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Cutaneous squamous cell carcinoma (cSCC) is the second carcinoma in nonmelanoma skin cancer (NMSC). Sulfiredoxin (Srx) is
an antioxidant protein with a role in maintaining redox homeostasis. And Srx has an oncogenic role in skin tumorigenesis. In the
current study, we found that apigenin, as a natural flavonoid, downregulated the expression of Srx protein in cSCC cell lines.
Apigenin also inhibited the ability of cell proliferation and migration and induced apoptosis in cSCC cell lines. Our results also
showed that apigenin induced apoptosis via the activation of the mitogen-activated protein kinase (MAPK) signaling pathway,
as well as downregulated Srx expression in cSCC cell lines. Importantly, the effect of downregulation Srx by apigenin has been
rescued with the inhibitor of the MAPK signaling pathway intervention. And induced apoptosis by apigenin was partially
attenuated by the addition of MAPK inhibitor, Binimetinib. Our research revealed that apigenin induced apoptosis by
downregulation of Srx expression through regulating the MAPK signaling pathway in cSCC cells, thus providing evidence of
its applicability as a potentially effective therapeutic agent for cSCC treatment.

1. Introduction

Cutaneous squamous cell carcinoma (cSCC) is one of themost
common skin tumors, and the number continues to increase
[1, 2]. The main extrinsic cause of cSCC is solar ultraviolet
radiation, including UVA and UVB [3]. A high UV dose can
significantly increase the risk of SCC [4]. Up to 16% of cSCC
caused by chronic UV or preexisting actinic keratosis can be
metastatic [5]. UV produces oxidative free radicals, and free
radicals attack vital biomacromolecules such as proteins,
lipids, and nucleic acid and destruct their structures and func-
tions, thus promoting the occurrence of tumors [6]. Therefore,
the drug that can improve this kind of pathway is a potential
therapeutic strategy.

Apigenin is a familiar antioxidant flavonoid compound,
which is extracted from various edible things, such as fruits,
vegetables, and Chinese medicinal herbs [7]. Studies have
shown that apigenin has antitumor activity in a broad range
of tumors [8]. It plays an antitumor role mainly by inducing
cell apoptosis, leading to cell cycle arrest, and suppressing
cell migration and invasion [9, 10]. However, the antitumor
activity of apigenin is rarely reported in cutaneous squamous
cell carcinoma (cSCC).

Redox homeostasis is the organism’s response to main-
tain physiological function under different stress states
[11]. However, in the tumor microenvironment, the redox
state is often unbalanced [12]. Based on our previous studies,
Sulfiredoxin (Srx) is one of the most essential antioxidant
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enzymes endogenously, which is the unique enzyme that
decreases the hyperoxidized inactive form of peroxiredoxins
(Prxs) [13]. Studies indicated that Srx was overexpressed in a
variety of malignant tumors, such as melanoma and prostate
cancer [14, 15]. Meanwhile, the expression level of Srx was
negatively correlated with the tumor prognosis [16].We found
that Srx was expressed increasingly in DMBA/TPA-induced
cSCC. And cell apoptosis was increased in Srx−/− mice com-
pared with wild-type mice in cSCC [17]. A recent study
showed that upregulated Srx promoted the stemness and sur-
vival of cancer stem cells (CSC), which are the most important
part of tumor formation [18].

In the current study, we showed that apigenin induced cell
apoptosis in cSCC cells, through regulating the MAPK signal-
ing pathway, and decreased the expression of Srx. Our findings
suggest that suppressing the expression of Srx via apigenin
might be a potential therapeutic target for cSCC.

2. Materials and Methods

2.1. Materials and Cell Culture. Apigenin, phorbol 12-
myristate 13-acetate (PMA; 12-O-tetradecanoylphorbol-13-
acetate, TPA), Binimetinib, SB203580, and dimethyl sulfox-
ide (DMSO) were purchased from Selleck Chemicals LLC
(Selleck). GAPDH antibody was purchased from Protein-
tech. Actin was purchased from Santa Cruz Biotechnology
(Santa Cruz, CA). Phospho-Erk1/2, p44/42 MAPK, p38
MAPK, Phospho-p38 MAPK (Thr180/Tyr182), SAPK/JNK,
Phospho-SAPK/JNK (Thr183/Thr185), pro-caspase 3,
cleaved caspase 3, and cleaved caspase 8 antibody were pur-
chased from Cell Signaling Technology (Beverly, MA).

