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Abstract
Background: Development of efficient analytic methodologies for combining microarray results
is a major challenge in gene expression analysis. The widely used effect size models are thought to
provide an efficient modeling framework for this purpose, where the measures of association for
each study and each gene are combined, weighted by the standard errors. A significant disadvantage
of this strategy is that the quality of different data sets may be highly variable, but this information
is usually neglected during the integration. Moreover, it is widely known that the estimated
standard deviations are probably unstable in the commonly used effect size measures (such as
standardized mean difference) when sample sizes in each group are small.

Results: We propose a re-parameterization of the traditional mean difference based effect
measure by using the log ratio of means as an effect size measure for each gene in each study. The
estimated effect sizes for all studies were then combined under two modeling frameworks: the
quality-unweighted random effects models and the quality-weighted random effects models. We
defined the quality measure as a function of the detection p-value, which indicates whether a
transcript is reliably detected or not on the Affymetrix gene chip. The new effect size measure is
evaluated and compared under the quality-weighted and quality-unweighted data integration
frameworks using simulated data sets, and also in several data sets of prostate cancer patients and
controls. We focus on identifying differentially expressed biomarkers for prediction of cancer
outcomes.

Conclusion: Our results show that the proposed effect size measure (log ratio of means) has
better power to identify differentially expressed genes, and that the detected genes have better
performance in predicting cancer outcomes than the commonly used effect size measure, the
standardized mean difference (SMD), under both quality-weighted and quality-unweighted data
integration frameworks. The new effect size measure and the quality-weighted microarray data
integration framework provide efficient ways to combine microarray results.
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Background
Microarray technology has been widely used in identify-
ing differentially expressed genes [1,2] and in building
predictors for disease outcome diagnosis [3-7]. Although
individual microarray studies can be highly informative
for this purpose (e.g. van 'tVeer et al., [4]), it is difficult to
make a direct comparison among the results obtained by
different groups addressing similar biological problems,
since laboratory protocols, microarray platforms and
analysis techniques used in each study may not be identi-
cal [8,9]. Moreover, most individual studies have rela-
tively small sample sizes, and hence prediction models
trained on individual studies by using cross-validation
procedures are prone to over-fitting, leading to prediction
accuracies that are over-estimated and lack generalizabil-
ity [10].

Recent studies show that systematic integration of gene
expression data from different sources can increase statis-
tical power to detect differentially expressed genes while
allowing for an assessment of heterogeneity [11-18], and
may lead to more robust, reproducible and accurate pre-
dictions [19]. Therefore, our ability to develop powerful
statistical methods for efficiently integrating related
genomic experiments is critical to the success of the mas-
sive investment made on genomic studies. Broadly speak-
ing, the strategies to integrate microarray studies can be
divided into three categories:

The first category is a combined analysis of all the data.
Each data set is first preprocessed to clean and align the
signals, and then these preprocessed datasets are put
together so that the integrated data set can be treated as
though it comes from a single study. In this way, the effec-
tive sample size is greatly increased. Several transforma-
tion methods have been proposed to process gene
expression measures from different studies [9,14,17,20].
For example, Jiang et al. [14] transformed the normalized
data sets to have similar distributions and then put the
data sets together. Wang et al. [17] standardized gene
expression levels based on the means and standard devia-
tions of expression measurements from the arrays of
healthy prostate samples. These methods are simple and
in many cases, if the transformation is carefully made, the
performance of disease outcome prediction can be
improved [14]. Nevertheless, there are no consensus or
clear guidelines on the best way to perform the necessary
data transformations.

The second strategy is to combine analysis results
obtained from each study. The basic idea is to combine
evidence of differential expression using a summary statis-
tic, such as the p-value, across multiple gene profiling

studies and then to adjust for multiple testing. For exam-
ple, Rhodes et al. [11,12] combined results from four
prostate cancer microarray datasets analyzed on different
platforms. Differential expression between the prostate
tumor group and the normal group was first assessed
independently for each gene in each dataset using the sta-
tistical confidence measure, the p-value. Then the study-
specific p-values were combined, using the result that -2
log(p-value) has a chi-squared distribution under the null
hypothesis of no differential expression. The analysis
revealed that stronger significance was obtained from the
combined analysis than from the individual studies.
Combining p-values is useful in obtaining more precise
estimates of significance, but this method does not indi-
cate the direction of significance (e.g., up-or down-regula-
tion) [21]. Instead of integrating p-values directly, some
studies explored combining ranks of statistics from differ-
ent studies [18,22]. For example, DeConde et al. [22] pro-
posed a rank-aggregation method to combine final
microarray results from five prostate cancer studies. The
method summarizes majority preferences between pairs
of genes across ranked list from different studies. They
found this method more reliably identifies differentially
expressed genes across studies.

