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Concept for using magnetic particle 
imaging for intraoperative margin 
analysis in breast‑conserving 
surgery
Erica E. Mason1,2*, Eli Mattingly2, Konstantin Herb1,3, Monika Śliwiak1, Sofia Franconi1, 
Clarissa Zimmerman Cooley1,4, Priscilla J. Slanetz5 & Lawrence L. Wald1,4

Breast‑conserving surgery (BCS) is a commonly utilized treatment for early stage breast cancers but 
has relatively high reexcision rates due to post‑surgical identification of positive margins. A fast, 
specific, sensitive, easy‑to‑use tool for assessing margins intraoperatively could reduce the need for 
additional surgeries, and while many techniques have been explored, the clinical need is still unmet. 
We assess the potential of Magnetic Particle Imaging (MPI) for intraoperative margin assessment 
in BCS, using a passively or actively tumor‑targeted iron oxide agent and two hardware devices: a 
hand‑held Magnetic Particle detector for identifying residual tumor in the breast, and a small‑bore 
MPI scanner for quickly imaging the tumor distribution in the excised specimen. Here, we present 
both hardware systems and demonstrate proof‑of‑concept detection and imaging of clinically relevant 
phantoms.

Breast cancer is the most common cancer in women worldwide. Over two million new cases of breast cancer 
were diagnosed in 2018, constituting 11.6% of all cancers diagnosed that year (men and women), and 24.2% of 
all cancers in  women1. Breast-conserving surgery (BCS, a.k.a. lumpectomy or segmental mastectomy) is the first 
intervention for the majority (64.5%2) of early stage diagnoses, and has been shown to have outcomes similar to 
mastectomy (complete removal of one or both breasts) when complete tumor resection is  achieved3,4. However, 
incomplete resection correlates with local  recurrence5,6, and secondary surgeries are required in 20–66% of initial 
 lumpectomies7–12. Additional surgeries impose risks and challenges including increased costs and complications, 
as well as cosmetic and emotional burdens on the  patient10,13.

Local tumor recurrence, a determining factor for reexcision, correlates strongly with margin  status9,14,15, or the 
proximity of tumor cells to the inked surface (or “margin”) of the excised tissue. The clinical standard for margin 
assessment is histopathology, and due to the need for formalin fixation, this assessment is done post-operatively. 
The need for secondary surgery can be reduced with the use of an intraoperative tool that enables the surgeon 
to iterate tissue removal and margin analysis in real time, enabling greater confidence of clear  margins10,16. This 
concept is illustrated in the flowchart in Fig. 1. To gain regular clinical utility, an intraoperative margin assess-
ment technique must provide sensitive and specific information about the margin status, and be fast and easy 
to use in the operating room.

The problem of positive margins and reexcisions in BCS has been approached with numerous  techniques10,17–23, 
addressing both macroscopic tumor localization and microscopic margin assessment. These include frozen sec-
tion, imprint cytology, cavity shave margins, specimen radiography, micro-CT, radiofrequency spectroscopy, and 
numerous optical methods, to name just a few. However, as summarized by Maloney et al. (2018), “Technologies 
to determine margin status have been developed to have high sensitivity and selectivity. However, no current 
modality has matured into a complete solution to the margin problem currently facing BCS”18 due to various 
limitations, including long analysis times, additional required expertise, and lack of depth penetration.

In this work, we explore a novel approach for margin analysis during BCS: the use of Magnetic Particle 
Imaging (MPI), in conjunction with an injected superparamagnetic iron oxide nanoparticle (SPIO) tracer. We 
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aim to assess MPI’s potential to be added to the extensive list of tools investigated for this yet unmet need. The 
potential for SPIOs in breast cancer is highlighted by recent techniques utilizing magnetic nanoparticles and 
magnetic detectors (Magtrace/Sienna+ and Sentimag,  respectively24,25) for sentinel lymph node detection and 
occult lesion  localization20,26, and as markers to flag specific locations  (Magseed20,27,28). These technologies use 
interstitial or intratumoral injections (versus intravenously injected nanoparticles). MPI detection of intersti-
tially injected nanoparticles has also been proposed for use in sentinel lymph localization using a single-sided 
MPI  imager29,30. Together, these demonstrations suggest the potential for magnetic nanoparticles in general and 
MPI in particular for the related task of margin analysis during breast-conserving surgery. Here, we propose the 
combined use of two novel MPI  devices31–33 for margin assessment in BCS utilizing an intravenously injected 
SPIO, and demonstrate their feasibility via clinically relevant phantoms.

