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The application of gene expression data to the diagnosis and classification of cancer has become a hot issue in the field of
cancer classification. Gene expression data usually contains a large number of tumor-free data and has the characteristics of high
dimensions. In order to select determinant genes related to breast cancer from the initial gene expression data, we propose a new
feature selection method, namely, support vector machine based on recursive feature elimination and parameter optimization
(SVM-RFE-PO). The grid search (GS) algorithm, the particle swarm optimization (PSO) algorithm, and the genetic algorithm
(GA) are applied to search the optimal parameters in the feature selection process. Herein, the new feature selection method
contains three kinds of algorithms: support vectormachine based on recursive feature elimination and grid search (SVM-RFE-GS),
support vector machine based on recursive feature elimination and particle swarm optimization (SVM-RFE-PSO), and support
vector machine based on recursive feature elimination and genetic algorithm (SVM-RFE-GA). Then the selected optimal feature
subsets are used to train the SVM classifier for cancer classification. We also use random forest feature selection (RFFS), random
forest feature selection and grid search (RFFS-GS), and minimal redundancy maximal relevance (mRMR) algorithm as feature
selection methods to compare the effects of the SVM-RFE-PO algorithm. The results showed that the feature subset obtained
by feature selection using SVM-RFE-PSO algorithm results has a better prediction performance of Area Under Curve (AUC)
in the testing data set. This algorithm not only is time-saving, but also is capable of extracting more representative and useful
genes.

1. Introduction

Cancer has become the main cause of morbidity and mor-
tality worldwide, due to population growth, aging, and the
spread of risk factors such as tobacco, obesity, and infection,
which will worsen in the next decade, in which breast
cancer is the most common cancer, especially in women [1–
8]. At present, the treatment of breast cancer is seriously
lagging behind. Although a number of effective measures
have been identified, it is hoped to identify the tumor and
prepare for further diagnosis [9–14]. However, as a late
intervention method, the effect is still limited.The generation
and development of tumor are closely related to genes, and,
from gene level to cancer diagnosis, can also be detected

by the gene [14–18]. For example, Karlsson A et al. [19]
applied unsupervised analysis of gene expression data and
identified a phenotype comprising 90% of 2015 world health
organization (WHO) lung cancer. Molina-Romero C et al.
[20] pointed out that the current classification of lung cancer
has greatly changed the pathological diagnosis of infiltrating
adenocarcinoma of the lung and identified a subtype of
disease which has a significant impact on medical practice.
But for the time being, there are still obvious deficiencies in
the study of breast cancer. As amethod of early prediction and
risk assessment,machine learning can reduce the incidence of
cancer in a simpler and more effective way, thereby reducing
the pain of patients and improving the quality of human
life. The prediction of breast cancer genes is still critical,
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which can improve breast cancer prediction, interfere with
the treatment as soon as possible, and reduce the incidence of
breast cancer, thereby further improving the quality of human
life.

A genetic disease may produce or cause one or more
mutations; this phenomenon also reflects the characteristics
of the real biological system module [21]. Analysis of indi-
vidual genes often does not reflect gene interactions, nor
does it make it possible for multiple genotypes to predict
disease. Over the last decade, genome-wide array based
expression profiling studies have been used as a forceful
tool to improve biological understanding of breast cancer.
With these techniques, many prognostic signatures of gene
expression have been identified as predictive of breast cancer
recurrence risk [22]. Dr. Golub [23] and his research team
successfully selected 50 gene subsets from 7129 genes of
leukemia gene expression data bymeans of signal-noise ratio,
which enabled the accurate classification of experimental
samples. Feature extraction methods for cancer classification
using gene expression data include principal component
analysis (PCA) [24], independent components analysis (ICA)
[25], linear discriminant analysis (LDA) [26], local linear
embedding (LLE) [27], and partial least squares regression
(PLS) [28]. Huang and Zheng [29] combined PCA and LDA
algorithms and proposed a new feature extraction method.
Themethod of decision is principal component analysis. The
method of decision is principal component analysis. Support
vector machine recursive feature elimination (SVM-RFE)
approach was originally proposed by Guyon [30], which can
effectively extract the informative genes for cancer classifica-
tion. SVM-RFE is used to find the discriminating relationship
within the clinical data sets and within the gene expression
data sets formed by tumor arrays and normal tissues. Liu
ShenLing [31] proposed that the algorithm considers that the
use of RFE algorithm can ensure the fact that the feature
subset is preserved during feature ordering.Thismethod uses
the information of the discriminant function of the SVM to
rank the features.