The third strategy involves taking inter-study variability
into account when estimating the overall effect for each
gene across studies, and then basing conclusions on the
distribution of these overall measures. For example, Choi
et al. [13] focused on integrating effect size estimates in
individual studies into an overall estimate of the average
effect size. The effect size is normally used to measure the
magnitude of treatment effect in a given study. Inter-study
variability was included in the model with an associated
prior distribution. This type of model, also termed hierar-
chical Bayesian random effects, has been used broadly in
non-microarray contexts (e.g., DuMouchel and Harris
[23]; Smith et al., [24]). Using the same microarray data-
sets as those used by Rhodes et al. [11], they demonstrated
that their method can lead to the discovery of small but
consistent expression changes with increased sensitivity
and reliability among the datasets. The hierarchical Baye-
sian random effects meta-analysis model has several favo-
rable features: it provides an overall effect size, and it
accounts for inter-study variability, which may improve
accuracy of results.

The widely used effect size measure in this type of models
is the standardized mean difference [25,26]. It has been
well-known in microarray data analysis that the estimated
standard deviation is probably unstable when sample size
in each group is small. Therefore, many efforts have been
made to overcome the shortcoming by estimating a pen-
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alty parameter for smoothing the estimates using infor-
mation from all genes rather than relying solely on the
estimates from an individual gene [1,27].

However, recent studies show that differentially expressed
genes may be best identified using fold-change measures
rather than t-like statistics [28]. Fold change is a com-
monly used measure in small laboratory experiments of
gene expression; it is considered to be a natural measure
for gene expression changes [29]. In high-throughput
microarray analysis, properties of fold change statistics
have received little attention. Therefore, more investiga-
tion on reparameterization of effect size measures is
needed.

Most data integration papers in microarray analysis have
not used measures of quality to refine their analyses [9,11-
15,17,20,22]. Nevertheless, in classical meta-analysis,
quality measures have often been used when combining
results across studies. It has been argued that studies of a
higher quality will give more accurate estimates of the true
parameter of interest, and therefore studies of high quality
should receive a higher weight in the analysis summariz-
ing across studies [30]. In gene expression microarrays,
many genes may be "off" or not detectable in a particular
adult tissue, and in addition, some genes may be poorly
measured due to probes that are not sufficiently sensitive
or specific. Therefore, the signal strength and clarity will
vary across the genes, suggesting that a quality measure-
ment could highlight strong clear signals [31,32].
Although it is still an open question how to best measure
the quality of a gene expression measurement, and how
best to use such a quality measure, different strategies can
be considered for incorporating quality weights into
meta-analysis of microarray studies. For example, we can
define a quality threshold and only include genes that are
above this threshold in the meta-analysis. However, the
choice of threshold will be arbitrary. In a recent study, we
proposed a quality measure based on the detection p-val-
ues estimated from Affymetrix microarray raw data
[16,31]. Using an effect-size model, we demonstrated that
the incorporation of quality weights into the study-spe-
cific test statistics, within a meta-analysis of two Affyme-
trix microarray studies, produced more biological
meaningful results than the unweighted analysis [16].

In this paper, we reparameterize the effect size measure for
each gene in each study as the log ratio of the mean
expressions of the two groups being compared. Following
the method proposed by Hu et al. [16], we then place the
new effect size measure into a quality-weighted modeling
framework. We evaluate and compare the effect size meas-
ures (new and old) under the quality-weighted and qual-
ity-unweighted data integration frameworks using

simulated data sets and real data sets with focus on iden-
tifying differentially expressed biomarkers and their per-
formance on cancer outcome prediction.

Methods
Quality score measure for Affymetrix microarray data
For Affymetrix expression data, we previously developed a
quality measure based on the detection p-values [33] that
reflects whether the transcript is reliably expressed above
the background in at least one experimental group in each
study [16,31] (see Additional file 1). The sensitivity
parameter, v, that alters the tolerance of the quality weight
to the detection p-value significance levels, was set to
0.05.