Magnetic Particle Imaging background. MPI is a tracer-based imaging modality first introduced by 
Gleich and Weizenecker in a seminal Nature paper in  200534. MPI utilizes a superparamagnetic iron oxide tracer, 
identifying and spatially mapping its signature nonlinear magnetization response to an applied AC field. In the 
presence of the applied drive field (also called “transmit” or “Tx” field) at frequency f 0 , the SPIO’s nonlinear 
magnetization includes higher order harmonics of the drive frequency (n*f0 , n = 3, 5, 7...). Both the drive field 
and SPIO response are picked up via Faraday detection in a receive coil, and identification of these higher order 
harmonics indicates SPIO presence. The drive field must be filtered to suppress harmonics that may be confused 
for the SPIO signal and f 0 must be suppressed in the receive signal to avoid the direct Tx feedthrough. For 
sufficiently high magnetic field strength, the SPIO magnetization saturates such that the SPIO response is not 
detectable. This saturation effect is exploited to enable spatial encoding, using magnetic gradient fields (field-free 
point (FFP) or field-free line (FFL)), and additional AC “shift” fields to move the FFP/FFL for image encoding. 
Numerous acquisition and encoding schemes have been implemented in preclinical MPI to  date29,34–39.

MPI is currently undergoing rapid development toward a number of clinical applications, including vascular 
 imaging40–42, cell  tracking43,44,  oncology30,45,46 including macrophage  activity47, hyperthermia  therapy48, traumatic 
brain  imaging49, and neuroimaging for stroke and hemodynamic  disorders50,51. Biomedical applications of MPI 
have recently been  reviewed52–55.

MPI and its SPIO tracer have a number of promising features, including zero background signal from tis-
sue and positive contrast (MPI detects only the nonlinear SPIO signal; biological tissue is magnetically linear), 
high sensitivity (due to the strength of the SPIO magnetic moment, 22 million times stronger than the nuclear 
magnetization detected in high-field MRI), and direct and quantitative tracer detection (in contrast to indirect, 
qualitative detection as in contrast-enhanced MRI)56. As quasistatic magnetic fields are not attenuated in the 

Figure 1.  Flowchart of treatment options for early stage breast cancer. (a) In current clinical practice, the 
lumpectomy specimen is removed; after completion of the surgery, the specimen is sent to pathology for 
analysis. Positive margin results require additional surgeries, either a second lumpectomy or conversion to 
mastectomy. In contrast, (b) shows an improved workflow, in which the specimen margin analysis happens 
within the operating room, mid-surgery. This would provide the surgeon with immediate feedback, enabling 
additional tumor removal during a single surgery for a higher likelihood of negative margins.
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human body, there are no inherent depth penetration limitations such as those that limit many optical imaging 
 modalities57. MPI has also been demonstrated with fast temporal  resolution40. Finally, SPIOs are stable, have a 
long shelf life, and are considered safe injected agents with already approved clinical  uses39,58. These features make 
MPI promising for addressing the needs of intraoperative breast cancer margin assessment. While the technology 
is currently preclinical, scaling the hardware to human sizes gives rise to numerous technical  challenges50,59. We 
have developed and tested two strategies utilizing small- and medium-sized devices suitable for human clinical 
intraoperative use.

Tumor SPIO accumulation. As MPI detects injected SPIOs only (not the biological tissue itself), SPIOs 
must serve as tumor markers. Thus, this application relies on high specificity and high sensitivity accumulation. 
SPIOs are considered safe tracer agents, have routine clinical  uses60–66, and can be optimized for targeting via 
size and coating  characteristics61,62.

SPIOs can accumulate at a tumor via passive  mechanisms67–71, tumor-associated macrophage  uptake72, and/
or active  mechanisms61,65,73–76 (use of functional groups or antibodies conjugated to SPIO coating). These phe-
nomena have been widely exploited for targeted tumor therapeutics and imaging. While passive accumulation 
has been extensively tested in animal models, there is some concern about its reliability for clinical uses in 
 humans77,78. Active targeting mechanisms, a potentially high-specificity approach, is an active area of research 
in the context of breast  cancer61,65,73–76,79. Du et al. (2019) reviews current clinical application status of both pas-
sive and active nanotargeted agents specifically for breast  cancer79. MPI imaging of passively  accumulated45 and 
actively  targeted46 MPI-tailored SPIO agents have been demonstrated in rodents.