The mouse epithelial-derived JB6 Cl 41-5a cell was pur-
chased from the American Type Culture Collection (ATCC)
and stored in our laboratory [19]. We cultured mouse skin
epithelial JB6 cells with minimum essential medium with L-
glutamine (2mM), 1% penicillin-streptomycin, and 5% fetal
bovine serum (BI). For malignant transformation, the
epithelial-derived JB6 cells required stimulation with TPA.
In the current study, we always added 20nM TPA in the cul-
ture medium for maintaining JB6 cells’ malignant phenotype
while cells were treated with 0.1% (v/v) DMSO or apigenin
(40μM or 80μM) for different time points (6-48h) at 37°C
in a 5% CO2 humidified incubator. The human cutaneous
squamous carcinoma cell line A431 was cultured in DMEM
(BI) supplemented with 10% fetal bovine serum (BI) and 1%
penicillin-streptomycin at 37°C in a 5% CO2 humidified incu-
bator. A431 cells were also treated with 0.1% (v/v) DMSO or
apigenin (80μM) for various time points (6-48h). JB6 and
A431 cells were subjected to pretreatment with 5 or 10nM
Binimetinib (MEK1/2 inhibitor) for 1h and then incubated
with 80μM apigenin together for 8h. Subsequently, the cell
lysate was collected for detecting MAPK signaling pathway
protein via western blotting. To analyze cell apoptosis, JB6
and A431 cells were treated with 5 or 10nM Binimetinib for
24h and harvested the cell for real-time PCR, flow cytometry
assay, and apoptotic proteins by western blotting.

2.2. Western Blotting. Cells were harvested with Cell Scraper
and lysed in RIPA Lysis Buffer (medium) (DingGuo) with a

protease inhibitor and phosphatase inhibitors (Selleck), and
protein concentration was quantified (2-3μg/μL) using a
BCA assay kit (Beyotime). Protein samples (30μg) were loaded
in each lane of an 8%-12% SDS-polyacrylamide gel (SDS-
PAGE) and then transferred onto polyvinylidene fluoride
membranes (Millipore). The membranes were blocked with
5% nonfat milk for one hour at room temperature and then
incubated with the following primary and secondary anti-
bodies. The blots were detected and analyzed using a gel image
analysis system (LI-COR). The membranes were also probed
with housekeep proteins (β-actin or GAPDH) to normalize
the differences between the samples. The intensity of western
blotting bands was quantified with the software ImageJ.

2.3. Real-Time PCR. Total RNA was extracted from cells
using TRIzol reagent (Bioteke Corporation), then reverse
transcribed into cDNA using HiScript II Q RT SuperMix
for qPCR (Vazyme) according to the manufacturer’s instruc-
tions. Then, 40 cycles of quantitative reverse-transcription
PCR (qRT-PCR) were developed in 96-well plates using
SYBR Green qPCR Mixture (CWBIO) on the QuantStudio3
Real-Time PCR System. The fold change of gene expression
was calculated by 2−ðΔCt experimental group–ΔCt control groupÞ. The
experiment was conducted three times independently. We
used the sequence of primers including Srx (mouse): for-
ward: 5′-CCCAGGGTGGCGACTACTA-3′, reverse: 5′-
GTGGACCTCACGAGCTTGG-3′; Srx (human): forward:
5′-CAGGGAGGTGACTACTTCTACTC-3′, reverse: 5′-
CAGGTACACCCTTAGGTCTGA-3′.

2.4. Immunofluorescence Assay. Cells (1 × 105/well) were
seeded on coverslips in 6-well plates and cultured overnight.
After sticking, cells were treated with a combination of api-
genin (80μM) and TPA (20nM) for 6, 12, 24, or 48 hours,
respectively. Cells were washed with PBS, fixed in 4% para-
formaldehyde on ice for 15 minutes, and infiltrated with
0.5% Triton X-100 for 5 minutes. After blocking with 5%
bovine serum albumin (BSA) for 1 hour, cells were incu-
bated with SRX1 (1 : 100, Proteintech) overnight at 4°C and
secondary antibody Alexa Fluor 488 donkey Anti-rabbit
(1 : 1000, Invitrogen) and then stained with DAPI (1 : 10,
Servicebio) to visualize nuclear DNA. The images were cap-
tured by a confocal laser scanning microscope (TCS-SP8;
Leica Microsystems) and analyzed.

