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Abstract

Understanding gene regulation is crucial to dissect the molecular basis of human development and disease. Previous
studies on transcription regulatory networks often focused on their static properties. Here we used retinal development as
a model system to investigate the dynamics of regulatory networks that are comprised of transcription factors, microRNAs
and other protein-coding genes. We found that the active sub-networks are topologically different at early and late stages
of retinal development. At early stages, the active sub-networks tend to be highly connected, while at late stages, the active
sub-networks are more organized in modular structures. Interestingly, network motif usage at early and late stages is also
distinct. For example, network motifs containing reciprocal feedback regulatory relationships between two regulators are
overrepresented in early developmental stages. Additionally, our analysis of regulatory network dynamics revealed a natural
turning point at which the regulatory network undergoes drastic topological changes. Taken together, this work
demonstrates that adding a dynamic dimension to network analysis can provide new insights into retinal development, and
we suggest the same approach would likely be useful for the analysis of other developing tissues.
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Introduction

Understanding gene regulation is essential to elucidate the

molecular basis of human development and disease. Retinal

development is an ideal model system that is tightly controlled

through a variety of regulatory mechanisms such as transcriptional

regulation, alternative splicing, and microRNA (miRNA) regula-

tion. Dysregulation of any of these processes can lead to retinal

disease [1,2,3]. To understand the molecular basis of retinal

development and diseases, one traditional approach is to identify

individual genes responsible for either retinal diseases or the

developmental process. However, retinal cells must also deal with

challenges such as how to maintain a phenotype in a stochastic

and changing environment. Individual genes are not well suited to

such challenges. Instead, several genes (or gene products) often

form molecular circuits to carry out information processing

functions, especially dynamic functions that change with time

and place, as is common during development.

It has recently been found that transcriptional networks often

contain recurring regulation patterns, termed network motifs. These

network motifs can be considered the basic units, or recurring

circuits, upon which the networks are built. These network motifs

were computationally identified as patterns that occur more often

than would be expected from a random distribution [4,5,6]. One

example of a network motif is a feedback loop where two

transcription factors (TFs) regulate each other. Understanding the

functionality of these network motifs can help elucidate basic

design principles and provide insight into the behavior of

regulatory networks.

Different types of regulatory networks utilize different network

motifs. For example, sensory regulatory networks make rapid and

reversible decisions in response to environmental changes. It has

been found that feed-forward loops, where one regulator regulates

another regulator and both of them co-regulate a third gene, are

extensively used in sensory regulatory networks. Experimental and

theoretical analyses have suggested that feed-forward loops carry

out interesting functions such as response acceleration, filtering of

noisy input signals, and pulse generation [5,7,8,9,10,11]. Distinct

from sensory networks, developmental regulatory networks oper-

ate along a longer time horizon. They make decisions that are

generally irreversible, and act on a time scale of several cell

generations. In developmental networks, there is often an over-

representation of feedback loop motifs [12,13,14]. Feedback loops

can have two stable steady states: ON or OFF. Such a bi-stable

switch can play an important role in the cell fate decision process

during development by providing a lock-on mechanism

[12,13,14].

Different types of gene regulation play critical roles in de-

velopment and cellular homeostasis. One important class of

regulators in gene regulatory networks is TFs. Previous studies

have investigated the regulatory networks controlled by TFs (e.g.,

[15,16]). Over the past several years, miRNAs have emerged as

another important class of regulatory factors, and they are distinct
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from TFs in that they modulate gene expression at the post-

transcriptional level [17,18]. There is increasing evidence that

these two classes of trans-acting factors, TFs and miRNAs, can

work cooperatively [19,20,21]. The crosstalk between different

types of regulators (e.g., TF and miRNAs) can be studied in the

framework of network motifs. Several groups have provided new

insights into their biology by identifying and characterizing

interactions between miRNAs and TFs [22,23,24,25]. For

example, the transcription factor Yan represses the expression of

a miRNA, miR-7, whereas miR-7 represses Yan expression. This

reciprocal negative feedback loop facilitates exclusive cell fate

determination during development, with Yan in progenitor cells

and miR-7 in photoreceptor cells. Further studies suggested that

miR-7 participates in several interlocking feedback and feed-

forward loops to buffer against environmental variation during

development [26].