MPI may be considered a two-key problem, requiring (1) hardware with high sensitivity, spatial/temporal 
resolution, and clinical use feasibility, and (2) safe nanoparticles with application-relevant properties. In this 
work, we develop the devices needed to take advantage of SPIOs with sufficiently specific tumor uptake and 
clearance of background SPIOs via the reticuloendothelial system, given the right timing post-injection. Tumor 
accumulation rates (% injected dose (ID)/g tumor tissue) vary in the  literature80,81, with a lower bound found 
in a study using PEG-coated nanoparticles in vivo in a xenograft mouse  model81. Here, total tumor accumula-
tion (calculated as area-under-the-curve), is observed to be 0.3% ID·h/g, which we interpret (after accounting 
for the 2.5 h half-life) to be an accumulation of 0.12% ID/g. However, it is unclear that this value is ultimately 
translatable to human clinical application. Active targeting has been shown to enable higher accumulation rates 
than passive  targeting82,83, and therefore 0.12% ID/g represents a reasonable detection goal.

Envisioned clinical workflow. Given sufficiently specific SPIO accumulation and sufficient time for back-
ground SPIO clearance, MPI can be applied to both the breast at the excision site and to the excised specimen. 
We envision an MPI BCS workflow as illustrated in Fig. 2. Prior to surgery, the patient receives an intravenous 
SPIO injection, and sufficient time is allowed for nanoparticle accumulation and local background vascular 
clearance (the SPIO agent may still remain in other background organs (liver, spleen)84, but would sit beyond the 

Figure 2.  Envisioned MPI workflow during breast-conserving surgery. SPIOs would be injected intravenously 
prior to surgery with sufficient time for the nanoparticles to accumulate at the tumor and the background signal 
in the vasculature to be cleared. During surgery, the specimen is removed, and is placed in a small-bore MPI 
scanner to quickly image the distribution of SPIOs. A hand-held detector would be used at the incision site to 
detect residual SPIOs still in the breast, indicative of tumor remaining in the breast. Figure created using MS 
PowerPoint.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13456  | https://doi.org/10.1038/s41598-021-92644-8

www.nature.com/scientificreports/

hardware’s detection range). During surgery, the specimen is removed, and a hand-held Magnetic Particle (MP) 
detector can be used at the excision site to identify any residual SPIOs (and thus tumor) in the breast. Simulta-
neously, the specimen can be inserted into a small-bore MPI scanner to provide a fast image ( ∼ seconds) of the 
SPIO distribution in the removed tissue. With information about both the presence of SPIOs (tumor) still in the 
breast, as well as the spatial distribution of SPIOs (tumor) in the specimen, the surgeon can iterate the process, 
continuing to remove tissue at indicated sites until achieving a high confidence of full tumor removal.

In this work, we develop and test the two MPI devices. The hand-held MP detector is designed to exploit the 
principles of MPI in its simplest form. It is a compact, single-sided non-imaging device with drive and receive 
hardware (no spatial encoding), designed to detect residual SPIO not removed with the initial excision. We 
design, construct, and show proof-of-concept feasibility of such a device to detect SPIO samples embedded in 
an anthropomorphic breast phantom.

In a separate device, we test the capabilities of a small-bore imager suitable for placement in the surgical suite 
to enable quick 3D imaging of the SPIOs within an excised specimen.

Hand‑held MP detector
Materials and methods. The MP detector is a single-sided device mounted on a flexible arm, such that it 
can be held and moved around by the surgeon to and from the excision site, as illustrated in Fig. 2. This enables 
assessment of the presence of detectable levels of tracer. The application assumes that a limited search space 
around the surgical margin must be covered and that this region is small enough to be exhaustively covered in 
a timely fashion.

Single-sided devices have been explored in the field of  MPI29,38,86,87; for this clinical application, a single-sided, 
detector-only approach enables a simple, hand-held device. While MPI has no inherent depth attenuation, a 
single-sided coil has a sensitivity drop-off with distance from the detector, as illustrated in Fig. 3. This feature has 
the disadvantage that it loses sensitivity for tumors deeper in the breast, but has the advantage of being insensitive 
to relatively nearby organs with high SPIO content, such as the heart or liver.

Our device is designed for placement outside the incision; it is a larger device mounted on a moveable arm 
(similar in concept to x-ray devices common in dentist offices). Other single-sided designs could include smaller, 
pen-like devices (akin to the Sentimag  system24,88, the MarginProbe  device89, or an OCT  probe90).

The detector consists of two sets of coaxial, solenoidal Tx and receive (Rx) coils, separated by 6 cm, as shown 
in Fig. 3. The Tx/Rx coil set closer to the detector’s surface picks up SPIO signal, while the second set toward the 
back end of the detector has an oppositely wound receive coil and serves to cancel the drive field feedthrough. 
Both coil pairs are epoxied and water-cooled, and the apparatus is housed in a copper tube to confine the stray 
fields and reduce susceptibility to nearby conductive surfaces as the detector is moved around. Each coil set is 
4 cm long; the Tx coil is two 22-turn layers of 16 AWG Litz wire (New England Wire, Lisbon, NH) with an inner 
diameter of 6.85 cm. The Rx coil, mounted concentrically inside, has two 33-turn layers of 20 AWG Litz with 
diameter of 5.6 cm. The Tx coils in series have a total inductance of L = 175 H and produce 0.48 mT/A at the 
surface of the detector. The detector is mounted on an articulating aluminum arm, enabling hand-held movement 
with many degrees of freedom. Figure 4 shows the mounted detector and an anthropomorphic breast phantom 
used in experiments (Wearable Breast Self Examination, Anatomy Warehouse, Evanston, IL).