In this paper, based on traditional gene selection algo-
rithms, we proposed a model combined with grid search
method and heuristic algorithms, namely, genetic algorithm
and particle swarm algorithm, to search for the best parame-
ters for the gene selection algorithms. The important genes
within breast cancer gene expression data extracted from
SVM-RFE-GS, SVM-RFE-PSO, and SVM-RFE-GA algo-
rithms were regarded as the final features, and samples with
these features were fed into classifier to train it. By comparing
the classification accuracy of the above three algorithms,
it could be concluded that the SVM-RFE-PSO algorithm
could be better applied to select genes from breast cancer
gene expression data than traditional SVM-RFE algorithm,
and the SVM-RFE-PSO algorithm can select fewer gene
features but can extract more information effectively. We also
used RFFS, RFFS-GS, and mRMR algorithm for comparative
experiments in feature selection and found that the SVM-
RFE-PSO algorithm is still better than other algorithms. In
addition, the classification accuracy using SVM-RFE-PSO
algorithm is the best one. This method can also be used for
more feature selection problems.

2. The Proposed Method

2.1. Feature Selection
2.1.1. Statistics. Cancer gene expression data are highly
dimensionally characterized, so it is important to filter out
differential genes in the sample data. p value can usually be
calculated for each gene by statistical methods such as T-
test, which is commonly used in differential gene expression
testing. It evaluates whether a gene is differentially expressed
in two samples by combining variable data between samples.
However, due to the limited amount of experimental samples,
the estimation of overall variance is not rather accurate. So the
test performance of statistical test is reduced. Furthermore,
the false positive rate (FPR) would increase significantly if
the statistical test is repeated. In order to control the number
of the FPR, we need to test the p value for multiple tests to
increase the threshold.

The false discovery rate (FDR) error control method
was proposed by Benjamin and Hochberg in 1995 [32] to
determine the range of p values by controlling the FDR value.
The steps to filter out the differential genes are as follows.
First, we calculate p value for each gene.Thenwe calculate the
value of FDR. Finally, we use the FDR error control method
to make multiple hypothesis tests for p value. The adjusted p
value, q-value, is obtained by FDR control. The smaller the
q-value, the more obvious the difference between the genes
is, so we should try to choose the smaller q-value gene as the
differential gene.

2.1.2. SVM-RFE Based Model. The SVM-RFE algorithm
constructs a ranking coefficient according to the weight
vector 𝜔 generated by the SVM during training, removes a
signature attribute with the smallest ranking coefficient in
each iteration, and finally obtains the decreasing order of all
signature attributes. Fan Zhang et al. [33] used the SVM-RFE
algorithm to remove the features of the gene expression data
to form a new feature set.

Enter the training samples {𝑥𝑖, 𝑦𝑖}, 𝑦𝑖 ∈ {−1, +1}. The
output feature ordering set is defined as 𝑅.(1) Initialization. The original feature set 𝑆 = 1, 2, . . . , 𝐷;
the feature ordered set 𝑅= 0.(2) Loop the following procedure until 𝑅= 0.(a) Obtain the training set with candidate feature set.(b) Train the SVM classifier to get 𝜔.(c) Calculate the ranking criteria score:

𝑐𝑘 = 𝜔2𝑘, 𝑘 = 1, 2, . . . , |𝑆| (1)

(d) Find the smallest ranking criteria score features:

argmin
𝑘

𝑐𝑘. (2)

(e) Update feature set 𝑅 = 𝑃 ∪ 𝑅.(f) Remove this feature in 𝑆 such that 𝑆 = 𝑆/𝑃.
2.1.3. RFFS Based Model. The random forest (RF) is an
ensemble learning algorithmwhich constructsmany decision
trees at training time and according to the results of its
trees outputs the final classification results. When applied to
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classification tasks, one of the important attributes of RF was
that it could compute the significance of the attributes [34].

RFFS is a wrapper feature selection method based on
random forest. It uses the variable importance of random
forest algorithm to sort the features and then uses the
sequence backward search method. Each time the feature set
is removed, the least important it is (the least importance
score is the smallest). The characteristics are successively
iterated, and the classification accuracy rate is calculated.
Finally, the feature set with the least number of variables and
the highest classification accuracy is obtained as the feature
selection.

Input: The original feature set.
Output: The maximum classification correct rate on the

verification data set𝑇𝐺𝑀𝑎𝑥 and its corresponding feature set𝐹𝐺𝑆𝑜𝑟𝑡.
Step:

(1) Initialization(1) Read in the original data set S.(2) Set 𝑇𝐺𝑀𝑎𝑥 = 0.
(2) For (ft in N-2)(1) Randomly divide the data set S into 10 equal parts.(2) Set local maximum classification accuracy 𝑇𝐿𝑀𝑎𝑥 =0. (3) Set the local average classification accuracy rate𝑇𝐿𝑀𝑒𝑎𝑛 = 0.(4) Initialize the classification accuracy of each iteration
in 10-fold cross-validation 𝐴𝑐𝑐[1 : 10] = 0.(5) For(i in 1:10)