Using log ratio of means as effect size measure
There are many ways to measure effect size for gene g in
individual study [25]. A commonly used way is the stand-
ardized mean difference (SMD). Let rgl represent the raw
expression value for gene g and subject l and xgl = log(rgl).
The standardized mean difference (SMD) of xgl is given by

where  and  are the sample means of logged gene

expression values for gene g in treatment group (t) and

control group (c) in a given study, respectively.  is the

pooled standard deviation for gene g. The estimated vari-

ance  of the unbiased effect size yg1 is given by Cooper

and Hedges [25]
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[26].

Here, we propose an alternative method to measure effect
size based on the log ratio of means (ROM), that is, the
log fold-change given by
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 of the effect size yg2 can be estimated using delta

method [34] as follows

where  and  are the variances of the treatment and

control groups, respectively.

Integrative analysis of effect sizes in a quality-adjusted 
modeling framework
Any defined quality measure can be incorporated into
integrative analysis of gene expression profiles using a
quality-adjusted meta-analysis framework [16]. The
rationale of the framework is that studies of a high quality
should receive a higher weight in the analysis summariz-
ing across studies [30]. Here, we follow Hu et al. [16] to
place either the SMD effect size measure yg1or the ROM
effect size measure yg2 into a hierarchical model and to test
for differences between groups. For either measure, we can
write, for study i and measure m (m ∈ SMD or ROM),

where  is the between-study variability of gene g with

effect size measure m, μgm represents the average measure

of differential expression across the I studies for gene g.

Here,  and μgm are gene-specific while  and yigm are

gene and study-specific (i = 1,2,...,I). The quantity 

measures the effect size variance of gene g, measuring the
sampling error for the ith study. Following Hu et al. [16],

we can estimate μgm by taking the quality qig for gene g and

study i into account

where qig and yigm are quality measure and the estimated

effect size based on measure m for gene g in study i, respec-

tively.  and  is the between-study

variability [13]. Here we used a random-effects model to

combine the estimated effect sizes (see Additional file 1).
The variance of this estimator is obtained by

A test statistic to evaluate differential expression of gene g
across all I studies can then be computed as

We evaluated the statistical significance of gene g by calcu-
lating the p-value corresponding to the z statistic; then we
estimated the false discovery rates (FDR) for each signifi-
cance level, to take into account the number of tests per-
formed [35]. A detailed description of the integrative
analysis of effect sizes can be found in the see Additional
file 1.

We refer the approaches of estimating zgm using either the
log ratio of means (m = 2) or the standardized mean dif-
ference (m = 1) as WROM and WSMD, respectively, in the
quality-adjusted modeling framework, and as UWROM
and UWSMD, respectively, in the quality-unadjusted
modeling framework, where qig = 1.

Simulations
Model probe-level gene expression profile in a single study
Following previous studies to generate Affymetrix probe
level data [31,36], we modeled the probe-level gene
expression for different conditions (e.g. cancer and nor-
mal samples) in a single study as:

where Yjgk and Wjgk are PM and MM intensities for the

probe j in probeset g on array k respectively. O denotes
optical noise, independently drawing from

 and [36].
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similarly .

 are quantity propor-

tional to RNA expression for PM (XX = PM) and MM (XX

= MM), respectively, and the coefficient 0 < Φ < 1 accounts
for the fact that for some probe-pairs the MM detects sig-
nal; When probe j of gene g is attached by picking up stray

signal, Φjg is generated as Φjg~Beta(0.5,5), otherwise, Φgj =

0. Since S follows a power law, we set its base to 2. There-

fore, if we denote γ g as the baseline log expression level for

probeset g, we can select log2(γ g) expression levels from 0

to 12, which can be generated from γ g~12* Beta(1,3)+1.

δg is the expected differential expression of gene g in cov-

ariate X. αjgk is the signal detecting ability of probe j in

gene g on array k, which is assumed to follow a normal
distribution with mean zero and signal detection variance

. We generated multiplicative errors  and 

independently from N(0, ).