2.5. Cell Counting Kit-8 Assay. Cells (2 × 103/well) were
seeded in a 96-well plate and arranged to adhere overnight
at 37°C in a 5% CO2 humidified incubator. Then, the cells
were treated with a combination of TPA (20 nM) and vari-
ous concentrations of apigenin (from 20 to 120μM) for 0-
96 hours. The effect of a combination of TPA and apigenin
on cell viability was tested using the Cell Counting Kit-8
(Bimake) according to the manufacturer’s instructions.

2.6. Colony Formation Assay. Cells were seeded into 6-well
plates (1 × 103 cells/well) and incubated overnight. Then, the
cells were allowed to expose to a combination of apigenin
(80μM) and TPA (20nM) for different times (6h-48h). Then,
the drug-containing medium was removed and added
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complete growth medium instead for two weeks until the vis-
ible colony formation. During the two weeks, the medium was
refreshed every three days. Finally, the cells were washed with
PBS, fixed with 4% paraformaldehyde (Servicebio), and
stained with 0.5% crystal violet (DingGuo). Then, we took
the pictures and analyzed them.

2.7. Wound Healing Assay. Cells were seeded into 6-well
plates (4 × 104 cells/well for JB6 cell and 5 × 104 cells/well
for A431 cell) and cultured overnight. Until cell density
was up to 80%, wounds were created by scratching the con-
fluent cell monolayer using a 10μL plastic pipette tip, and
any loose cellular debris or detached cells were removed by
washing with PBS. The cells were incubated with or without
apigenin (80μM) or TPA (20 nM), which were both diluted
with DMEM containing 2% fetal bovine serum. After being
cultured for 6, 12, and 24 hours, the gaps in the wounds were
observed with optical microscopy and digitally photo-
graphed under 100x magnifications. Each experiment was
performed in triplicate. The figures were analyzed quantita-
tively by ImageJ.

2.8. Cell Apoptosis Assay and Flow Cytometry. Cell apoptosis
was detected by flow cytometry. Cells were treated in the
same way as previously described. The treated cells were
digested by trypsin solution without EDTA (Beyotime Bio-
technology), washed with PBS, and stained with a combina-
tion of 3μL annexin V and 5μL propidium iodide (BestBio,
Annexin V-FITC Apoptosis Detection Kit) on ice for 15min
before being detected. Resuspended cells were stained by
CD24 (Invitrogen, MA511828) and APC-CD44 (BioLegend,
103012) for 30min at 4°C. The samples were run on a DxP
cytometer (Cytek), and the data were analyzed by FlowJo 10.

2.9. Statistical Analysis. All statistical analyses were per-
formed with GraphPad Prism6.0 software. Dual compari-
sons were made with the two-tailed Student unpaired t
-test. And one-way analysis of variance (ANOVA) with the
Newman-Keuls post hoc test was used for multiple compar-
isons of the means of quantitative data. All experiments were
repeated at least three times. The data represent the mean
± SEM. A p value of <0.05 (two-tailed) was considered sta-
tistically significant for all tests.

3. Result

3.1. Apigenin Can Downregulate Srx Expression in cSCC
Cells. Our previous study indicated that loss of Srx protected
mice in DMBA/TPA-induced skin tumorigenesis [17]. To
determine whether apigenin can inhibit the expression of
Srx, we detected the protein level of Srx in cSCC cell lines
via incubation with apigenin at various concentrations for
different times. As shown in Figure 1(a), Srx was inhibited
while treating TPA-induced JB6 cells with 40μM or 80μM
apigenin as well as different time points (6 h-48 h) via
80μM apigenin treatment. Human cSCC cell line A431
was also incubated with or without apigenin, and Srx was
also blocked in 80μM apigenin incubation from 6h to 48 h
(Figure 1(b)). Meanwhile, the mRNA level of Srx in TPA-
induced JB6 and A431 cells was significantly decreased after

being treated with apigenin (Figure 1(c)). Immunocyto-
chemistry analysis indicated that Srx is mainly expressed in
the cytoplasm. As shown in Figure 1(d), we found that Srx
located the cytosol and nuclear in TPA-induced JB6 cells.
And the cytoplasmic intensity of Srx in JB6 cells gradually
decreased with incubating apigenin extended (from 6h to
48 h). These results demonstrated that apigenin inhibited
the expression of Srx in cSCC cell lines.