Create a classifier by running random forest on S.
Perform predictor on the test data set for classification.
Compare classification results with observations and

calculate 𝐴𝑐𝑐.
Compute 𝑇𝐿𝑀𝑒𝑎𝑛=𝑇𝐿𝑀𝑒𝑎𝑛 + 𝐴𝑐𝑐[𝑖]/10.
If(𝑇𝐿𝑀𝑎𝑥 <= 𝐴𝑐𝑐[𝑖]).
Then 𝑇𝐿𝑀𝑎𝑥 = 𝐴𝑐𝑐[𝑖].
Sort features by variable importance and save as 𝑆𝑜𝑟𝑡.(6) If(𝑇𝐺𝑀𝑎𝑥 <= 𝑇𝐿𝑀𝑒𝑎𝑛)
Then 𝑇𝐺𝑀𝑎𝑥 = 𝑇𝐿𝑀𝑒𝑎𝑛,𝐹𝐺𝑆𝑜𝑟𝑡 = 𝑆𝑜𝑟𝑡.(7) Remove the feature with the lowest importance score

from 𝑆𝑜𝑟𝑡 and get the new data set 𝑆.
(3) Output Result(1)Output global highest classification accuracy𝑇𝐺𝑀𝑎𝑥.(2) Output the global maximum classification accuracy
corresponding to the feature set 𝐹𝐺𝑆𝑜𝑟𝑡.
2.1.4. Minimal Redundancy Maximal Relevance Based Model.
Minimum redundancy maximum redundancy (mRMR) is
a filter type feature selection method, mainly by maximiz-
ing the correlation between the features and the classified
variables, and minimizing the correlation between features
to get the best feature set. mRMR algorithm guarantees
maximum correlation while removing redundant features. In
the obtained feature set, there is a great difference between the
features, and the correlation with the target variables is also
very large [35, 36].

Our goal is to select a set of influential features by using
the mRMR algorithm. The remaining question is how to
determine the best number of features. Since the mechanism
of removing potential redundancy from potential features
is not considered in the incremental selection, we need to
refine the results of incremental selection based on the idea
of mRMR. In the first stage, we use mRMR algorithm to
find candidate feature sets. In the second stage, we use more
complex mechanisms to search the feature subset from the
candidate feature set [37].

In order to select candidate feature sets, we calculated
a large number of cross-validation classification errors and
found a relatively stable small error range.This range is calledΩ.The best characteristic number of candidate set (expressed
as n∗) is determined inΩ.(1)UsemRMR incremental selection to select n (a present
large number) sequential features from the input X.This leads
to n sequential feature sets 𝑆1 ⊂ 𝑆2 ⋅ ⋅ ⋅ ⊂ 𝑆𝑛.(2) Compare the feature sets of n sequence 𝑆1, ⋅ ⋅ ⋅ , 𝑆𝑛,
(1 ≤ k ≤ n) to find the range of k, which is called Ω;
the corresponding (cross-validation classification) error 𝑒𝑘 is
always small (i.e., with small mean and small variance).(3) Find the smallest classification error 𝑒∗ = min 𝑒𝑘
within Ω. The best size of the candidate feature set is 𝑛∗,
which is selected as the smallest k and responds to e∗.
2.1.5.Models Parameters Optimization. Grid search is similar
to the exhaustion method. It is to find all the combinations
and experiments. During the experiment, we need to cross-
validate. Taking five-level cross-validation as an example, for
each possible combination of parameters, one-fifth of the
sample is used for testing, and the others are used for training.
Average after five cycles, the final set of parameters with the
smallest cross-validation error is the optimal parameter pair
we want.

Unlike the exhaustive search, heuristic search means
that the search in the state space evaluates the position
of each search to get the best position and then searches
from this position to the target. Some parts of information
generate inferences for calculations. Particle swarm opti-
mization algorithm (PSO) is a kind of heuristic algorithm
based on swarm intelligence, which originated from the
research of bird predation behavior; the basic idea of the
algorithm is through collaboration and information sharing
between individual groups to find the optimal solution
[38]. The genetic algorithm (GA) is a reference to natural
selection and evolution mechanism development of highly
parallel, randomized, adaptive search algorithm. In the early
days, it was an attempt to explain the complex adaptation
process of the biological system in the natural system and
simulate the mechanism of biological evolution to construct
the model of the artificial system [39]. In this paper, the
heuristic algorithm PSO and GA algorithm are mainly used
for parameter optimization in order to obtain the optimal
parameter optimization algorithm.