In systems biology, understanding how biological molecules

interact with each other to mediate biological function has become

one of the challenging problems of the post genomic era. Many

studies have been performed to understand biological systems

based on observations of their topological metrics [27,28,29].

However, most of these analyses have been limited to static ‘‘snap

shots’’ despite the reality that real world systems are generally both

intrinsically and extrinsically dynamic. Adding the dynamic nature

of biology to such analyses has the potential to add important new

insights. For example, a genomic analysis of yeast regulatory

network dynamics provided a new insight showing a large

topological difference between endogenous and exogenous sub-

networks [30].

To understand the underlying principles of regulatory networks

containing transcriptional and post-transcriptional regulation, we

analyzed the dynamics of regulatory networks in the developing

mouse retina. Our study discovered diverse topological features

and network motifs in the retinal regulatory network. Expression

correlation between miRNAs and their predicted targets was not

limited to negative correlations, suggesting complex underlying

regulatory relationships. The active sub-networks of early and late

time points were distinguished by their topological metrics and

network motif usage. Emerging network motifs at particular

developmental time points were found to carry out indispensable

functions for that time point. Our study provides biological

insights into the organization and reprogramming of the

regulatory networks during retinal development.

Results

Gene Expression Profiling for Protein-coding Genes and
miRNAs in the Developing Retina
For this study, we measured the gene expression of 356 miRNAs

and 15,970 protein-coding genes simultaneously at 6 retinal

developmental time points (embryonic day 15, embryonic day 18,

postnatal day 1, postnatal day 5, postnatal day 12, and adult)

[31,32]. The expression profile provides the foundation for our

analysis of regulatory network dynamics. We first analyzed the

expression profiles of both protein-coding genes and miRNAs.

Pearson correlation coefficients (cc) between miRNAs and genes

were computed based on their expression profile over the six

development time points and they were grouped according to their

expression correlations (Figure 1A). Four gene clusters with more

than or equal to 100 genes and 4 miRNA clusters with more than

or equal to 4 miRNAs were identified. Each detected cluster

showed distinct expression patterns peaking at different time points

(Figure 1B).

One obvious feature shown in Figure 1A is that protein-coding

genes and miRNAs can have both positive (red) and negative

correlation (blue). We then focused on the gene expression

relationships between miRNAs and their predicted target genes

based on TargetScan [33]. (The same target gene relationships will

be used to construct the regulatory networks in the next section.)

The distribution of the expression correlation between miRNAs

and their predicted targets was compared and plotted in Figure 2

(the left Y axis). As control, we also calculated the correlation

distribution between miRNAs and randomly selected genes with

the same number of the predicted targets for a given miRNA. The

randomizations were performed 1000 times and a Z-value was

measured to show the statistical difference between the actual and

expected correlation distribution (the right Y axis in Figure 2). The

Z-value reflects the difference of the observed and expected

occurrence of a correlation in the unit of the standard deviation

from random simulation. As expected from the nature of miRNAs,

highly negative correlation (cc,20.5) of gene expression between

miRNAs and predicted target pairs was enriched (Z.2.0), and the

positive correlation (0.05,cc,0.55) was depleted (Z,22.0).

Surprisingly, the observed distribution was enriched (Z.2.0) at

the highly positive range (cc.0.7) when compared to the random

expectation.

Taken together, our analysis revealed that gene expression

relationships between miRNAs and protein-coding genes, espe-

cially their target genes, are complex, including both correlated

and anti-correlated relationships. Our finding suggested that these

molecules might form interconnected networks in which different

types of regulators influence all types of genes.

Active Sub-networks During Retinal Development
To analyze the dynamic properties of the regulatory networks,

a static integrated regulatory network (IRN) for mouse was built by

combining several data sources, including ChIP-chip, ChIP-Seq,

and miRNA target prediction databases. The regulatory target

genes of TFs were predicted from ChIP-chip and ChIP-Seq

experiments [34], while the target genes of miRNAs were acquired

from TargetScan database [33]. The network includes 44 TFs,

284 miRNAs and 17,260 protein-coding genes, which form

139,987 TF-target and 36,024 miRNA-target relationships.