Generate simulated data sets for multiple studies

We generated two Affymetrix microarray data sets, which
are assumed to be from two independent studies. In each
of the two data sets, we assume treatment group t and con-

trol group c with  and  arrays in the ith study, respec-

tively. We generated G genes and assume the proportion
of expressed genes is q and the proportion of differentially
expressed genes is d of the G*q expressed genes in each
study. We ran three simulation models following the
above design by varying treatment effects on the signal
between 1.0 (small) and 2 (large) with interval 0.5. The
specific parameters used in the five models are summa-
rized in Table 1:

We used summarized receiver operating characteristic
(SROC) curves to compare performance, where the test
sensitivities and specificities (true positive and true nega-
tive proportions) for a range of p-value cutoffs were aver-
aged over 500 simulated datasets in each study. The SROC
curve's overall behavior can be measured by the area
under the curve (AUC) [37].

Affymetrix Microarray data
We used gene expression data on prostate tumours and
controls from four studies [38-41]. The datasets will be
referred to by the name of the first author. All these data-
sets are either publicly available or obtainable upon
request. Information about these datasets, such as micro-
array platforms, the number of samples available, etc, is
listed in Table 2. For these four data sets, we used the
robust multi-array average (RMA) algorithm [42] to get
summarized probeset-level expression data, and then we
obtained the unlogged normalized expression data. There
are 12,600 common probesets across the four data sets.
We performed integrative analysis using the first three
data sets in the table (the Welsh data, the LaTulippe data,
and the Singh data) to identify differentially expressed
genes and then developed our predictive models (the
"training data") based on the selected genes. The fourth
data set (the Stuart data) was used for testing the models
(the "testing" data).

Results
Analysis of simulated data sets
We evaluated the performance of our method using simu-
lated Affymetrix probe level expression data generated
from a model incorporating probe level effects, optical
noise, and non-specific binding, as well as true signals
[31,36]. Following the simulation procedures described
in Methods section, we run three simulation models for
probe-level gene expression profiles generated from two
independent studies. Treatment effects on the signal were
varied between 1.0 (small) and 2.0 (large) in the three
models. Table 3 shows AUCs for the three simulation
models under different weighting and effect size parame-
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Table 1: Parameters used in simulation of probe-level gene expression profile

Parameter Study 1 Study 2

Number of genes 1000 1000

Proportion of expressed genes 0.5 0.5

Proportion of differentially expressed genes 0.1 0.1

Sample size 25 arrays in groups t and c, respectively 50 arrays in groups t and c, respectively

Number of probes in each probeset 11 16

 and
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terization strategies. As seen from the table, the quality-
weighted data integration framework produces better per-
formance than the quality-unweighted data integration
framework for SMD and ROM-based effect size (It should
be noted that the normalized gene expression values for
SMD and ROM-based effect sizes are given in log2 and
natural scale, respectively), respectively. In terms of the
effect size measures, the proposed log ratio of mean
method has higher sensitivity than the standardized mean
difference method.

Analysis of prostate cancer Affymetrix microarray data 
sets
Comparing gene ranks among different meta-analytic procedures
To evaluate the significance of genes identified by quality-
adjusted and quality-unadjusted data integration frame-
works under ROM and SDM effect size measures, we com-
pared the ranks of a set of known prostate tumor genes.
This set of prostate cancer genes are from two sources: The
first one is from Welsh study [38], where they discussed
four prostate tumor markers or experimentally validated
genes in detail (see page 5977 of their paper); the second
one is from Tricoli study [43]. In this study, they surveyed
the potential markers in prostate cancers diagnosis and
presented a detailed analysis of five of them, which were
believed to be the most likely candidates. Here we com-
pared the ranks of the nine genes selected by each of the
four meta-analysis methods as shown in Table 4. Compar-
ing WROM with WSMD, seven of the nine genes selected

by WROM have better ranks (ranked on the top) than
those selected by WSMD. Comparing UWROM with
UWSMD, six of the nine genes selected by UWROM have
better ranks than those selected by UWSMD. This suggests
the genes selected by ROM-based meta-analytic frame-
works (quality-adjusted and quality-unadjusted) might be
more biologically interesting than those selected by SMD-
based meta-analytic frameworks.

It should be noted that some of the known tumor genes
identified by our new methods have much better ranks
than the conventional methods. For example, the ranks of
tumor genes FASN and TACSTD1 are 15 and 6 by WROM
and 13 and 6 by UWROM while the ranks of these genes
are 72 and 289 by WSMD and 231 and 413 by UWSMD.