3.2. Apigenin Can Attenuate Cell Proliferation and Migration
in cSCC Cells. We performed a CCK-8 assay to determine
the influence of apigenin on cSCC proliferation. As shown in
Figure 2(a), apigenin can weaken the proliferation of TPA-
induced JB6 and A431 cells in a time- and dose-dependent
manner. A colony formation assay was developed to further
confirm the effect of apigenin in cSCC cell lines. TPA-
induced JB6 cells were cultured with or without apigenin for
6-48 hours. When treated with 80μM apigenin, the formation
of cell colonies was inhibited significantly which was more
obvious with a prolonged time (Figure 2(b)).

Through the wound healing assay, we also observed the
migration ability of cSCC with or without apigenin treat-
ment. The result showed that cell migration was also inhib-
ited by apigenin in a dose-dependent manner in TPA-
induced JB6 cells and A431 cells (Figure 2(c)). The results
indicated that apigenin had an essentially repressive effect
on cell proliferation and migration in cSCC including
TPA-induced JB6 and A431 cells.

3.3. Apigenin-Induced Apoptosis in cSCC Cells. To further
investigate the mechanism of cell death induced by apigenin
in TPA-induced JB6 and A431 cells, we detected cell apoptosis
via flow cytometry analysis. We found that the proportion of
apoptosis cells increased markedly in a time-dependent man-
ner when TPA-induced JB6 cell was incubated with apigenin.
Similarly, cell apoptosis was induced by apigenin treatment in
A431 cells (Figures 3(a) and 3(b)). Meanwhile, we detected
apoptosis-associated proteins. As western blot analysis
showed, the expression level of cleaving form of caspase 3
and caspase 8 was increased in a time-dependent manner as
well as pro-caspase 3 expression was decreased in TPA-
induced JB6 (Figure 3(c)). As shown in Figure 3(d), proapop-
totic proteins including BAX, cleaved caspase 3, cleaved cas-
pase 8, and cleaved PARP were also remarkably increased
while A431 cells were incubated with apigenin at different
time points. These results indicated that apigenin induced
apoptosis in cSCC cell lines including TPA-induced JB6 and
A431 cells.

3.4. Apigenin-Induced Cell Apoptosis via Regulating the MAPK
Signaling Pathway in cSCC In Vitro. To further clarify the
mechanism of apigenin-induced apoptosis, we explored possi-
ble related signaling pathways. In our previous study, we
found that TPA-induced Srx expression was activated through
the activation of mitogen-activated protein kinase (MAPK)
partially. We detected essential protein expression related to
the MAPK signaling pathway. Western blot analysis revealed
that after treatment with apigenin in TPA-induced JB6
(Figure 4(a)), there was a significant increase in protein
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Figure 1: Apigenin can downregulate Srx expression in TPA-induced JB6 and A431 cSCC cells. (a) JB6 was treated with control (DMSO), TPA
(20 nM), or apigenin (40 or 80μM) for different time points (6 h-48 h). Srx expression was detected by western blotting (left). Western blot was
served to analyze the expression of Srx while TPA-induced JB6 cells were incubated with apigenin (80μM) for different times (6 h-48 h) (right).
(b) Human SCC A431 cells were treated with apigenin at different times, and the expression of Srx was detected byWB. (c) The mRNA level of
Srx in TPA-induced JB6 and A431 cells was conducted to measure after incubation with 80μM apigenin for 6 h and 12h. (d) Representative
images of immunofluorescence staining of Srx in TPA-induced JB6 treated with control (DMSO) or 80μM apigenin for 6 h-48 h (left).
Quantitative analysis of Srx means fluorescence intensity (MFI) (right) (mean values ± SEM, n = 3). Significant differences were evaluated
using a one-way ANOVA. ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 vs. control. For JB6 cells, TPA-induced sample as control.
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Figure 2: Apigenin can attenuate cell proliferation and migration in cSCC cells. (a) CCK-8 assay was implied to analyze the cell viability
after the treatment of TPA-induced JB6 and A431 cells with different concentrations of apigenin (up to 80μM) as time gone
(mean values ± SEM, n = 6). ∗∗∗∗p < 0:0001 vs. control by ANOVA. (b) Representative images of colony formation assay in TPA-induced
JB6 treated with control (DMSO) or 80μM apigenin. (c) Typical pictures (left) and quantitative analysis (right) of wound healing assay
in TPA-induced JB6 (up) and A431 (down) cells. Cells were treated with control (DMSO) or 80 μM apigenin for indicated time points.
ns: no statistical significance; ∗∗∗∗p < 0:0001 vs. control by Student’s unpaired t-test.
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Figure 3: Continued.
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expression of p-p38 and p-ERK as cultivating prolonged
and peaked at 6h. The level of p-JNK expression peaked
for 2h and gradually decreased until undetectable after 24h
treatment. While apigenin was treated with A431 cells
(Figure 4(b)), the expression of p-p38 and p-ERK was also ele-
vated significantly and peaked at 6 h incubation. Afterward,
the expression of these proteins was slightly decreased over
time, while there were no clear changes in the expression of
total p38 and JNK in TPA-induced JB6 cells and A431 cells.
However, we found that the total protein of ERK in both
TPA-induced JB6 and A431 cells was reduced by apigenin
treatment (Figures 4(a) and 4(b)).