The active sub-networks at each time point were extracted from

the static IRN using the gene expression data. The initial active

gene set at a particular time point was defined as the set of genes

and miRNAs showing expression that was higher than a specified

threshold at that time point (see Methods). Then, the regulators,

i.e. the TFs and miRNAs, of the genes and miRNAs in the active

set were added to the active set regardless of their expression levels

at the specified time point. This backtrack process was repeated

until no more new regulators were added [30].

To examine whether the active sub-networks are of biological

relevance, we observed the functional features of the active sub-

networks at each time point. After excluding the ‘‘housekeeping’’

genes, defined as genes that were expressed at all time points, we

obtained genes that are specifically expressed at each time point.

In total, 1234, 1295, 1294, 1553, 1336, and 1231 genes were

specifically expressed at E15, E18, P1, P5, P12, and adult,

respectively. Enrichment analysis on the Biological Processes from

Gene Ontology (GO) was performed on these genes of all time

points (Figure 3). An e-value (see details in Methods) was used to

measure the enrichment of a gene set for a particular GO term.

The genes specifically expressed at early time points were highly

enriched for the retina development function (Figure 3A). In-

terestingly, genes expressed in early time points were also enriched

for DNA replication and repair processes (Figures 3B and 3C).

Dynamics of Regulatory Networks
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This finding correlates well with the highly proliferative state of

retinal cells during early development, suggesting that active DNA

replication and repair functions are particularly important for

early developmental processes. Also making biological sense, the

enrichment analysis of the functions related to light stimulus

processing presented totally opposite behaviour, suggesting their

importance at late stages in development (Figures 3D–3F). These

functions were gradually enriched over time, and peaked on or

after P12. This functional analysis of the sub-networks suggested

that our definition of the active sub-networks was biologically

relevant.

Active Sub-networks for Early and Late Time Points are
Structurally Distinct
We then analyzed structural and biological characteristics of the

active sub-networks at the different time points. Our analysis

demonstrated that the active sub-networks of early time points

were clearly distinguished from those of late time points, both

structurally and functionally.

The topological properties of the static IRN and the active sub-

networks of each time point are summarized in Figure 4. The

active sub-networks for early and late time points include similar

number of TFs, miRNAs, target genes, and regulatory relation-

ships. Furthermore, the average number of targets regulated by

a TF or miRNA (out-degree) and the average number of TFs and

miRNAs regulating a target (in-degree) of each time point are

about the same. Thus, the active sub-networks for each time point

were similar in size.

Despite the similar sizes of the active sub-networks, some

topological measurements showed interesting differences between

early and late time points (Figure 4). First, clustering coefficient

(CC), which measures the extent of the interconnectivity among

the directly connected nodes with a node of interest, is higher in

the active sub-networks of early time points (E15, E18, P1 and P5)

than those of late time points (P12 and adult). This observation

suggests that (1) the active sub-networks at early time points are

less organized in modular sub-structures and, (2) the IRNs

underwent significant reprogramming between P5 and P12.

The higher CC leads to lower average path length (APL) and

betweenness (BW) at the early time points. A node in an early time

point active sub-network can be reached in smaller number of

hops than in the late time point active sub-networks. The active

sub-networks at early time points were decentralized showing

lower BW because lower BW indicates that information in

a network travels through diverse routes. In contrast, the late time

point active sub-networks have higher BW, suggesting that

information is controlled by a number of central nodes (hubs) in

these networks. Lastly, better reachability (R) was observed in the

early time point networks. In other words, more nodes can be

reached from any node in the early time point active sub-networks.

To provide an intuitive view of the difference between these two

types of networks, we constructed two toy examples of sub-

networks with similar properties of active sub-networks at early

and late time points (shown in last row of Figure 4).