For SVM, there are many kernel functions to choose,
and different kernel functions correspond to different feature
maps, so the SVM hyperplane also has different abilities
and characteristics. In this paper, the data used have the



4 BioMed Research International

characteristics of small sample, high dimension, and nonlin-
earity, so the RBF kernel function is selected in this experi-
ment.TheRBFkernel function contains twoparameters c and
g, so the above algorithms, namely, GS, PSO, and GA were
used to find the optimal parameter pair (c, g) in the process
of building SVM classifier with cross-validation.

For random forest, the choice of random forest parame-
ters is critical to performance. For example, a random forest
allows a single decision tree to use the maximum number
of features, which we called 𝑚𝑎𝑥-𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. Increasing the𝑚𝑎𝑥-𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 generally improves the performance of the
model, but at the same time it reduces the diversity of
individual trees and slows down the algorithm. The number
of trees in a random forest, 𝑛-𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠, is also important
for the performance of random forests. When there are
many decision trees in a random forest, both the space
and time complexity would be greater. This paper uses the
grid search method to search for the best parameters (𝑚𝑎𝑥-𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑛-𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) of the model, which we called RFFS-
GS algorithm.

Generally, the method initializes the required set of
features into the entire set of genes, and at each iteration, the
feature with the smallest ordering coefficient is removed and
the rest of the features are then retrained to obtain a new
ordering coefficient. By iteratively executing this process, a
feature ordering table can be obtained using feature selection
method combined with parameter optimization models.
Different parameter optimization models are used to find
the best parameters for different feature selection methods.
The sorted list defines a number of nested feature subsets to
train feature selection models, and the prediction accuracies
of these subsets were used to evaluate the advantages and
disadvantages of these subsets so as to obtain the optimal
subset of features.

It should be noted that each of the features listed above
is used separately and may not necessarily result in the
best classification performance of the SVM classifier, but the
combination of multiple features will enable the classifier to
obtain the best classification performance.Therefore, the pro-
posed gene selection algorithms can choose a complementary
feature combination.

2.2. Classification. Support vector machine is often used in
two-class classification tasks, its basic model is to find the
best separating hyperplane on the feature space, so that the
positive and negative sample intervals on the training set are
the largest.

The basic idea of support vector machine is as follows:
firstly, search for the optimal hyperplane of two types of
samples in the original sample space under the linearly
separable samples. The classification hyperplane is estab-
lished by SVM, which can ensure the classification accuracy
and maximize the margin on both sides of the hyperplane
including the maximization of interval, so as to realize the
optimal classification of linear separable problems.

Given the set of training samples on a feature space 𝐷 ={(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛)}, 𝑦𝑖 ∈ {−1, +1}, 𝑖 = 1, 2, . . . , 𝑛,

𝑛, represents the sample size.Thus, the objective function can
be defined as

max 𝛾 (3)

where 𝛾 is the geometric interval. Additionally, we also
need to meet some conditions; according to the definition of
interval we can see the following:

𝑦𝑖 (𝜔𝑇𝑥𝑖 + 𝑏) = 𝛾𝑖 ≥ 𝛾, 𝑖 = 1, . . . , 𝑁 (4)

After a series of formulas are derived, the above objective
function is transformed into

max 1‖𝜔‖ ,
𝑦𝑖 (𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1, . . . ,𝑁

(5)

By solving this problem, the SVMclassifier could be obtained.
When a sample is linearly inseparable or does not know in
advance whether it is separable, the training sample cannot
satisfy the condition 𝑦𝑖(𝜔𝑇𝑥𝑖 + 𝑏) ≥ 1, 𝑖 = 1, . . . , 𝑁. In this
case, we can introduce slack variables, that is, to allow mis-
divided samples, and the optimal hyperplane obtained at this
time becomes the generalized classification hyperplane. So
after we add a relaxation term to the equation, the equation
could become

𝑦𝑖 (𝜔𝑇𝑥𝑖 + 𝑏) + 𝜀𝑖 ≥ 1, 𝑖 = 1, . . . ,𝑁 (6)

Obviously when the division is wrong, the error 𝜀𝑖 is greater
than zero. Introducing the error penalty coefficient C, the
generalized optimal classification surface problem can be
further evolved to the minimum of the following functions
under the above constraints:

min(12 ‖𝜔‖2 + 𝐶(
𝑛∑
𝑖=1

𝜀𝑖)) ,
𝑦𝑖 (𝜔𝑇𝑥𝑖 + 𝑏) + 𝜀𝑖 ≥ 1, 𝑖 = 1, . . . ,𝑁

(7)

The penalty coefficient C is used to control the degree of
penalty for misclassified samples and to achieve a tradeoff
between the proportion of misclassified samples and the
complexity of the algorithm. The bigger the C, the heavier the
penalty for error.

