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Genetic polymorphisms
associated with heart failure:
A literature review
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Abstract

Objective: To review possible associations reported between genetic variants and the risk,

therapeutic response and prognosis of heart failure.

Methods: Electronic databases (PubMed, Web of Science and CNKI) were systematically

searched for relevant papers, published between January 1995 and February 2015.

Results: Eighty-two articles covering 29 genes and 39 polymorphisms were identified.

Conclusion: Genetic association studies of heart failure have been highly controversial. There

may be interaction or synergism of several genetic variants that together result in the ultimate

pathological phenotype for heart failure.
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Introduction

Heart failure (HF) is a multifactorial disease,
which is the leading cause of morbidity and
mortality worldwide.1 There are various
etiologies for HF, such as coronary artery
disease, hypertension, valvular heart disease,
arrhythmia, dilated cardiomyopathy (DCM),
infection and inflammation. Neurohormonal
factors play a fundamental role in the
pathophysiology of structural changes of the
heart (cardiac remodeling), and the subse-
quently deterioration of cardiac function
(heart failure),2 including activation of
the sympathetic nervous system and the
renin-angiotensin-aldosterone system, altered
expression of endothelin, vascular endothelial
growth factor, inflammatory cytokines,

pro-oxidant and antioxidant factors, as
well as signal transduction components.
A number of drugs are available for HF
including angiotensin-converting enzyme
inhibitors (ACEI), b-blockers, aldosterone
antagonists, diuretics and inotropic agents.3
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However, the risk, severity and therapeutic
response of HF is variable among individuals,
which may be related to genetic variation.4

The aim of this study was to review the
literature for any genetic association with
the susceptibility, therapeutic response or
prognosis of HF. These findings could then
be used to identify risk factors and pharma-
cogenetic mechanisms of HF, providing
information to prevent future cases and to
ensure effective therapeutic decisions.

Methods

Literature retrieval

All available articles about HF and gene
polymorphisms published between January
1995 and February 2015 were searched for
from electronic databases, PubMed, Web of
Science and the Chinese National Knowledge
Infrastructure (CNKI). The following terms
were used as search criteria: ‘heart failure’,
‘HF’, ‘cardiomyopathy’, ‘polymorphism’,
‘variant’, ‘genetic polymorphism’, ‘genetic
variant’, ‘susceptibility,’ ‘therapy response’,
‘cardiac remodeling’, ‘severity’, ‘survival’,
‘mortality’, ‘death’, ‘prognosis’ and ‘genetic
association study’. Bibliographies in articles
provided further references.

Inclusion criteria

Inclusion criteria were defined as: 1) clinical
research of cases of HF; 2) publication
between January 1995 and February 2015;
3) diagnosis of HF defined: (a) left ventricu-
lar ejection fraction (LVEF) �45% or
abnormal diastolic function and (b) classic
HF signs/symptoms, 4) assessment of �10
cases; 5) detailed information about mor-
bidity, therapeutic response, and/or prog-
nosis of HF.

Literature analysis

The investigators reviewed data from the
published literature independently, and all

disagreements were resolved by joint review
and consensus.

Results

This study retrieved 793 publications and,
following co-author reviews and discus-
sions, 82 articles covering 29 genes and 54
polymorphisms were finally included. An
overview of the genetic polymorphisms that
were included and their impact on HF is
given in Table 1. Papers were divided into
those that looked at susceptibility to HF,
those that assessed therapeutic response in
HF and those that examined the impact of
the polymorphism on HF prognosis.

Gene polymorphisms and susceptibility
to HF

Renin-angiotensin-aldosterone

system. Angiotensin converting enzyme
(ACE), as a key enzyme catalyzing the
production of angiotensin II and the deg-
radation of bradykinin, and plays an
important role in the development of HF.
A functional intragenic I/D polymorphism
of the ACE gene was studied in association
with serum and cardiac ACE, and its role in
HF susceptibility.5–15 A meta-analysis16 of
the studies failed to find any significant
association of the polymorphism with the
risk of ischemic or idiopathic DCM.