Some studies demonstrated that the coactivation of
nuclear related factor 2 (Nrf2) was associated with the MAPK
signaling pathway. Importantly, the expression of Srx is medi-
ated through the Nrf2-dependent transcriptional activation
[20].We found that the expression of Nrf2 was downregulated
in a time- and dose-dependent manner in TPA-induced JB6
cells after the treatment with apigenin (Figure 4(c)). The
results suggested that expression of Srx via apigenin-induced
decrease might be regulated by Nrf2 in cSCC cells.

To further confirm the influence of the MAPK signaling
pathway in apigenin-treated cSCC cell lines, we conducted
the rescue assay. We used Binimetinib (MEK1/2 inhibitor)

treatment TPA-induced JB6 and A431 cells with apigenin
together. First, we found that treatment with Binimetinib
restored the inhibiting effect of Srx protein andmRNA expres-
sion by apigenin (Figures 5(a)–5(c)). Meanwhile, activation of
MAPK during apigenin-induced apoptosis was further con-
firmed. Binimetinib treatment markedly suppressed proapop-
totic protein BAX as well as elevated antiapoptotic protein
Bcl2 (Figures 5(a) and 5(b)). Upon flow cytometry (FACS)
analysis, Binimetinib treatment dramatically reduced the
percentage of apoptosis cells compared to apigenin-alone
treatment (Figure 5(d)). Importantly, we also detected the
expression of several apoptotic proteins including caspase 3,
caspase 8, and PARP. The results showed that the cleaved level
of caspase 3, caspase 8, and PARP was downregulated after
MEK1/2 inhibitor addition into JB6 and A431 cells
(Figures 5(e) and 5(f)). The results implied that after the
inhibitor’s intervention, cell apoptosis was suppressed in
TPA-induced JB6 and A431 cell lines, which demonstrated
that cell apoptosis induced by apigenin was partially rescued
via MAPK inhibitor addition. Taken together, our results
revealed that apigenin-induced Srx downregulation was regu-
lated by the MAPK signaling pathway. And apigenin induces
apoptosis by downregulation of Srx partially via regulating
the MAPK signaling pathway in cSCC cells.
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Figure 3: Apigenin induced apoptosis in cSCC cells. (a) Flow cytometry was used to analyze the apoptosis cells. Cells were stained with
annexin V and PI to quantify the percentage of apoptotic cells. TPA-induced JB6 cells (upper) or A431 cells (lower) were treated with
control (DMSO) or 80μM apigenin for different times. (b) A concrete percentage of apoptosis cells in TPA-induced JB6 and A431 cells
were evaluated using a one-way ANOVA (mean values ± SEM, n =3) ∗p < 0:05, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 vs. control (TPA-
induced sample as control for JB6 cells). (c) TPA-induced JB6 cells were incubated with control (DMSO) or 80μM apigenin for 6 h-48 h.
Western blot was served to analyze the expression of apoptosis-associated proteins (left). The bar graphs on the right showed the
intensity of the protein band from each treatment relative to the housekeeping protein (β-actin). Valued represent the means ± SEM.
Significant difference was designed by ANOVA, ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 vs. control (only TPA-induced
sample). (d) The apoptosis-associated proteins were detected while 80 μM apigenin was used for treatment for different time-points in
A431 cells. The bar graphs showed the intensity quantification of the protein band relative to the housekeeping protein. Significant
difference from control by ANOVA, ∗∗∗p < 0:001 and ∗∗∗∗p < 0:0001.
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Figure 4: Apigenin activated the MAPK signaling pathway in cSCC in vitro. (a, b) Variation of the MAPK signaling pathway with the
treatment of apigenin in TPA-induced JB6 (a) and A431 cells (b). The cells were treated with 80 μM apigenin for different time points up
to 24 h. Western blot was applied to analyze the expression of MAPK pathway-associated proteins, includingp38, ERK1/2 and JNK
