unfiltered differentially 
expressed genes.

Breast cancer RNA-seq data

11 breast cancer tissue samples were included in the 
principal component plot (Figure 2). Figure 2 shows that 
the breast cancer samples are not clearly separated from 
the healthy normal samples, if all unfiltered genes are 
considered for the analysis. If at all, the tumor samples are 
separated from the healthy samples mainly by the second 
principal component. 

To exemplify the use of the normal healthy breast 
tissue reference data for biomarker discovery studies, we 
performed differential expression analysis and matching 
of overexpressed genes to associated inhibitors between 
10 tumor and 19 normal samples that came from formalin 
fixed paraffin embedded tissue and were all sequenced 
using the total RNA kit. Table 3 shows the overexpressed 
genes that were matched to inhibitors and annotated to 
indicate which gene may be an unreliable biomarker. To 
exemplify a personalized differential expression analysis, 
Table 4 shows the overexpressed genes of our previously 
published patient [5] that we associated with inhibitors or 
drugs and which we now annotated with gene expression 
variability in healthy normals. 

Immune repertoire reference data

Immune repertoire statistics are summarized in 
Supplementary Tables 6–9. In brief, the statistics depend 
most strongly on the sequencing method (total RNA 
vs targeted RNA sequencing). In particular, given the 
identical biological RNA samples, TCRα chain sequences 
are underrepresented in TruSeq RNA Access data by 
about an order of magnitude compared to Roche Kapa 
RiboErase. Additionally, B cell receptor sequences seem 
to be underrepresented in frozen samples compared to 
formalin samples. On average, the percentages of aligned 
immune repertoire reads were comparable in normal and 
cancer tissues, and one to two orders of magnitude lower 
in fat tissue. Individual cancer sample P27T shows a four-
fold as high percentage of immune repertoire reads than 
other cancer samples and healthy tissue.

DISCUSSION

The primary objective of our study was to generate 
RNA Seq expression reference data in healthy normal 
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breast tissue for two RNA-Seq methods that are suitable for 
the small tissue sample amounts that are typically available 
from breast cancer patients. Next to the raw expression 
data, we provide Supplementary Tables 1–4 on those genes 
that appear to have a modest gene expression variability in 
healthy normal samples, i.e. with a coefficient of variation 

less than 0.3 which can approximately be interpreted as a 
log2 fold change lower than 2. We excluded genes with 
a coefficient of variation greater than 0.3 and we also 
identified and excluded over 3000 additional genes that 
varied more than 4-fold between the left and right healthy 
breast tissue sample pairs from the same patients. For the 

Table 3: FDA-approved drugs associated to overexpressed genes in the group of 10 breast cancer samples (Roche 
Kapa total RNA-Seq)
Gene log2FC CV ASG TLV Variability Inhibitor
TUBB3 3.4 0.92 No Yes high Ixabepilone et al.
TOP2A 3.1 1.84 No Yes high Doxorubicin et al.
RET 2.7 1.72 No No high Ponatinib et al.
ROS1 2.2 3.21 No Yes high Crizotinib et al.

log2FC: log2-fold-change of expression between group of 10 cancer samples and group of 19 normal tissue samples. CV: 
coefficient of variation in FFPE healthy breast tissue samples (Roche Kapa). ASG: adipocyte signature gene. TLV: tissue 
location dependent variability of expression. Variability: variability of gene expression in healthy breast tissue (high: if CV 
> 0.3, or log2FC > 2 between tissue locations in same patient, or if adipocyte signature gene).

Table 4: Drugs associated to overexpressed genes in triple-negative breast cancer skin metastasis sample P33T 
(TruSeq RNA Access, targeted RNA-Seq)
Gene log2FC CV ASG TLV Variability Inhibitor
RAD51 5.0 0.56 Yes No high Amuvatinib
TOP2A 4.9 0.50 No Yes high Doxorubicin et al.
AURKB 4.5 1.32 No Yes high Danusertib et al.
AURKA 4.3 0.59 No No high Danusertib et al.
CHEK1 3.6 0.49 No No high AZD7762
CHEK2 2.0 0.27 No Yes high AZD7762
NOTCH1 2,0 0.27 Yes No high RO4929097 et al.
PARP1 1.9 0.13 No No low Olaparib et al.
PIK3R2 1.9 0.28 No No low Apitolosib et al.
RRM1 1.8 0.14 Yes No high Gemcitabine et al.
SYK 1.7 0.35 Yes No high Fostamatinib 
CDK4 1.6 0.17 No No low Palbociclib et al.
AKT1 1.5 0.16 Yes No high AZD5363 et al.
MAP2K1 1.4 0.23 Yes No high Cobimetinib et al.
ALK 1.3 0.93 No Yes high Crizotinib et al.
ERBB3 1.1 0.58 No No high Osimertinib et al.