To ensure that these topological differences are significant, the

same topological analysis was performed on a set of random

networks with the same sizes of actual active sub-networks. The

same number of TFs, miRNAs, and genes in the active sub-

network for a time point were randomly selected from IRN and

the same backtrack and wiring methods were used to construct

a random sub-network for each time point. The topological

metrics were averaged over 300 random sub-networks. The mean

and standard deviation from 300 random networks are provided

in the Figure 4. Most of the topological metrics except CC of the

active sub-network in each time point were significantly different

Figure 1. Expression correlations and clusters of miRNAs and genes. (A) Expression correlations between genes and miRNAs in the
developing mouse retina. Rows represent protein-coding genes and columns represent miRNAs. Only the high correlations, bigger than 0.5(red) and
less than 20.5(blue), are colored. The cluster IDs of gene and miRNA clusters are shown on each axis. (B) Gene and miRNA clusters. Relative
expression of the 4 biggest clusters for genes and miRNAs throughout the developmental time points. Y-axis is the expression level in log2 scale.
Each line in the clusters represents one gene.
doi:10.1371/journal.pone.0046521.g001

Figure 2. Expression correlations between miRNAs and their predicted targets. The distributions for the predicted targets in TargetScan
database (solid) and for the random targets (dot) are shown. The column plot represents the Z-values of each interval against 1000 miRNA target
randomization on the right Y-axis.
doi:10.1371/journal.pone.0046521.g002
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from those of the random networks. The TFs and miRNAs

regulated more target genes and genes were regulated by more

TFs or miRNAs in the active network than in the same size

random networks. Higher CC in random networks indicates that

the random networks were less modularized than the active sub-

network at the same time point. In other words, the components in

random networks were more inter-connected. The other metrics

except CC indicated that the active sub-network at each time

point was more centralized and modularized with better reach-

ability than random networks. These measures demonstrate that

the topological characteristics of the active sub-networks at each

time point were significantly different from those of same size

random networks, suggesting that the observed network structures

are indeed biologically relevant.

To further understand the topological difference of the active sub-

networks, we performed a network perturbation analysis. Robust-

ness of a biological system against inner and outer stimuli is one of

the important aspects from pathological interest. Isolated nodes

(singletons) that were generated by sequential removal of nodes with

highest degree (hubs) from sub-networks were numerated (Figure

S1). More singletons were generated in the late time point sub-

networks than the early time point sub-networks after more than 5

hubs were removed. This is because the late time point sub-networks

have less connectivity between modules and a hub removal caused

the module destruction and isolated its satellite components. In

contrast, some of the satellite nodes of a removed hub were kept

connected with other nodes in highly inter-connected early time

point sub-networks. This feature made the active sub-networks at

early time points more robust against perturbations than the sub-

networks at late time points. Taken together, our analysis revealed

that the active sub-networks at early and late stages of retinal

development are topologically different. The active sub-networks at

early development stages were more closely connected, more

decentralized, and more robust.

Network Motifs were Differentially Utilized in Early and
Late Time Points
Network motifs are identified and used to understand the

functional characteristic of a network. Network motif detection

finds sub-graph patterns that emerge more often than would be

expected in random networks. To understand the structural

modularity and the functional dynamics of the retinal regulatory

network, we performed network motif analysis for each active sub-

network.

Network motifs of size 3 containing at least one TF and one

miRNA were identified and classified into a corresponding motif.

The statistical significance was calculated by comparing the

occurrences of each motif in an active sub-network and random

networks. An active sub-network is permuted to generate degree

preserving random networks keeping the same incoming (i.e.,

number of upstream TFs and miRNAs regulating a node) and

outgoing degree (i.e., number of downstream targets regulated by

the node) with the same compositions of direct neighbors for each

node in the network. The Z-value of a motif is calculated as the

difference of its observed occurrence in an active sub-network and

its averaged occurrence in several hundreds random networks,

normalized with the standard deviation (see details in Methods).

Overrepresented motifs in early and late time point active sub-

networks demonstrated interesting and distinct behavior (Figure 5).