In order to evaluate the overlap between genes identified
by our meta-analysis procedures and those identified in a
single study, we analyzed each of the three training data
sets (Singh study, Welsh study and LaTulipper study) as
shown in Table 2 using LIMMA (LIMMA: linear models
for microarray data analysis), a widely used method for
identifying differentially expressed genes in a single study
[2]. Here we report results using data from Singh's study
because this study has relatively large sample size (50 nor-
mal and 52 tumor samples). Table 4 and Figure 1 show
comparison of results identified from analyzing Singh
study alone and those from a meta-analysis of the three
studies. As shown in Table 4, the ranks of the 9 known
tumor genes based on only Singh study are relatively low
and closer to those based on SMD-based meta-analysis
procedures than those based on the ROM-based meta-
analysis procedures, suggesting ROM-based meta-analysis
procedures may have better performance than SMD-based
meta-analysis procedures. Therefore, it is not surprising
that the overlap between genes identified by LIMMA and
our SMD-based meta-analysis procedures is higher than
those identified by ROM- based meta-analysis procedures
as shown in Figure 1.

Table 2: Main characteristics of the Affymetrix microarray data sets

Studies Number of Normal Samples Number of Prostate Cancer Samples Chip Type

Singh study
(Singh et al., 2002)

50 52 Affymetrix
(HG_U95Av2)

Welsh study
(Welsh et al., 2001)

8 25 Affymetrix
(HG_U95Av2)

LaTulippe study
(LaTulippe et al., 2002)

3 23 Affymetrix
(HG_U95Av2)

Stuart study
(Stuart et al., 2004)

50 38 Affymetrix
(HG_U95Av2)

Table 3: Area under the curves of the four meta-analysis models 
(s = 0.05)

Effect Size WROM UWROM WSMD UWSMD

δg = 2.0 0.978 0.965 0.942 0.903

δg = 1.5 0.962 0.949 0.942 0.905

δg = 1.0 0.958 0.932 0.924 0.877
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Comparing prediction performance of top-ranked meta-signatures 
among meta-analytic procedures
To further confirm the validity and biological relevance of
the meta-signatures identified by the proposed effect size
measures and different data integration frameworks, we
evaluated the discriminative power for the top 150 differ-

entially expressed genes identified by the four meta-anal-
ysis methods, respectively, using an independent data set
listed in Table 2 (Stuart study). We varied the number of
predictors between 1 and all the 150 selected genes and
built the SVM prediction models on the training dataset
listed in Table 2 (Singh study, Welsh study and LaTulippe
study), the models were then tested separately for each
number of genes included as predictors on the test data
(Stuart et al. 2004). Figures 2 and 3 show the classification
accuracies based on SVM models with linear and radial
kernels, respectively. It can be seen that meta-signatures
identified by ROM-based meta-analytic procedures (e.g.
WROM and UWROM) usually have better prediction
accuracies than those identified by SMD-based meta-ana-
lytic procedures (e.g. WSMD and UWSMD). We also tried
other simpler classification methods, such as diagonal lin-
ear discriminant analysis (DLDA) [5], to build the predic-
tion models, and similar results were observed (data not
shown).

Discussion
Many microarray experiments include only a few replica-
tions, therefore, it is critical to improve the effect size esti-
mation in meta-analytic procedure. With small sample
sizes, the traditional SMD estimates are prone to unpre-
dictable changes, since gene-specific variability can easily
be underestimated resulting in large statistics values. In
this study, we re-parameterized the traditional SMD-
based effect size measure by using a log ratio of means as
an effect size measure for each gene in each study. Our
results show the new effect size measure has better per-
formance than the traditional one.

Table 4: Rank of known and validated prostate cancer markers

Gene Name LIMMA WROM UWROM WSMD UWSMD Source

HEPSIN 2 2 2 1 6 Welsh et al. (2001)

MIC-1
(GDF15)

145 19 66 110 61 Welsh et al. (2001)

FASN 173 15 13 72 231 Welsh et al. (2001)

TACSTD1 32 6 6 289 413 Welsh et al. (2001)