log2FC: log2-fold-change of expression between single triple-negative breast cancer metastasis and group of 10 normal tissue 
samples. CV: coefficient of variation in FFPE healthy breast tissue samples (TruSeq RNA Access)
Variability: variability of gene expression in healthy breast tissue (high: log2FC > 2). ASG: adipocyte signature gene. 
TLV: tissue location dependent variability of expression. Variability: variability of gene expression in healthy breast tissue 
(high: if CV > 0.3, or log2FC > 2 between tissue locations in same patient, or adipocyte signature gene). Inhibition of Poly 
[ADP-ribose] polymerase 1 (PARP1 gene), Phosphatidylinositol 3-kinase regulatory subunit beta (PIK3R2 gene) and Cyclin-
dependent kinase 4 (CDK4 gene) are therapeutic options suggested by tumor-vs-normal RNA overexpression versus the CV 
and low variability of RNA expression in the healthy tissue samples. The remaining overexpressed gene transcripts may be 
less confident RNA biomarkers due to their high variability in the healthy reference tissue between individuals, between 
tissue locations in the same individual, or due to potential confoundment by adipocyte content. Here, the skin metastasis was 
adipocyte-free.
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fresh frozen breast samples, we also excluded genes that 
may be subject to confounding by fat cell content.

We also generated breast cancer RNA-Seq data for 
demonstration purposes. The overall expression data in 
tumors were very similar to healthy breast tissue RNA-Seq 
data in the PCA plot (Figure 2). The biological difference 
between tumor and normal samples is clearly much smaller 
than the technological differences of sequencing or sampling 
methods. On an individual patient level, RNA-Seq may 
show more clearly than DNA-based panel sequencing which 
genes are overexpressed and which are not. Specifically 
for our patients, gene amplification data were available 
from a DNA-based test. However, the gene amplifications 
detected in patient tumors P24T and P26T (highlighted in 
light red in Supplementary Table 11) were not seen in our 
RNA-Seq expression data (Supplementary Table 10). This 
discrepancy is possibly explained by technological errors 
in the amplification detection method, or by biological 
deactivation (e.g. methylation or mutation of the promoter 
region) or biological downregulation. Of note, the DNA-
based gene amplifications and the gene deletion detected in 
patient tumors P25T, P27T and P29T were clearly reflected 
in our RNA-Seq data. This suggests that amplifications 
detected by DNA-based methods alone may not be 
sufficiently actionable and that RNA-based follow-up should 
be considered to assess the expression change.

When comparing patient samples with our reference 
data, it is of highest importance to use the corresponding 
RNA sequencing method for the patient samples, i.e. 
Illumina TruSeq RNA Access or Roche Kapa RNA 
RiboErase. This is clearly seen in the PCA plots in 
Figure 2 and Supplementary Figure 1, and has also been 
reported by Li and colleagues [6]. It is also important to 
use the matching sample asservation method (formalin 
or freezing). Using formalin fixation and Roche Kapa 
RNA sequencing, 10259 genes are available for confident 
differential gene expression analysis (Table 1). With frozen 
samples and Roche Kapa RNA sequencing, 6719 genes are 
available. A fixation method mismatch does not appear to 
be a big problem when using our reference data: As can 
be seen in row 3 of Table 1, 6434 genes can be compared 
with our reference data if the method of fixation does not 
match, i.e. only 285 less than 6719. Of note, Table 1 shows 
that 36 breast cancer biomarkers may be unaffected by the 
fixation method. These are detailed in Supplementary Table 
3, and include CDK4 (associated with e.g. Palbociclib) and 
MTOR (associated with e.g. Everolimus).