Regulating or regulated mutual loops (RML), the motifs that

contain two regulators (TFs or miRNAs) regulating each other,

were overrepresented in early time points. RMLs were proposed to

Figure 3. Enrichment analysis on six Gene Ontology terms (biological processes). Enrichment analysis for the genes specifically expressed
in six development time points. X-axis is the time points and Y axis is the e-value of the terms at each time point.
doi:10.1371/journal.pone.0046521.g003
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provide robustness for developmental processes by increasing the

response sensitivity to activate target gene expression [35]. Since

these RMLs all contain two-element mutual regulating motifs, we

next examined whether the two-element motifs are the most basic

motifs for early developmental stages. The same enrichment

analysis was also performed for mutual regulating motifs contain-

ing only two regulators (i.e. TFs and miRNAs). Interestingly, 2-

element mutual regulating motifs were not enriched in the active

sub-networks at early time points (Figure S2), suggesting that the

RMLs with three elements are the most basic regulatory units in

this context. In contrast, for the active sub-networks at late stages,

the motifs with one-way regulations, such as single input modules

(SIM) in which one regulator controls two targets, co-regulating

modules (CRM) in which two regulators control one target, and

feed-forward loops (FFL), were overrepresented (Figure 5). FFLs

were found to be capable of implementing rapid transient pulsing

or delayed filtering dynamics [6]. SIMs were frequently found in

systems of genes that function to form a protein assembly or

a metabolic pathway [6]. In SIMs, one regulator coordinately

regulates expression of a group of targets with a defined order [6].

CRMs were suggested to be involved in parallel, combinatorial,

and compensatory regulations of a single target. These motifs

Figure 4. Topological measures of the static and active networks of six time points. Out-degree is the number of regulated genes by a TF
or miRNA. In-degree is the number of regulating TFs or miRNAs of a target gene. Clustering coefficient measures the inter-connectivity around a node.
Average path length is the average length of all shortest paths among all node pairs. Betweenness is the average number of shortest paths between
all node pairs passing through a node. Reachability is the fraction of nodes that can be reached from a node in the network. The mean and standard
deviation (mean6SD) of 300 random networks for each time point are presented in Random Networks row. Examples of early and late time point
active sub-networks are illustrated in the last row.
doi:10.1371/journal.pone.0046521.g004
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might play an important role in maintaining homeostasis in the

adult retina.

A Turning Point During Retinal Development
An interesting phenomenon identified by our analysis is that

there exists a turning point where the regulatory networks undergo

significant reprogramming. As we observed with the differential

topological properties of the active sub-networks between early

and late time points, we found that the topological properties

change between P5 and P12. A similar behavior for the Z-value

dynamics for network motifs was also observed. Five representative

motifs are illustrated in Figures 6A and 6B. Most of RMLs were

overrepresented in early time points but underrepresented in late

time points, while FFLs, SIMs, and CRMs behaved in the exact

opposite direction. The Z-values of these motifs showed a steep

difference between P5 and P12, suggesting that a reprogramming

occurs during this period.

We then examined whether the reprogramming is inherently

encoded in the gene expression profile during development.

Figures 6C and 6D display the relative expression level of protein-

coding genes and miRNAs throughout the developing period,

respectively. The dendrograms in Figures 6C and 6D show that

classifying developmental stages based only on gene or miRNA

expression profiles is unable to identify the turning point. In

contrast, the occurrences of network motifs (i.e. Z values) did show

us the clear boundaries between early and late developmental

stages (Figure 6E). In summary, our analysis showed that the

turning point is the result of the molecular interactions in the

regulatory networks rather than an automatic consequence of gene

expression changes during the development.

Discussion

Expression profiles ofmiRNAs and genes for six time points in the

developing mouse retina were analyzed. Genes and miRNAs were

grouped according to their expression pattern throughout the six

developmental time points. The identified gene clusters presented

distinguished expression patterns peaking at different time points.

Identified gene clusters and their enriched biological processesmake

biological sense. For example, a gene cluster with expression peaking

at early developmental time points was enriched in developmental

functions. In addition to this, miRNAs presented interesting

expression correlations with genes in the dataset. For example, the

cluster containing genes that weremaximally expressed at early time

points (E15, E18 P1, P5) was negatively correlated with the miRNA

cluster that showed increased expression at late time points (P12, A).