Angiotensin type1 receptor (AT1R), as
the major receptor of angiotensin II, medi-
ates most of the physiologic actions of
angiotensin II. Polymorphism AT1R
1166C has been studied in relation to dia-
stolic HF,13 coronary artery disease17 and
incidence of HF.10,18 Wu, et al.13 reported
that AT1R 1166C carriers were associated
with a higher risk of diastolic HF, and
Mishra, et al.17 showed that AT1R A1166C
heterozygote patients with coronary artery
disease were susceptible to left ventricular
dysfunction. In contrast, two further studies
failed to find any significant relationship
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between A1166C polymorphisms and inci-
dence of HF.10,18

Angiotensinogen (AGT) gene alleles AGT
174M and AGT 235 T have been studied in

systolic HF patients10 and in relation to
susceptibility to DCM.6,15 Zakrzewski-
Jakubiak, et al.10 reported an increased fre-
quency of the AGT 174M allele and AGT 235

Table1. Genetic polymorphisms and their influence on HF.

Genetic polymorphism Influence on HF

Renin-angiotensin

-aldosterone system

ACE I/D5–15,59–62,79–82 susceptibility, therapy response,

prognosis

AT1R A1166C10,13,17,18,81,114 susceptibility, prognosis

AGT M235T, T174M6,10,15 susceptibility

Sympathetic nervous system ADRB1Arg389Gly,

Ser49Gly22,23,63,64,83–85,111,114
susceptibility, therapy response,

prognosis

ADRB2 Arg16Gly,

Gln27Glu23–27,67–70,86–90,115,116
susceptibility, therapy response,

prognosis

ADRA2C Del322-32528,29,71,112 susceptibility, therapy response

Inflammatory genes CTLA4 Aþ 49G33 susceptibility

NFKB1-94 ATTG1/ATTG238,39 susceptibility

IL-4 G-1098T, C-590T, C-33T40 susceptibility

TNFRSF1B T587G92 prognosis

IFN Tþ874A95 prognosis

TGFB1 Tþ869C, Gþ915C95 prognosis

Endothelial system ET-1 IVS-4 G/A, Lys198Asn42,113 susceptibility, therapy response,

ETA H323H T/C, Cþ 1363T41,42,97 susceptibility, prognosis

VEGF C-634G, Cþ 405G, C-460T45,96 susceptibility, prognosis

NOS3 Asp289Glu99 prognosis

Micro-RNA

sequences

miR-499 u17c56 susceptibility

TLCD2 (rs7223247)57 susceptibility

miR1-2(rs9989532),

miRNA 208b(rs45489294),

miRNA 367(rs13136737)58

susceptibility

Miscellaneous genes GRK Glu41Leu46,47,83 susceptibility,

therapy response

MnSOD-2 Val16Ala51 susceptibility

MMP-2C-735T, G-790T,

G-1575A, G-1059A52,53,107
susceptibility, prognosis

MMP-3 -1171 5A/6A109 prognosis

MMP-9 C-1562T109 prognosis

HSPB7Gþ 245A, *12SNPs54,55,111 susceptibility

CYP2D676–78 therapy response

AMPD1 C34T102–105 prognosis

*12SNPs(HSPB7): rs945416, rs732286, rs1763596, rs1739844, rs1763597, rs1739843, rs1739842, rs1739841, rs1763599,

rs761760, rs761759, rs1739840.

HF, heart failure; ACE, angiotensin converting enzyme; AT1R, angiotensin type1 receptor;

AGT, angiotensinogen; SNPs, single nucleotide polymorphisms; ADRB1, b1-adrenergic receptor gene; CTLA, T-lymphocyte

antigen; NFKB, nuclear factor kappa B; IL-4, interleukin-4; ET-1, endothelin-1; ETA endothelin-A receptor; VEGF, vascular

endothelial growth factor; GRK, G-protein coupled receptor kinases; MnSOD, manganese superoxide dismutase; MMPs,

matrix metalloproteinase; HSP, heat shock protein; CYP2D6, cytochrome P4502D6; TGFB, transforming growth factor-b;

IFN, interferon-g; AMPD1, adenosine monophosphate deaminase1.
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T allele in systolic HF patients, however, Tirt,
et al.15 and Tiago, et al.6 failed to find evidence
for an involvement of either polymorphism in
the susceptibility to DCM.

Sympathetic nervous system. The pivotal role of
sympathetic activation in HF and the benefit
of anti-adrenergic therapy are well-known.19,20

This study has focused on several functional
single nucleotide polymorphisms (SNPs) of
the b1-adrenergic receptor gene (ADRB1
Arg389Gly, Ser49Gly), b2-adrenergic receptor
gene (ADRB2 Arg16Gly, Gln27Glu, Thr164Ile)
and a2 c subtype of the adrenergic receptor
gene (ADRA2C Del322–325).