We were alarmed by multiple highly significant 
adipocyte pathway signatures (Table 2) in the fresh frozen 
breast tissue samples and by the separate clusters of 
formalin and frozen samples in the PCA plot (Figure 2). 
Fat cell content was confirmed in the frozen samples, but 
formalin samples were not affected, as they were prepared 
from thin tissue sections after staining and microscope 
inspection. Therefore, we investigated the extent to which 
gene expression is confounded, using frozen pure fat 

tissue samples (Supplementary Table 14, Supplementary 
Figure 3). Eighty-six further genes that we had not already 
excluded showed significant differential expression and 
were excluded from the fresh frozen breast tissue reference 
data. Twenty-one of the well established breast cancer 
biomarkers, including CDK4 and MTOR were unaffected 
by fat tissue in our sequencing data (Supplementary Table 
5). In contrast to our unaffected MTOR RNA expression, 
mTORC1 and mTORC2 protein complexes are known to 
play an important role in adipocyte metabolism [7].

To follow up our observations of adipocyte signatures 
in breast samples, we analysed GTEx data from mRNA-
sequencing of fat and breast tissue samples. Our principle 
component analysis (Supplementary Figure 1) confirmed 
the same adipocyte cluster location relative to the breast 
cluster location within the GTEx mRNA-Seq data as within 
our targeted RNA-Seq data. On the other hand, our breast 
samples cluster more distinctly than the GTEx samples 
and less genes are affected by high expression variability 
in our samples than in the GTEx data. Indeed, the GTEx 
breast cluster is so large that it entirely overlaps the GTEx 
adipocyte cluster, suggesting that the GTEx breast samples 
in the overlap region may consist mainly of adipocyte 
tissue. Accordingly, less than 3000 GTEx breast tissue genes 
show a coefficient of variability less than 0.3, compared to 
between about 7000 and 10,000 genes in our here presented 
breast tissue reference data for targeted RNA-Seq and total 
RNA-Seq, respectively. 

Of note, the GTEx standard operating procedure for 
biospecimen collection (https://biospecimens.cancer.gov/
resources/sops/docs/GTEx_SOPs/BBRB-PR-0004%20
GTEx%20Tissue%20Processing%20Procedure.pdf) 
provides guidance on adipocyte removal: “For specimens 
embedded in adipose tissue (e.g., arteries, nerve, adrenal, 
pancreas, and skeletal muscle) dissect/tease off peripheral 
fat as thoroughly as feasible without damaging the target 
tissue using ‘blunt’ technique and following tissue planes”. 
This procedure was used when we collected our fresh 
frozen breast tissue samples. From our own sampling and 
RNA-Seq results we conclude that FFPE sampling enables 
the potentially confounding adipocytes to be removed 
more effectively than fresh breast tissue sampling on the 
surgeon’s table.

We also provide reference data on B- and T-cell 
receptor repertoires in our healthy breast tissue samples 
and our tumor samples in Supplementary Tables 6–9. 
These immune repertoire data should be used with samples 
that are processed with matching fixation and sequencing 
methods. The immune repertoire statistics are no validated 
biomarkers. They are currently subject to research. 
Possibly they may become validated biomarkers, helping 
the clinician to decide whether sufficient T-cells have 
infiltrated the tumor tissue for a PD1-/PD-L1 checkpoint 
inhibitor, or whether additional immunological strategies 
are indicated, such as those that increase T-cell priming, 
proliferation and penetration into the tumor tissue.

https://biospecimens.cancer.gov/resources/sops/docs/GTEx_SOPs/BBRB-PR-0004%20GTEx%20Tissue%20Processing%20Procedure.pdf
https://biospecimens.cancer.gov/resources/sops/docs/GTEx_SOPs/BBRB-PR-0004%20GTEx%20Tissue%20Processing%20Procedure.pdf
https://biospecimens.cancer.gov/resources/sops/docs/GTEx_SOPs/BBRB-PR-0004%20GTEx%20Tissue%20Processing%20Procedure.pdf
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In conclusion, our gene expression and immune 
repertoire reference data aim to help identify true 
aberrations and ultimately guide experimental breast 
cancer drug selection in last-line patients with or without 
patient-matched normal tissue. 