When the original problem is converted into a duality
problem, the original formulas become

12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 (𝑋𝑖𝑋𝑗)
𝑛∑
𝑖=1

𝛼𝑖, (𝑖 = 1, 2, . . . , 𝑛)
𝑛∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶,

(8)
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Table 1: Division of DNA microarray data on GEO data set.

Health Cancer Total
Training set 32 33 65
Testing set 31 34 65
Total 63 67 130

If the original data is nonlinear, we map it to a high
dimensional space, and the data becomes linearly separable.
The kernel function does not need to explicitly map the
samples in the input space into the new space and can directly
calculate the inner product 𝜙(𝑥𝑖)𝜙(𝑥𝑗) in the input space. It is
an implicit mapping of the input space to a high dimensional
space. It does not need to explicitly give that mapping, and𝜙(𝑥𝑖)𝜙(𝑥𝑗) can be calculated in the input space. In this way,
the optimization problem becomes as follows:

12
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗𝐾(𝑋𝑖𝑋𝑗) − 𝑛∑
𝑖=1

𝛼𝑖 (𝑖 = 1, 2, . . . , 𝑛)
𝑛∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶.
(9)

3. Results and Discussion

3.1. Data. Gene expression data contains DNA microarray
data and RNA-seq data. Analysis of microarray data helps
clarify biological mechanisms and push drugs toward a
more predictable future. Compared to hybridization-based
microarray technology, RNA-seq has a larger range of expres-
sion levels, and more information is detected. In this paper,
DNA microarray data and RNA-seq data were used for
research.

The DNA microarray data used in the experiment is
peripheral blood data with the accession number GSE16443
under the public database GEO platform. All of them were
takenwithURLhttps://www.ncbi.nlm.nih.gov/geo/download/
?acc=GSE16443 with minor modification for employed
program. The data set includes 130 sample data containing
67 breast cancer samples and 63 control samples. After
we randomly divided the 130 samples into two groups, we
obtained 32 health samples and 33 cancer samples in the
training set and 31 health samples and 34 cancer samples in
the testing set. The division of data sets can be seen from
Table 1.

The RNA-seq data used in the experiment is RNA-seq
data of breast cancer through theTCGAdatabase, whichwere
taken with URL http://portal.gdc.cancer.gov/ with minor
modification. The data set includes 1178 sample data contain-
ing 1080 cancer samples and 98 health samples. We randomly
divided the data set into a training set and a test set. The
training set and the test set each contain 540 cancer samples
and 49 health samples. The division of data sets can be seen
from Table 2.

3.2. Experimental Results. For DNA microarray data, we
calculated the FDR q-value using the package “Q-value” of R;
the q-value distribution of GEO platform data is shown in the

Table 2: Division of RNA-seq data on TCGA data set.

Health Cancer Total
Training set 49 540 589
Testing set 49 540 589
Total 98 1080 1178

Table 3. From the table, we found that the differences between
the genes are not particularly noticeable. In this study, q-value<0.1 has no genes, so q-value<0.2 is selected as the differential
gene after screening.

For RNA-seq data, we used the ’edgeR’ package of R to
calculate the FDR q-value. We chose a significance screening
filter q-value<0.001.

When using the SVM algorithm for classification directly,
we use all the differential genes screened as feature subsets.
After using the feature selection algorithm, we can get an
ordered set and thenwe loop through the genes in the ordered
set as feature subsets and select the subset with the best
classification effect and the fewer features as the final feature
subset. When we get the final subset of features, we use the
SVM classifier for classification.

From Tables 4 and 5, we can see the classification effect
obtained by using SVM algorithm and SVM-RFE algorithm
onGEO data set and TCGA data set. From Table 4 we can see
that using the SVM-RFE algorithm whenwe selected 12 genes
to classify, a higher classification accuracy of 78.4615% was
obtained comparing to the direct expression data of 56 genes
using SVM algorithm. FromTable 5, we can see that when we
selected 15 genes for classification, the SVM-RFE algorithm
was used to obtain a higher classification accuracy of 91.5110%
compared with the direct expression data of 159 genes using
the SVM algorithm. But there are still improvements for
cancer classification work. Therefore, the idea of parameter
optimization is introduced by improving the algorithm in
the feature elimination stage, and the optimal classification
parameters are found and the optimal classification model
is obtained by selecting different parameter optimization
methods.

In Figure 1,We compared ROC curves of SVM and SVM-
RFE algorithm on GEO data set and TCGA data set. In
other words, we compare the ROC curves of using SVM-RFE
algorithm for feature selection and no feature selection. As
can be seen from the figure, the area under the ROC curve
(AUC) obtained after feature selection using the SVM-RFE
algorithm has increased.

There are three main methods of parameter optimiza-
tion, in which the grid optimization algorithm is the most
common one. Similar to the exhaustive search, grid search
attempts all possible (c, g) pairs of values and then cross-
validates to find the (c, g) pairs with the highest cross-
validation accuracy as the optimal parameter.