A meta-analysis from Liu, et al.21 found
no significant association between the
ADRB1 Arg389Gly polymorphism and HF
risk in the general population. However,
Asian Gly389Gly homozygotes were signifi-
cantly more susceptible to HF, while the risk
of HF in homozygote Caucasians decreased.
No robust association was found for the
Ser49Gly polymorphism.

The b2-adrenergic receptor polymorph-
ism ARDB2Gly16Gly has been studied in
relation to DCM and HF.22–27 Forleo,
et al.23 demonstrated significant association
of ARDB2Gly16Gly homozygotes with
DCM. Leineweber, et al.24 showed that the
Gly16Gly genotype, which was in linkage
disequilibrium with the Glu27Glu genotype,
was more prevalent in patients with
end-stage HF and those who underwent heart
transplantation (HTX). The remaining stu-
dies25–27 failed to find any relationship between
HF risk and ADRB2 gene polymorphisms
(Arg16Gly, Gln27Glu, Thr164Ile).

The a2 c-adrenergic receptor (a2 C-AR)
polymorphism ADRA2C Del322–325 effect
appears linked to race: African-American
ADRA2C Del322–325 homozygotes, but
not Caucasian homozygotes are more sus-
ceptible to HF.28 Nonen, et al.29 found that
the Del322–325 allele frequency was statis-
tically lower in Japanese patients with HF,
but this might be explained by the low

frequency of Del322–325 homozygotes
among Japanese.

Inflammatory genes. Tumor necrosis factor
alpha (TNF-a) is one of the most studied
inflammatory cytokines in the pathogenesis
of HF.30 TNF-a causes endothelial dysfunc-
tion, muscle contractility reduction and
myocardial hypertrophy.31

A meta-analysis32 of eight studies demon-
strated that the TNFA-308 GA/AA genotype
was more prevalent among DCM patients.

Cytotoxic T-lymphocyte antigen 4
(CTLA4) is an inhibitory receptor expressed
on activated T lymphocytes, which acts as
an important negative regulator of T-cell
activation. A promoter SNP (�318 C/T)
and a functional SNP (þ49 A/G) of the
CTLA4 gene were investigated in two inde-
pendent cohorts of DCM patients and
healthy controls.33 In patients with DCM,
the þ49GG genotype predicted high suscep-
tibility for DCM.33

The nuclear factor kappa B family
(NF-kB) of transcription factors, major
mediators of inflammation, have been impli-
cated in cardioprotection34,35 and in detri-
mental effects on the heart.36,37 The
prevalence of NFKB1-94 ATTG2 in DCM
patients38 and in those at risk of HF39 was
explored. Zhou B, et al.38 observed a higher
prevalence of NFKB1-94 ATTG2 carriers in
DCM patients, however, Santos, et al.39 failed
to find any association between theNFKB1-94
ATTG polymorphism and HF risk.

Mahmoudi, et al.40 has investigated three
interleukin-4 polymorphisms with regard to
their influence on the risk of ischemic HF
(IHF). Polymorphisms of IL-4 �590CC,
�33TT and �33CC were positively asso-
ciated with the risk of IHF, while �1098TG,
�590 TC and �33TC genotypes were nega-
tively related.40

Endothelial system. The endothelial system
plays an important role in the pathogenesis
of HF. The endothelin-1 genes (ET-1)
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regulate ET-1 production and endothelin-A
receptor genes (ETA) regulate ET-1-induced
activation of the target receptor. The
TT genotype of the ETA þ1363C/T poly-
morphism was related to an increased risk for
DCM.41 The TT genotype of the ETA
þ1363C/T polymorphism and those homozy-
gous forET-1 198Asn have a 3-fold higher risk
of HF than those of a different genotype.42

Vascular endothelial growth factor
(VEGF) is a multifunctional protein, indu-
cing receptor-mediated endothelial prolifer-
ation, angiogenesis and endothelial
integrity. It is involved in microvasculature
abnormalities of HF.43,44 Douvaras et al.45

studied patients after acute myocardial
infarction, and found that those with the
VEGF �634CC genotype alone or co-inher-
ited with the rare alleles VEGF-7: þ1612,
�1190 or �2549 were at higher risk for HF.