This pattern was consistent with the reasonable hypothesis that

miRNAs that are expressed at later time points might suppress the

genes associated with developmental functions. Conversely, the

genes that are enriched in sensory and stimuli response-related

functions, which peak at the late time points, might be suppressed by

the miRNAs that are expressed at early time points. miRNAs are

presumed to contribute in conferring proper functions by suppres-

sing unwanted genes at appropriate time points. Our observation of

complex relationships betweenmRNAandmiRNAgene expression

suggested that the regulatory relationships between these two types

of regulators are inherently interconnected.

Active sub-networks for each developmental time point were

built and analyzed to study the interacting dynamics, i.e., network

motifs, among TFs, miRNAs and target genes in the developing

mouse retina. To define the active sub-networks, we used

a backtrack algorithm. We first determined an initial gene set

that is highly expressed. The backtrack algorithm then identified

additional genes that are upstream regulators of the genes in the

initial set. These additional genes are not highly expressed, but are

considered to be active. The reason is that some active

transcription factors are not necessary to be highly expressed.

For example, CRX, a well-studied transcription factor in retina

that regulates the expression of rhodopsin, is not highly expressed.

In addition, PAX6, a ‘‘master control’’ gene for development of

eye, is also low expressed. If we only used the initial active gene set,

these regulators known to be important for eye development will

be excluded in our analysis. Therefore, we believe backtrack

algorithm will help to define a comprehensive set of active genes at

developmental stages.

Distinct network motifs were overrepresented at early vs. late

time points. Motifs with RML were overrepresented at the early

time points. In the late time points, SIMs, CRMs, and FFLs were

overrepresented. We suggest that this differential use of motifs

across development reflects the evolutionary selection of motifs

whose network properties best fit the requirements of early versus

late developmental processes. For example, robustness is secured

by RMLs for developmental processes in the early time points and

FFLs provide rapid response or delayed filtering dynamics against

stimuli in the late time points. Furthermore, emerging patterns of

network motifs provided a turning point between early and late

time points in the developmental process. It was impossible to

discover turning points between different stages by studying gene

or miRNA expressions only. Our study suggested that network

motif dynamics analyses among TFs, miRNAs and genes offer

better understanding of the regulatory system in the developing

mouse retina.

One future direction is to study the regulatory networks in

distinct retinal cell types. Over a dozen different cell types are

found in the retina, yet our analyses lumped them all together

because the expression measurements we utilized were derived

from total retina. Given the complexity and interconnectivity of

distinct retinal cells, it seems likely that applying the methods

described in this paper to data sets derived from individual cell

types, such as rods, cones, bipolar, and retinal ganglion cells,

would yield interesting regulatory networks with greater precision

and resolution. Such studies might also provide insights about

possible gene expression network interactions between neighbor-

ing cells, and how such interactions might change during

development.

Materials and Methods

Regulatory Network Construction
The static integrated regulatory network (IRN) for a mouse was

constructed by combining target prediction datasets for TFs and

miRNAs. The static IRN includes 44 TFs, 284 miRNAs, 17,260

target genes, and 176,011 regulatory relationships among them.

Figure 5. Overrepresented network motifs in early (E15, E18,
P1, P5) and late (P12, Adult) time points. Blue rectangles are TFs.
Yellow triangles are miRNAs. Grey circles are non-TF genes.
doi:10.1371/journal.pone.0046521.g005
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Gene and miRNA expression for the developing mouse retina was

collected for six time points (embryonic day 15, embryonic day 18,

postnatal day 1, postnatal day 5, postnatal day 12, and adult) [32].

Active sub-networks for each time point were extracted from the

static IRN by incorporating these time series expression data. For

each time point, genes, TFs, and miRNAs showing higher

expression than a threshold were identified as the active set. All

TFs and miRNAs regulating any gene in the active set were also

included in the active set. The active sub-network of a time point

was formed by wiring the active components if they had

a regulatory relationship in the IRN.