Although the highest classification accuracy could be
obtained in the cross-validation, since using grid search
included the global optimal solution, it may be time-
consuming to find the best parameters c and g in a larger
range. Using the heuristic algorithm, all the parameters could
be traversed in the grid for the global optimal solution.

https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE16443
https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE16443
http://portal.gdc.cancer.gov/
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Table 3: Division of training and testing set on GEO data set.

<0.01 <0.05 <0.1 <0.2 <0.3 <1
p value 406 1326 2200 3719 5065 11216
q-value 0 0 0 56 643 11216

Tr
ue

 P
os

iti
ve

 R
at

e %

100

80

60

40

20

0

Tr
ue

 P
os

iti
ve

 R
at

e %

100

80

60

40

20

0

False Positive Rate %
0 20 40 60 80 100

SVM
SVM-RFE

False Positive Rate %
0 20 40 60 80 100

SVM
SVM-RFE

Figure 1: ROC curves obtained using the SVM and SVM-RFE algorithm on GEO data set (left) and TCGA data set (right).

Table 4: The performance comparison of SVM and SVM-RFE
algorithm on GEO data set.

Measure SVM SVM-RFE
genes 56 12
Accuracy 76.9231% 78.4615%
Precision 67.6471% 73.5294%
Recall 85.1852% 83.3333%
F-score 75.4098% 73.5294%
AUC 0.8080 0.8181

Table 5: The performance comparison of SVM and SVM-RFE
algorithm on TCGA data set.

Measure SVM SVM-RFE
genes 159 15
Accuracy 91.6808% 91.5110%
Precision 100% 99.8148%
Recall 91.6808% 91.6667%
F-score 95.6599% 95.5674%
AUC 0.41565 0.63938

By using the heuristic algorithm PSO and GA algo-
rithm to optimize the parameters, the optimal parameters
are applied to the classification of cancer. Using these two

Table 6: The performance comparison of SVM-RFE-GS, SVM-
RFE-PSO, and SVM-RFE-GA algorithm on GEO data set.

Measure SVM-RFE-GS SVM-RFE-PSO SVM-RFE-GA
genes 8 8 8
Accuracy 78.4615% 81.5385% 76.9231%
Precision 73.5294% 79.4118% 70.5882%
Recall 83.3333% 84.3750% 82.7586%
F-score 78.125% 81.8182% 76.1905%
AUC 0.7686 0.8589 0.7605

algorithms, we can get the optimized parameters in the
feature elimination stage and get the optimal classifier, so as
to get the parameter w to eliminate features. Therefore, we
call the feature elimination algorithm SVM-RFE-PSO and
SVM-RFE-GA, respectively. We use these two algorithms to
get the feature subset and classify them by SVM classifier
and compare their advantages and disadvantages through
classification results.

As shown in Tables 6 and 7, the classification accu-
racy obtained by SVM-RFE-GS algorithm is 78.4615% and
91.0017%.The classification accuracy obtained by SVM-RFE-
PSO algorithm is 81.5385% and 91.6808%, and the classifica-
tion accuracy of SVM-RFE-GA algorithm is 76.9231% and
91.3413%. Among them, the effect of using SVM-RFE-PSO
algorithm is the best one on both data sets, and the result of
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Figure 2: ROC curves obtained using the SVM-RFE-GS, SVM-RFE-PSO, and SVM-RFE-GA algorithm on GEO data set (left) and TCGA
data set (right).

Table 7: The performance comparison of SVM-RFE-GS, SVM-
RFE-PSO, and SVM-RFE-GA algorithm on TCGA data set.

Measure SVM-RFE-GS SVM-RFE-PSO SVM-RFE-GA
genes 15 6 8
Accuracy 91.0017% 91.6808% 91.3413%
Precision 99.2593% 100% 99.6296%
Recall 91.6239% 91.6808% 91.6525%
F-score 95.2889% 95.6599% 95.4747%
AUC 0.79603 0.87487 0.53023

using SVM-RFE-GA algorithm is theworst one in the studied
algorithms on GEO data set. On TCGA data set, although the
classification accuracy of SVM-RFE-GA is better than SVM-
RFE-GS, the AUC area obtained by using the SVM-RFE-GS
algorithm is larger. In Figure 2, we can also see that the area
under the ROC curves (AUC) obtained by the SVM-RFE-
PSO algorithm is the largest.