Miscellaneous genes. G-protein coupled
receptor kinases (GRKs), a large family of
receptor-regulating proteins, play pivotal
roles in signal transduction of G-protein
coupled receptors, especially the b-receptor.
The common variant, GRK5 Glu41Leu, is in
a putative regulatory domain and confers
enhanced agonist-promoted desensitization,
phosphorylation and internalization of b1-
AR responses. Studies have assessed the
prevalence of this variant in patients with
left ventricular apical ballooning syndrome
(LVABS), an idiopathic but reversible stress
cardiomyopathy.46,47 Spinelli, et al.46

showed that patients with LVABS exhibited
a higher prevalence of the GRK5 41Leu
variant, although this finding was not con-
firmed in a larger cohort study.47

Manganese superoxide dismutase
(MnSOD), a mitochondrial antioxidant
enzyme, may be induced by increased inflam-
matory cytokines in cardiomyopathy or myo-
carditis.48 Overexpression of MnSOD might
protect cardiac cells from damage by these
cytokines.49 A substitution (Val16Ala) might
neutralize superoxide radicals in the cells.50

Homozygosity for 16Val in the MnSOD gene
is an independent predictor for development of
DCM among Japanese.51

A common intronic variant in heat shock
protein (HSP) gene HSPB27 member 7
(HSPB7 þ245 G/A), which encodes cardio-
vascular small HSP, has been investigated in
two studies.54,55 These found that the minor
A allele of theHSPB7þ245 G/A variant was
protective against HF in Caucasians, but
not in African-Americans. The activation of
matrix metalloproteinases (MMPs), a family
of proteolytic enzymes, might contribute to
the progressive cardiac remodeling process
in HF by degrading the myocardial extra-
cellular matrix. There is a significant
increase of the MMP-2 �735 C allele and
�790 T allele among congestive HF
patients.52 In addition, MMP-2 �1575A
carriers show a lower risk of systolic HF
among Han Chinese.53

Micro-RNA sequences. There are several studies
focusing on the effects of DNA variants
within or adjacent to micro-RNA sequences
(miRs). These miRs are short, endogenous,
noncoding RNAs that bind to the 3’-untrans-
lated region (3’-UTR) of their target mRNA
and regulate the subsequent translation of
proteins. MiR-499 u17c was first described in
association with human HF,56 with the c17
mutant misdirecting recruitment of a subset of
miR-499 target mRNAs, thus altering steady-
state cardiacmRNAand proteins to favorably
impact cardiac function.56 The rs7223247
polymorphism, located within the 3’-UTR of
a nonfunctional TLCD2 gene downstream
from miR-22 has been implicated in left
ventricular hypertrophy (as a strong inde-
pendent predictor of HF).57 HCM patients
and healthy controls had similar frequencies
of the polymorphisms rs45489294 in miRNA
208b and rs13136737 in miRNA 367.58

However, re998532 in miRNA 1-2, the only
variant not detected in the healthy controls,
was a rare SNP but not necessarily an HCM-
associated mutation.58
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Gene polymorphisms and therapeutic
response

Renin-angiotensin-aldosterone system. Several
studies have demonstrated that patients
with ACE DD genotype benefited more
significantly from therapies with ACE
inhibitors (greater improvement in left ven-
tricular ejection fraction and cardiac
remodeling),59,60 but did not apparently
respond to b-blocker therapy.61 Patients
with non-DD genotypes were found to
have better responses to spironolactone
therapy than those of other genotypes.62

Sympathetic nervous system. A variety of stu-
dies have been performed to evaluate the
impact of the b-AR polymorphisms on
response to b-blocker therapy. The meta-
analysis of Liu, et al.21 showed that ADRB1
389Arg homozygotes were associated with
more improvement of left ventricular ejec-
tion fraction (LVEF), left ventricular end
diastolic diameter (LVEDd) and left ven-
tricular end systolic diameter (LVESd) than
those with different genotypes. Moreover,
the benefits appeared significantly towards
selective b-blockers rather than non-selec-
tive b-blockers.

Magnusson, et al.63 demonstrated that
ADRB149Gly carriers had similar survival
rates with different doses of b-blockers,
while Ser49Ser homozygotes had better
response only with a high dose of b-blocker.
A previous report64 showed that the survival
rate of 49Gly carriers without b-blockers
was of the same magnitude as that of
Ser49Ser patients with b-blockers (all
doses combined). This finding is consistent
with an ‘‘internal blockade’’ theory,65,66 that
strong and fast desensitization of the
ADRB1 receptor plays a protective role in
development of HF.

For the ADRB2 polymorphisms, Metra,
et al.67 and Kaye, et al.68 demonstrated that
the Gln27Glu SNP was a predictor of the
LVEF variation in response to carvedilol.