MATERIALS AND METHODS

Patients and tissue samples

Tissue samples were obtained from the biobanks at 
the Avera Cancer Institute and at the University Hospitals 
Schleswig-Holstein, Kiel, Department of Gynaecology 
and Obstetrics and Department of Dermatology. All 
patients provided informed consent and the study was 
performed according to internal ethics review board 
approvals at the Avera Cancer Institute and at University 
Hospitals Schleswig-Holstein, respectively. 

19 normal FFPE breast ductal tissue samples were 
obtained at Avera, with seven pairs of left and right breast 
and five from either left or right breast from a total of 12 
individuals. 10 breast cancer FFPE tissue samples were 
collected at Avera. Nine breast ductal normal FF (liquid 
nitrogen) tissue samples were collected at the Department 
of Gynaecology and Obstetrics, Schleswig-Holstein from 
breast reduction operations. One pair of FF left and right 
healthy normal breast ductal tissue samples were from the 
same breast reduction patient. 1 healthy breast ductal tissue 
sample was collected at the Department of Gynaecology 
and Obstetrics, Schleswig-Holstein from a breast reduction 
patient and rapidly halved. From the first half, fat tissue 
was macroscopically removed by the surgeon and the 
sample was snap frozen in liquid nitrogen. The second 
half was quickly transported to the pathologist at 4°C, 
fixed in formalin, embedded in paraffin, and stained with 
hematoxylin and eosin. Ductal epithelial cell regions in 
this FFPE sample were marked under a microscope for 
laser microdissection. Six subcutaneous fat tissue healthy 
samples were collected in RNAlater RNA Stabilization 
Reagent (Cat # 76104, Qiagen, Hilden, Germany) at the 
Department of Dermatology, Schleswig-Holstein, kept over 
night without freezing, and then frozen at –80°C.

RNA isolation

Deparaffinization of FFPE samples was performed 
using 1ml of xylene at 50° C for 3 min followed by two 
washes with 100% ethanol. Ethanol was removed by 
pipet and samples were then dried at room temperature 
to completely remove residual ethanol. The remaining 
pellet was then extracted. RNA from the Avera Cancer 
Institute’s FFPE samples was isolated using the Maxwell 
RSC RNA FFPE Kit (Cat # AS1440, Promega, Madison, 
WI, USA) on the Maxwell automated system (Cat # 
AS4500, Promega, Madison, WI, USA) according to the 
manufacturers’ protocol. This RNA was quantitated using 

the Qubit instrument and RNA HS kit (Invitrogen). All 
samples were treated with DNAse according to protocol and 
subsequently purified using AMPure RNA XP Clean beads 
(Agencourt Bioscience Corp., Austin, TX, USA). RNA 
from FF breast tissue was isolated at the Institute of Clinical 
Molecular Biology with the mirVana™ miRNA Isolation 
Kit with phenol (Cat # AM1560, ThermoFisher, Waltham, 
MA, USA) according to the manufacturer’s protocol. RNA 
from fat tissue samples was isolated at the Department of 
Dermatology using the Qiagen AllPrep DNA/RNA Mini 
Kit (Cat # 80204, Qiagen, Hilden, Germany), according to 
the manufacturer’s protocol. RNA from the single German 
FFPE breast tissue sample was isolated at the Institute of 
Clinical Molecular Biology using the RecoverAll FFPE 
kit (Cat # AM1975, Ambion/Invitrogen, Carlsbad CA, 
USA) according to manufacturer’s protocol. The RNA 
from the German samples was quantitated with Qubit 
(ThermoFisher, Waltham, MA, USA) and TapeStation 2200 
(Agilent Technologies, Waldbronn, Germany).

Next-generation sequencing 

For library preparation, the Illumina RNA Access 
Library Prep Kit (Cat. No. RS-301-2001, Illumina, San 
Diego, CA, USA) was used with 40 ng of FFPE RNA 
or 50 ng of FF RNA, respectively. At time of writing the 
kit has been split into three kits and renamed to TruSeq 
RNA Exome, consisting of TruSeq RNA Library Prep for 
Enrichment (Cat. No. 20020189), TruSeq RNA Enrichment 
(Cat. No. 20020490), Exome Panel (Cat. No. 20020183). 
The libraries were prepared according to the manufacturer’s 
protocol with the following change for the FFPE samples: 
the hybridization/capture was performed individually 
instead of as pooled samples after the first PCR step. 