PSCA 10344 8948 8072 11622 12259 Tricoli et al. 2004

PSMA 509 508 294 433 220 Tricoli et al. 2004

TERT 6636 4625 7741 9945 7596 Tricoli et al. 2004

GSTP1 1744 99 366 1508 2368 Tricoli et al. 2004

GRN 6386 1880 840 2332 2336 Tricoli et al. 2004

Comparison of meta-analysis and single study analysisFigure 1
Comparison of meta-analysis and single study analy-
sis. Overlap of top-ranked genes by meta-analysis and single 
study analysis
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Traditional wisdom for statistical analysis recommends
that highly skewed data should be transformed prior to
analysis. It is therefore unexpected, perhaps, that the ROM
measure (where log transforms are taken after calculating
means) gives better prediction accuracy than the SMD
measure (where log transformation is done prior to calcu-
lating means). Since the signals from Affymetrix are
expected to be a mixture of background or non-specific
binding and true signal, and only the true signal is
expected to follow a power law, using the log transforma-
tion up front may be introducing variability, in particular
for genes with low levels of expression. Furthermore, for
genes whose expression levels change dramatically
between experimental groups, the apriori log transforma-
tion may be inappropriate in the group with low expres-
sion levels.

We noticed that the ranks of some of the known tumor
genes (e.g. five candidate markers discussed by Tricoli et
al. [43] are relatively low in all four data integration meth-
ods (WROM, WSMD, ROM and SMD). There are several

possible reasons for this. For example, since the patients
used in these studies were collected in different places,
there may be clinical heterogeneity, which may result in
very different expression profiles of the same gene in dif-
ferent studies. It is also possible that the lower ranks of
these tumor genes result from the relatively small sample
sizes. Integration of more microarray data sets may lead to
the discovery of more robust prostate cancer biomarkers.

Our results show that different predictors, including vari-
ous combinations of differentially expressed genes can
lead to similar prediction accuracy. This can make it chal-
lenging to select optimal biomarker sets for clinical use.
Our recent study [19] showed that many of the differen-
tially expressed genes which have similar classification
results are involved in the same or similar biological path-
ways. In other words, the genes with the best discrimina-
tive power likely correspond to a limited set of biological
functions or pathways. Hence, the selection of biomarkers
for prediction may need to be based on a combination of
statistical results and knowledge of pathways.

Prediction accuracy of the SVM model with linear kernelFigure 2
Prediction accuracy of the SVM model with linear kernel. Prediction accuracy of the SVM models as a function of the 
number of differentially expressed genes selected by the four meta-analytic procedures, respectively
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It is widely known that data from various sources might
contain different informativity for a given biological task
(such as differential analysis of gene expression levels
between case and control). Some data sources might, for
example, be more informative than others. A statistically
sound data integration framework should, therefore, take
these into account. One approach towards this goal is to
develop suitable quality measures for different data types
and these measures are then integrated into the statistical
models. We used a simple quality measure associated with
both log-ratio of means based and standardized mean dif-
ference based effect sizes. Our analysis showed this meas-
ure works well in the real and simulated data sets.

Conclusion
In summary, we combined estimated ROM-based effect
sizes for all studies under two data integration frame-
works: the quality-unweighted random effects models
and the quality-weighted random effects models [16].
Comparing with the SMD-based effect size measure, our
real examples and simulation studies showed that the pro-
posed methods have better power to identify differential
expressed genes and the detected genes have better accura-
cies in predicting cancer outcomes. In conclusion, the new
effect size measure and the quality-weighted microarray
data integration framework provide efficient way to com-
bine microarray results.

Prediction accuracy of the SVM model with radial kernelFigure 3
Prediction accuracy of the SVM model with radial kernel. Prediction accuracy of the SVM models as a function of the 
number of differentially expressed genes selected by the four meta-analytic procedures, respectively

0 50 100 150

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Number of Genes

A
cc

ur
ac

y

WROM
WSMD
UWROM
UWSMD
Page 9 of 11
(page number not for citation purposes)



BMC Systems Biology 2009, 3:106 http://www.biomedcentral.com/1752-0509/3/106
List of abbreviations
ROM: ratio of mean; WROM: log ratio of mean used as the
effect size measure in weighted meta-analysis Framework;
UWROM: log ratio of mean used as the effect size measure
in unweighted meta-analysis framework; SMD: standard-
ized mean difference; WSMD: standardized mean differ-
ence used as the effect size measure in weighted meta-
analysis framework; UWSMD: standardized mean differ-
ence used as the effect size measure in unweighted meta-
analysis framework; PM: perfect match; MM: mismatch;
MLE: maximum likelihood estimation; NSB: non-specific
binding; RMA: robust multi-array average; SROC: summa-
rized receiver operating characteristic; AUC: area under
the curve; FDR: false discovery rate; SVM: support vector
machines; DLDA: diagonal linear discriminant analysis.
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