Conversely, de Groote, et al.69 failed to find
significant difference of LVEF improvement
in patients with Gln27Glu genetic vari-
ations, neither with carvedilol nor bisoprolol
therapy. Moreover, b-blocker therapy
seemed to have negative influence on sur-
vival rates of Thr164Ile heterozygotes, but a
positive influence on Thr164Thr homozy-
gotes.70 The ADRA2C Wt322–325 carriers
were also found to respond better to b-
blockers compared with other genotypes.71

Miscellaneous genes. In the general Chinese
population, GRK5Gln41Leu variants
were not associated with the risk of systolic
HF, but this genotype did significantly
reduce the morbidity of those with systolic
HF using b-blockers.72 Liggett, et al.73

showed that GRK541Leu carriers taking
b-blocker therapy had significantly longer
transplant-free survival time, revealing
pharmacogenetic interactions between the
GRK541Leu allele and b-blocker therapy in
Africans only.

Cytochrome P4502D6 (CYP2D6)
plays an important role in hepatic metabol-
ism, clearing lipophilic b-blocker from
the body. CYP2D6 phenotypes are classi-
fied as poor metabolizers, intermediate
metabolizers, extensive metabolizers and
ultrarapid metabolizers.74 Poor metabol-
izers have no functional alleles, intermedi-
ate metabolizers have two hypofunctional
alleles, while ultrarapid and extensive
metabolizers have two fully functional
alleles.74,75 Previous studies76,77 found
no association between CYP2D6 geno-
type and clinical effects of b-blockers,
despite the CYP2D6 poor metabolizers
exhibiting increased plasma concentration
of b-blocker during long-term treatment.78

Gene polymorphisms and prognosis of HF

Renin-angiotensin-aldosterone system. Although
the ACED variants have been associated
with an increase of adverse events,59,79–81 the
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negative influence of the D allele might be
diminished in those receiving ACEIs, sug-
gesting genetic variants in the genes of the
renin-angiotensin system could be modified
by ACEIs.59,82

Sympathetic nervous system. From the meta-
analysis of Liu, et al.21, no differences were
found in the prognosis of HF amongADRB1
Arg389Gly and Ser49Gly polymorphisms.
Several studies63,83–85 have revealed that dif-
ferences in survival rates between 389Gly
carriers and 389Arg homozygotes, as well as
between 49Gly carriers and 49Ser homozy-
gotes, could be diminished by b-blocker
therapy. The results indicated that standar-
dized or individualized therapy might have
greater effects on the course of HF, and this
may partially, if not totally, make up for the
genetic deficiency.

Several studies aimed to find linkage
between the ADRB2 Arg16Gly and/or
Gln27Glu polymorphisms with HF survival.
Forleo, et al.86 demonstrated that both
16Arg and 27Gln alleles were associated
with better prognosis among DCM patients.
Leineweber, et al.87 found that end-stage HF
patients who were homozygous for
Gly16Gly tended to have a lower incidence
of death or HTX. In contrast, two other
studies88,89 failed to find a significant asso-
ciation between the two genetic polymorph-
isms and HF survival. Liggett, et al.89 and
Barbato, et al.90 both reported that having
the ADRB2 Thr164Ile polymorphism
blunted the b2 adrenergic -mediated myo-
cardial contractile response, adversely
affecting the outcome of congestive HF. In
addition, the effect of ADRA2C Del322–325
polymorphisms on HF prognosis has been
investigated in two studies,71,91 revealing
that the wild type might be the favorable
genotype against exacerbation of HF
conditions.

Inflammatory genes. Tiret, et al.15 found that
the TNFA�308 G/A polymorphism was not

associated with the severity of HF (assessed
by LVEF and LVESd) or incidence of HTX.
The TNF receptor gene TNFRSF1B 587 G
allele was not associated with a worse prog-
nosis or more severe phenotype of congest-
ive HF,92 although increased prevalence of
the 587 G allele compared with the 587T
allele has been observed in various inflam-
matory diseases.93,94 Several genes of
inflammatory cytokines were investigated
in the study of Adamopoulos, et al.,95 who
showed an association between worse car-
diac function and adverse prognosis with the
TT genotype of transforming growth factor-
b 1 (TGFB1) þ869 T/C polymorphism, the
C variant of TGFB1 þ915 G/C polymorph-
ism, the GG homozygote of the interleukin-6
(IL-6) -174 G/C polymorphism and the AA
homozygote for interferon-g (IFN) þ874 T/A
polymorphism.