The RFFS and mRMR algorithms are often used for
feature selection and both can get a sorted subset in the
feature selection process. RFFS-GS optimizes the parameters
of theRFFS algorithmbyusing the grid optimizationmethod.
The method of parameter optimization often achieves better
results. In this paper, we use these three methods to select fea-
tures of two data sets and verify their effects by classification.
In Figure 3, we can see that the effect of RFFS and RFFS-GS
algorithms on the GEO data set is not much different, but on
the TCGA data set, the effect of the RFFS-GS algorithm is
significantly better than the RFFS algorithm. From Tables 8
and 9, we can see the classification performance of the above

Table 8: The performance comparison of RFFS, RFFS-GS, and
mRMR algorithm on GEO data set.

Measure RFFS RFFS-GS mRMR
genes 20 18 12
Accuracy 76.9231% 80.0000% 72.3077%
Precision 73.5294% 76.4706% 64.7059%
Recall 80.6452% 83.871% 78.5714%
F-score 76.9231% 80.0000% 70.9677%
AUC 0.75568 0.74242 0.70644

Table 9: The performance comparison of RFFS, RFFS-GS, and
mRMR algorithm on TCGA data set.

Measure RFFS RFFS-GS mRMR
genes 20 15 12
Accuracy 91.6808% 92.1902% 91.8506%
Precision 100% 97.9630% 100%
Recall 91.6808% 93.7943% 91.8367%
F-score 95.6599% 95.8333% 95.7447%
AUC 0.61494 0.78893 0.85408

three methods. On GEO data set, the classification accuracy
obtained by using RFFS-GS is 80%, which is the best one,
but the AUC area obtained by using RFFS is the best, and
the classification accuracy and the AUC of mRMR algorithm
are the worst. On TCGA data set, the classification accuracy
obtained by using RFFS-GS is better, and the AUC of mRMR
algorithm is the best one.
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Figure 3: ROC curves obtained using the RFFS and RFFS-GS algorithm on GEO data set (left) and TCGA data set (right).
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Figure 4: ROC curves obtained using the SVM-RFE-PSO, RFFS, RFFS-GS, and mRMR algorithm on GEO data set (left) and TCGA data set
(right).

From the above, we can conclude that the SVM-RFE-
PO algorithms perform better on GEO data set. And on
TCGAdata set, SVM-RFE-GS algorithmand SVM-RFE-PSO
algorithm also have a good performance. After we compare
the AUC obtained by the SVM-RFE-PSO, RFFS, RFFS-GS,
and mRMR algorithms of the two data sets, in Figure 4, we
can see that the AUC of SVM-RFE-PSO is the largest one.

Combining the above methods, it could be found that the
AUC area obtained by using the SVM-RFE-PSO algorithm
is the largest, and the highest classification performance is
obtained by using the algorithm for classification. Moreover,
the number of genes selected in this algorithm is only eight on
GEO data set and six on TCGA data set and could represent
most of the information of the original set of genes.
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Table 10: The classification accuracy of other algorithms on GEO
data set.

Measure Accuracy
SVM-RFE-CV 73.85%
LS-SVM 68.42%
PCA+FDA 66.92%
MI+SVM 62.57%
SVM-RFE-GS 78.46%
SVM-RFE-PSO 81.54%
SVM-RFE-GA 76.92%

Table 11:The information of eight genes screened by the SVM-RFE-
PSO algorithm on GEO data set.

Probe ID Gene symbol Gene ID
100694 SLC27A3 hCG40629.3
175122 TUBA1B hCG2036947
149826 METTL3 hCG2014575
203507 TTYH3 hCG18437.3
158666 CHST14 hCG1647400.1
147893 REPS1 hCG18282.3
104157 PEMT hCG31440.2
119326 ANXA7 hCG18031.2

Table 12: The information of six genes screened by the SVM-RFE-
PSO algorithm on TCGA data set.

Gene symbol Gene ID
ABO 28
ACAT2 39
ACCN3 9311
ACCN1 40
ABCD3 5825
ACADSB 36

For gene microarray data, there have been many related
feature selection methods. Table 10 lists some feature selec-
tion methods and their effects on the same data set. It can
be seen that the SVM-RFE-PSO algorithm has advantages in
better feature selection.

The eight gene names and their IDs are obtained by using
the SVM-RFE-PSO algorithm on GEO data set which are
shown in Table 11. And from Table 12, we can get the six gene
names obtained by using the SVM-RFE-PSO algorithm on
TCGA data set.

As can be seen from Table 13, the genes extracted using
the two data sets did not overlap. This may be related to the
nature of the two data sets.

TheGEOdata set used in this paper is the gene expression
data obtained based on microarray technology, and the
number of samples in this data set is small. When the number
of samples is small, the increase and decrease of the sample
will significantly affect the accuracy of the algorithm. The
GEO data set has fewer differentially expressed genes, and
the differences between genes are not obvious. There are no
genes with q-value <0.1. When we perform differential gene

Table 13: The information of screened genes on two data sets.