Functional Enrichment
The extent to which a cluster is associated with a specific

biological function is evaluated using p-value and e-value. The p-

value is the probability that a cluster would be enriched with genes

in a particular function by chance alone.

p~1{
Xn
i~0

c

i

� �
G{c

n{i

� �

G

n

� � ð1Þ

c is the size of the cluster containing k genes with a given function;

G is the size of the universal set of genes and contains n genes with

the function. All p-values were corrected for multiple hypotheses

testing using Bonferroni method. An e-value is the ratio of the

number of genes enriched with a function to the number of genes

expected to be enriched with the function in a cluster.

e~
G|k

c|n
ð2Þ

Figure 6. Network motif dynamics. Dynamics of two distinct patterns of network motif classes (A and B). Five network motifs are shown for each
cluster. The network motifs are illustrated in the corresponding boxes. The expression of protein-coding genes (C), or miRNAs (D) cannot separate the
early and late stages, while the Z-values for network motifs (E) show clear separation between early and late developmental stages.
doi:10.1371/journal.pone.0046521.g006
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The enrichment significance of a cluster with a function is decided

based on p-value and e-value.

Topological Metrics
Degree of node v, k(v), in a network is the number of arcs

incident to node v. The number of incoming arcs to a node and the

number of outgoing arcs from a node are called in-degree and out-

degree of the node respectively. Clustering coefficient of node v

measures the extent of the interconnectivity among the directly

connected nodes with the node. It is the ratio of the number of arcs

among the direct neighborhoods to the number of arcs that could

possibly exist among them.

Cv~
D
S

i,j[N(v) e(i,j)D
k(v)(k(v){1)

: e(i,j)[E ð3Þ

N(v) is the set of directly connected nodes with node v. e(i,j) is an

arc from node i to node j. E is the set of arcs in the network. The

path length between node i and j is defined as the number of arcs

on the shortest path between them. Betweenness of node v, BW(v),

is the number of the shortest paths passing through node v out of

the shortest paths from all nodes to all others.

BW (v)~
X

s=t=v[V

sst(v)

sst
ð4Þ

sst is the number of the shortest paths between node s and t and

sst(v) is the number of the shortest paths passing through node v

out of sst. V is the set of nodes in the network. Reachability R of

node v is the portion of other nodes that can be reached from the

node. For all these metrics, the mean value of all nodes in

a network was used to get the global view of the network.

Network Motif Identification and Significance Analysis
All size-3 sub-graphs in a network are enumerated based on the

algorithm developed by Wernicke [36]. An identified sub-graph is

classified into a network motif if each corresponding node pair

between a sub-graph and a motif has the identical type, i.e., TF,

non-TF gene or miRNA, and the same number of incoming and

outgoing arcs with the same compositions of incoming (number of

TFs or miRNAs regulate the node) and outgoing (number of TFs,

non-TF genes, or miRNAs regulated by the node) arcs. To

evaluate the statistical significance, the occurrence of sub-graphs

for each motif in real networks and random networks were

compared. Degree-preserving random networks are generated as

follows to evaluate the statistical significance. A real network is

permuted to generate degree preserving random networks keeping

the same incoming and outgoing degree with the same composi-

tions of direct neighbors (i.e., number of TFs or miRNAs regulate

the node and number of TFs, non-TF genes, or miRNAs regulated

by the node) for each node in the network. For example, a random

arc with the same type of connected nodes (from a TF t2 to non-

TF gene g2) is chosen for a given arc (from a TF t1 to non-TF gene

g1). These two arcs are swapped, i.e., connect t1 to g2, connect t2 to

g1, and remove the arcs from t1 to g1 and from t2 to g2, if arcs from

t1 to g2 or from t2 to g1 do not already exist. This arc permutation

is repeated until a permuted network becomes random enough.

The Z-value of a motif is calculated as the difference of its

observed occurrence in a real network and its averaged occurrence

in several hundreds random networks, normalized with the

standard deviation.

Supporting Information

Figure S1 Network perturbation analysis. Number of

singletons that are generated in function of sequential removal of

highest degree nodes from the active sub-networks.

(TIF)

Figure S2 2-element mutual regulating motif enrich-
ment analysis. Z-values for 2-element mutual regulating motif

compared with 1000 degree preserving random networks in the

sub-network at each time point.

(TIF)
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