Endothelial system. Van der Meer, et al.96

found that the VEGF þ405CC genotype
might exacerbate the process of HF by
down-regulating serum VEGF levels, while
the VEGF -460 C/T polymorphism, which
does not affect VEGF levels, had no impact
on prognosis. The T allele of ETA, H323H
(T/C)) was found to be a pronounced
independent predictor of reduced survival
in DCM patients.97

In the endothelial cell, nitric oxide is
synthesized by nitric oxide synthases
(NOS). It might exert direct toxic effects on
the myocardium and mediate the negative
inotropic effects of some inflammatory cyto-
kines.98 McNamara, et al.99 showed that the
NOS3 298Asp variant was associated with
poorer event-free survival among systolic
HF patients. However, Maiolino, et al.100

argued that the NOS3 -786 C variant, which
was in linkage disequilibrium with the
Asp298 variant, might act as a more deter-
minable predictor for HF patients.

Miscellaneous genes. Adenosine monopho-
sphate deaminase1 (AMPD1) can convert
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adenosine monophosphate (AMP)79 to ino-
sine monophosphate (IMP). Changes of T
to C at exon 2 of AMPD1 result in a
truncated, inactive enzyme101 and an accu-
mulation of adenosine, which plays an
important role in the cardiovascular
system. Except for Gastmann, et al.102,
other studies103–105 all found no significant
relationship between the C34T polymorph-
ism and HF mortality. There were also
controversial discoveries of both potentially
beneficial and deleterious impacts of adeno-
sine and the T mutation.104,106,107

Hua, et al.108 showed that MMP-2 -1059A
carriers had lower mortality for systolic HF
in northern Han Chinese. Mizon-Gerard,
et al.109 revealed that the MMP-3 (�1171)5
A/5 A genotype was independently associated
with cardiac survival in non-ischemic HF
patients, but not in IHF patients. The
MMP-9 1562T allele was also an independent
predictor of cardiac mortality in patients with
diverse HF etiologies.

Gene-gene interaction

Susceptibility to HF has been demonstrated
with the synergistic action of the ACE D
variant with either the AT1R 1166C allele or
the ATG 235 T allele.10,13 Although the
ADRB1 389Arg allele alone showed no
significant effects on HF development,
when combined with ADRA2C Del322–325
homozygotes or ADRB1 Gly49 variants the
associations are pronounced.23,28 Moreover,
the ADRB2 Gly16Gly-Gu27Glu-Thr164Thr
haplotype also significantly increases the
incidence of HF as compared with the
individual risk genotype.24 In the endothe-
lial system, the co-existence of ET-1 198Asn
and ETA (H323H) T variants, which rep-
resent two steps of the same signal trans-
duction pathway, markedly increased the
occurrence of HF.42 Furthermore, certain
haplotypes such as the TNFA-238 G/�308
G/�857 C/�863 A/�1031T haplotype, IL-4
-1098T/-590 C/-33 C haplotype, MMP-2

�1575G/�1059G/�790 G haplotype, as
well as 12 SNPs in tight linkage disequilib-
rium of the HSPB7 gene have all been found
to be associated with higher risk of
HF.40,108,110,111

Pharmacogenetically, patients who are
ADRB1 Arg389Arg homozygote, with the
ADRA2C Del322–325 variant or the GRK5
Gln41Gln genotype have better responses to
b-blocker therapy.83,112 Moreover, patients
carrying ET-1 IVS-4 G and who are Asn198
homozygotes, which are in tight linkage
disequilibrium, also have better b-blocker
therapeutic responses than those of different
genotypes.113

Andersson, et al.114 found a significant
trend toward poorer HF survival in patients
carrying ACE DD genotype and the AT1R
1166C variant. Combination ADRB1 and
ADRB2 polymorphisms, such as Arg389/
Ser49, Arg16/Gln27 and Gly389Gly/
Gly49Gly/Thr164Ile were found to confer
lower HF-related mortality than other
haplotypes.115–117 In addition,
Adamopoulos, et al.96 showed that combin-
ation of the TGFB1þ869 T/C and
TGFB1þ915 G/C genotypes was associated
with worse cardiac function and adverse
prognosis than other genotypes.

Discussion and conclusion

Genetic association studies of HF have been
highly controversial; there may be inter-
action or synergism of several genetic vari-
ants which together result in an ultimate
pathological phenotype for HF.
Understanding the role that genetic variants
play in HF development is essential for
individualized preventive and therapeutic
strategies.
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