For library preparation, the KAPA Stranded RNA-
Seq Library Prep Kit (Roche) was used with 100 ng of 
FFPE RNA according to the manufacturer’s protocol. 

Libraries were quantified using the Qubit instrument 
and DNA HS kit (Invitrogen) for the FFPE samples, 
and Qubit and TapeStation for the FF samples. Library 
concentrations were adjusted to 1nM and pooled for 
multiplex sequencing. Pooled libraries were denatured and 
diluted to 7.5 pM and clonally clustered onto a NextSeq 
500 High Output sequencing flow cell. The clustered 
flow cells were sequenced on the Illumina NextSeq 500 
Platform to 75bp paired end reads.

Primary data analysis

Processing was performed using a custom workflow 
implemented in the pipelining framework OmicsPipe [8]. 
Adapter sequences were trimmed and low quality reads 
removed using BBDuk version 34.46 from the BBMap 
suite (https://sourceforge.net/projects/bbmap/) with 
parameters: minlen = 25 qtrim = rl trimq = 10 ktrim = r  
k = 25 mink = 11 hdist = 1 overwrite = true tbo = t tpe = t. 

https://sourceforge.net/projects/bbmap/


Oncotarget32371www.oncotarget.com

Quality of raw reads was assessed using FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) 
version 0.11.2. Mapping of RNA and generation of gene 
counts was done using STAR [9] aligner version 2.4.2a 
against human reference hg19 and using Refseq hg19 
gene annotation. RNA-Seq based count data is available 
in Supplementary Table 10.

Differential expression and pathway analysis

Main analysis were undertaken using R version 
3.4. RNA-Seq count data were processed and differential 
expression analysis performed using limma/voom 
methodology [10] and DESeq2 [11]. Pathway analysis was 
performed using signaling pathway impact analysis (SPIA) 
[12]. Enrichment analysis was performed using g:Profiler 
[13]. In all statistical tests, an effect was considered as 
statistically significant if the P-value of its corresponding 
statistical test was ≤ 5%. Differential expression 
between patient-matched pairs of single samples (left 
vs right breast, FFPE half vs FF half) was additionally 
computed using STAR counts per million instead of the 
statistical tests in limma or DESeq2. Cancer biomarkers 
(Supplementary Table 19) were obtained from the Cancer 
Genome Interpreter (https://www.cancergenomeinterpreter.
org/biomarkers). Breast cancer associated genes 
(Supplementary Table 20) were obtained using GLAD4U.

Drug selection based on overexpressed genes

Drug selection was performed on differentially 
overexpressed genes with log2 fold change greater than 
1.5. We queried DGIdb API V2 [14] with the following 
parameters: interaction type ‘inhibitor’ (antagonist, antibody, 
blocker, inhibitor, suppressor, allosteric modulator, adduct, 
binder, immunotherapy, inhibitory allosteric modulator, 
inverse agonist, vaccine), anti neoplastic: true, clinically 
actionable: true and source trust level: expert curated.

Immune repertoire fraction of reads and 
clonotype count estimate

The number of sequences per sample was 
harmonized by downsampling the FASTQ files to the 
number of reads in the smallest file. Sequences were 
processed using the immune repertoire detection software 
MiXCR [15], version 2.1.1. Briefly, sequences were 
aligned against human immune repertoire reference 
including V, D, J and C genes of TCR αβ and γδ chains and 
BCR/immunoglobulin (IG) heavy (IGH) and light (IGK, 
IGL) chains. Where present, complementary determining 
region 3 (CDR3) sequences were extrapolated and worked 
as identifier sequences for clonotype clustering. 

Absolute number and percentages of aligned reads 
were calculated for each immune repertoire chain (both 
TCRs and BCRs) as well as the number of final clonotypes 
identified.

Abbreviations

Access: Illumina TruSeq RNA Access; BCR: 
B-cell receptor; BrCa: breast cancer; CV: coefficient of 
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expressed/differential expression; DGIdb API: Drug-Gene 
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IGH: BCR/immunoglobulin heavy chain; IGK and IGL: 
BCR/immunoglobulin light chains (κ and λ); Kapa: Roche 
Kapa RNA RiboErase; PD1: Programmed cell death 
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