compared with GAPDH (left). The bar graph on the right showed the intensity of the phosphorylation protein band from each treatment
relative to the total protein. Valued represent the means ± SEM. Significant difference was designed by ANOVA, ∗p < 0:05, ∗∗p < 0:01, ∗∗∗
p < 0:001, and ∗∗∗∗p < 0:0001 vs. control (TPA-induced sample as control for JB6 cells). (c) TPA-induced JB6 cell was incubated with
control (DMSO, TPA-alone, and apigenin-alone) or apigenin (40 or 80μM) for indicted time points. Western blot was served to analyze
the expression of Nrf2. β-Actin was used as the reference for the loading quantity of protein sample. The bar graph indicated the density
quantification of the Nrf2 band relative to β-actin. ∗p < 0:05 and ∗∗∗p < 0:001 vs. TPA-induced control by ANOVA.
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Figure 5: Continued.
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Figure 5: Apigenin induced cell apoptosis and inhibited the expression of Srx via regulating the MAPK signaling pathway in cSCC. (a, b)
TPA-induced JB6 cells (a) and A431 cells (b) were treated with the combination of apigenin and inhibitor of MEK1/2, Binimetinib (5 or
10 nM), for 8 h. Western blotting was used to analyze the expression of Srx, p-Erk, and the apoptosis-related proteins BAX and Bcl2.
Representative images are shown on the left. The bar graph on the right indicated the intensity quantification of the protein band
relative to GAPDH or total protein (ERK). Significant difference was designed by ANOVA, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001
vs. control (TPA-induced sample as control for JB6 cells). (c) Real-time PCR was conducted to quantify the mRNA expression of Srx in
cSCC cell lines while cells were treated for indicated compounds. ∗∗p < 0:01 and ∗∗∗p < 0:001 vs control by ANOVA analysis. (d)
Representative images of cell apoptosis analysis by flow cytometry after 5 nM Binimetinib (MEK1/2 inhibitor) treatment for 24 h,
respectively, in TPA-induced JB6 (up) and A431 (down). The percentage of apoptosis cells after apigenin treatment with or without
Binimetinib is shown in the bar graph. ∗∗∗∗p < 0:0001 vs. control by ANOVA analysis. (e, f) TPA-induced JB6 (e) and A431 (f) were
incubated with or without the MEK1/2 inhibitor (5 nM Binimetinib) for 24 h in the presence of 80 μM apigenin. Whole-cell lysates were
subjected to western blotting to detect the apoptosis-associated proteins caspase 3, caspase 8, and PARP. The bar graph showed the
intensity quantification of the protein bands from each treatment. Significant difference was designed by ANOVA, ∗∗∗p < 0:001 and ∗∗∗∗

p < 0:0001 vs. the apigenin-alone group.
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4. Discussion

Sulfiredoxin (Srx) is a vital antioxidant enzyme [21], which
was first discovered in yeast. Srx affects its downstream tar-
get gene hyperoxidized Prxs, transforming it to active Prxs
with the presence of ATP [22]. Srx plays a critical role in
tumorigenesis involved in cell proliferation, migration, and
metastasis [23]. According to the previous study, Srx plays
an oncogenic role in skin tumorigenesis. And targeting Srx
can prevent tumor proliferation by using shRNA and Srx-/-

mice [17]. Therefore, our group is interested in possible
promising compounds that can inhibit Srx expression and
have an antitumor effect at the same time.

Apigenin, traditional medicine for many years, possesses
multiple pharmacological effects, such as antioxidant, anti-
inflammatory, and antitumor [24, 25]. In the process of anti-
tumor, it works in different ways. As reported, apigenin
induces apoptosis and autophagy by inhibiting the PI3K/
Akt/mTOR pathway in hepatocellular carcinoma cells [26].
It was also reported that apigenin inhibits histamine-
induced cervical cancer tumor growth by regulating estrogen
receptor expression [27]. It was also found that apigenin
suppresses PD-L1 expression in melanoma and host den-
dritic cells to elicit synergistic therapeutic effects [28].