Gene symbol GEO data set TCGA data set
Gene 1 SLC27A3 ABO
Gene 2 TUBA1B ACAT2
Gene 3 METTL3 ACCN3
Gene 4 TTYH3 ACCN1
Gene 5 CHST14 ABCD3
Gene 6 REPS1 ACADSB
Gene 7 PEMT −
Gene 8 ANXA7 −

filtering, errors may occur. The TCGA data set used in this
paper is based on the gene expression data obtained by RNA-
seq technology. The number of samples is larger, the number
of differential genes ismore, and the difference between genes
is more obvious.

Prior to RNA-seq technology, microarray technology
was the mainstream technology for studying gene expres-
sion profiles. However, when quantifying gene expression,
microarray technology is limited to gene levels. RNA-seq
high-throughput sequencing technology is now commonly
used in biology. RNA-seq can be used for unspecified genes
and subtypes of any species, allowing genome-wide analysis
of any species, while microarray technology relies on prior
information to quantify known genes. In addition, RNA-
seq has very low background noise and high sensitivity,
while having a larger detection range. The study found
that the RNA-seq technology detected that the number of
differentially expressed genes was about twice that of the
microarray technology.

The genes expressed by cells in different environments
are different, and RNA-seq can provide real-time expression
of genes rather than information fixed in the genome. RNA-
seq can compare changes in expression profiles of tumors in
different drugs and treatments and providemore information
than changes in genome exomes. Therefore, genes screened
using RNA-seq data may have higher confidence, and the use
of RNA-seq gene expression data will have more significance
for future research on cancer.

4. Conclusions

We developed an integrated method in the early detection
of breast cancer. In view of the high dimension of gene
expression data, some methods were selected to reduce the
dimension. First of all, statistical methods and FDR error
control method were employed to screen genes. After FDR
control, 56 genes with q-value less than 0.2 were selected as
the characteristic genes on GEO data set and 159 genes with
q-value less than 0.001were selected onTCGAdata set, which
were used in the SVM-RFE algorithm. As a result, the effect
of SVM-RFE method could be further improved. Therefore,
we use the GS algorithm, the PSO algorithm, and the GA
algorithm, respectively, to search the SVM kernel parameters
in the feature elimination stage and obtain the feature subsets.
We also use RFFS, RFFS-GS, and mRMR algorithm for
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comparative experiments in feature selection. It is observed
from the results that SVM-RFE-PO emerges as a potentially
dominant feature extraction technique for gene expression
data classification. The SVM-RFE-PSO algorithm is able to
extract the optimal discriminative feature information gene
from the expression data. We use these characteristic infor-
mation genes to study the relationship between genes and
cancer. This has an extremely important role in the in-depth
discovery and understanding of the disease mechanism and
in the improvement of the clinical diagnostic accuracy of the
disease. In the future, we will explore more feature extraction
algorithms to achieve more accurate feature screening.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors have declared that no conflicts of interest exist.

Acknowledgments

This work was financially supported by the National Natural
Science Foundation (NNSF) of China (81301518).

Supplementary Materials

Thesupplementarymaterials contain the files of GEOdata set
andTCGAdata set used in the experiment, aswell as themain
code files used in the experiment. (Supplementary Materials)

References

[1] X. Dai, H. Cheng, Z. Bai, and J. Li, “Breast cancer cell line
classification and Its relevance with breast tumor subtyping,”
Journal of Cancer, vol. 8, no. 16, pp. 3131–3141, 2017.

[2] G. Honein-AbouHaidar, J. Hoch, M. Dobrow, T. Stuart-
McEwan, D. McCready, and A. Gagliardi, “Cost analysis of
breast cancer diagnostic assessment programs,” Current Oncol-
ogy, vol. 24, no. 5, p. 354, 2017.

[3] B. Jahn, U. Rochau,C. Kurzthaler et al., “Personalized treatment
of women with early breast cancer: A risk-group specific
cost-effectiveness analysis of adjuvant chemotherapy account-
ing for companion prognostic tests OncotypeDX and Adju-
vant!Online,” BMC Cancer, vol. 17, no. 1, 2017.

[4] G. Lee and M. Lee, “Classification of Genes Based on Age-
Related Differential Expression in Breast Cancer,” Genomics &
Informatics, vol. 15, no. 4, pp. 156–161, 2017.

[5] H. O. Ohnstad, E. Borgen, R. S. Falk et al., “Prognostic value
of PAM50 and risk of recurrence score in patients with early-
stage breast cancer with long-term follow-up,” Breast Cancer
Research, vol. 19, no. 1, 2017.

[6] C. D. Savci-Heijink, H. Halfwerk, J. Koster, and M. J. Van
de Vijver, “Association between gene expression profile of the
primary tumor and chemotherapy response of metastatic breast
cancer,” BMC Cancer, vol. 17, no. 1, 2017.
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