In the current study, we found that the expression of Srx
in TPA-induced JB6 cells in vitro increased and Srx was also
highly expressed in A431, which is consistent with previous
research results. Importantly, the result demonstrated that
Srx was prominently decreased with the treatment of api-
genin in TPA-induced JB6 cells and A431 cells. In addition,
we also found that apigenin significantly inhibited cell pro-

liferation and migration in TPA-induced JB6 and A431 cells.
Also, apigenin induced cell apoptosis in cSCC cells.

Previous studies reported that TPA-induced Srx expres-
sion was correlative with the MAPK signaling pathway.
MAPK, a large family of serine-threonine kinases, forms
major cell proliferation signaling pathways from the cell sur-
face to the nucleus [29], including the extracellular-signal-
regulated kinases (ERK MAPK), the c-jun N-terminal kinase
or stress-activated protein kinases (JNK or SAPK), and
MAPK14 (p38 MAPK). And the dysfunctional MAPK path-
way plays an important role in the progression of tumors by
affecting cell proliferation, migration, apoptosis, and so on
[30]. Studies showed that the activation of nuclear related
factor 2 (Nrf2) was associated with overexpression of the
MAPK pathway [31]. Moreover, Nrf2 is a transcription fac-
tor that upregulates the expression of genes that have an
antioxidant effects in their promoter, including Srx [20].
Through western blot analysis, we found that there was a
significant increase in protein expression of p-Erk, p-p38,
and p-JNK in TPA-induced JB6 and A431 cells with cultur-
ing with apigenin. Meanwhile, the expression of Nrf2 signif-
icantly decreased in a time- and dose-dependent manner in
the cSCC cell lines. Then, we speculated that apigenin could
activate MAPK signaling and regulate the expression of
transcript factor Nrf2, resulting in downregulation of Srx
expression in the cSCC. However, the mechanisms of
induced apoptosis by Srx regulation have remained to be
further researched in the future.

The MAPK signaling pathway is considered pivotal for
cell proliferation, differentiation, and cell apoptosis [32].
Apigenin has been stated to modulate the MAPK signaling

Apigenin

MAPK

MAPK

p38 PPP JNKERK

Nfr2 Maf

ARE
Srx

Transcription

Apoptosis

Figure 6: The summarization of the effect of apigenin in cSCC cell lines. After treatment with apigenin, the MAPK signaling pathway was
activated gradually through the form of phosphorylation, especially the ERK1/2 pathway. Then, Phospho-MAPK from the cytoplasm to
nucleus may generally downregulate the expression of Srx by inhibiting the expression of Nrf2. Then, apigenin might induce cell
apoptosis in cSCC cells.
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pathway. It has been shown that apigenin promoted the
growth arrest via downregulation of p-ERK1/2, p-AKT,
and p-mTOR [33]. In anaplastic thyroid carcinoma cells,
the combination of apigenin and TRAIL resulted in a
decreased BCL2 and increased ERK1 and ERK2 expression
[34]. Instead, the research has demonstrated that apigenin
elevated the levels of ERK1/2 and decreased p-p38 kinase
levels in prostate cancer cells [35]. Therefore, these findings
have manifested that apigenin can induce apoptosis by regu-
lating the MAPK pathway and is a potential therapeutic
option for the treatment of cSCC.

Furthermore, Binimetinib as an MEK1/2 inhibitor could
impede the effect of apigenin-induced apoptosis, as well as
could restore the expression of Srx by apigenin treatment
in cSCC cells. So far, Binimetinib in combination with
encorafenib (BRAF inhibitor) is approved in several coun-
tries for the treatment of advanced BRAF-mutant melanoma
[36]. In melanoma cases, it has been reported that apigenin
activates the cleaved caspase-3 and PARP expression sites;
downregulates Twist1, MMP-2/9, VEGF, p-mTOR, ERK1/
2 proteins, and p-AKT; and deactivate FAK/ERK1/2 path-
ways [37]. Based on our findings, we suggested that the ben-
efit from apigenin inhibition in skin cancer cells might be
limited following MAPK pathway inhibitor.

Taken together, our study revealed that apigenin inhibited
cell proliferation and migration and induced cell apoptosis via
downregulation of Srx and then activation of the MAPK
signaling pathway (Figure 6), which indicated that apigenin
mediated positive effects in cSCC and supplied a potential
therapeutic strategy in the treatment of cSCC patients.
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