A 25 kHz (drive frequency, f 0 ) signal is produced by an NI USB-6363 DAQ console (National Instruments, 
Austin, TX), amplified by an AE Techron 7548 power amplifier (Elkhart, IN), and filtered by a custom high-power 
low-pass filter tuned to f 0 . The receive chain includes a tuning/notch filter (73 dB attenuation between 3f0 and f 0 ), 
low-noise preamplifier (Ithaco 1201, DL Instruments, Brooktondale, NY), and bandpass filtering 40–99.9 kHz 
(SR650, Stanford Research Systems, Sunnyvale, CA). Currently only the 3f0 frequency is recorded with the NI-
DAQ console. The drive field is pulsed in short bursts (48–72 ms), with pauses (300–450 ms) between to enable 
low duty cycle. The beginning of the received pulse can be discarded or the transmit pulse can be multiplied by 
a ramp function to mitigate transient effects. In either case, this transition period does not fully contribute to 
signal detection. Each data point recorded represents the 3f0 component of the received signal.

We make the assumption that SPIO can accumulate at the tumor with a rate of 0.12% ID/g tumor tissue (see 
“Tumor SPIO accumulation” section above) and that background SPIOs will be cleared, such that there is no 
SPIO signal from healthy tissue. Based on this assumption, a typical SPIO dose of 5 mg/kg Fe, and a 65 kg patient 
with a 1.35 mm diameter tumor with a density of 1 g/cm3 (that of water), the hand-held device must be capable 
of detecting 500 ng Fe. Detection of 200 ng Fe is needed to reveal a 1.0 mm diameter volume of residual tumor.

We present three proof-of-concept experiments. First is surface detection of varying concentrations of SPIOs 
(VivoTrax, Magnetic Insight, Alameda, CA) in 18 µL glass bulbs, containing 1 µg down to 100 ng Fe, moved to 
and away from the detector’s surface. A 0 ng Fe (DI H 2 O) control bulb ensures no false detection due to coil 
loading. Figure 5 shows the experimental setup. The raw acquired data has a baseline drift; to overlay the trials, a 
two-term exponential fit is subtracted from the time-series data in post-processing. Signal-to-noise ratio (SNR) 
is calculated as the mean of the difference in signal when the sample is at the detector’s surface vs. pulled away, 
divided by the standard deviation of the signal when the detector is pulled away.

The second experiment more directly mimicked the clinical setting, testing hand-held use in which the 
SPIO sample is stationary and the detector is moved to and away from it. Video of the experiment (as well as 
screen recording of the data control software) was acquired during the experiment. This video is provided in 
supplementary material S1.

For the third experiment, the SPIO samples (in glass bulbs) are embedded in the anthropomorphic breast 
phantom, and detection is demonstrated by holding the detector and moving it to and away from the breast 
phantom at the known locations of the samples. The samples (each 500 ng VivoTrax) were placed in two loca-
tions (one in the lower outer quadrant of the left breast, one in the upper inner quadrant of the right breast), to 
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vary both the material (gel/rubber vs. hard plastic) and surface curvature of the breast phantom, as these could 
affect coil loading and positioning. Finally, to verify the detection, the samples are removed and detection tested 
moving the detector to the same locations. Video and screen recording of data control software was acquired 
during the experimental procedure. These videos are available in supplementary materials S2 (sample in left 

Figure 3.  Hand-held MP detector. (a) A schematic of the coils and housing is shown on the far left, with coil 
A and B both wound on a single former, the center section of which extends to the copper tube to which is it 
mounted. The Tx windings are illustrated in red (as a cross-section), with water tubes wound around them. 
An aluminum cap shields the back end of the detector. Note the asymmetry of the coil positioning within the 
copper tube. Figure created using MS PowerPoint. The middle left photo shows the coils wound in water tubing 
(the black is tape). The middle right photo shows the Tx coil (coil A is covered in the thermally conductive, 
MPI-inert Al2O3 epoxy mixture, which had not yet been applied to coil B). The far right photo shows the Rx 
coil (gradiometer). (b) Finite element simulation (FEMM 4.285) of the Tx coils in copper tube at 25 kHz to show 
field-shaping effect of tube. Colormap shows H in A/m per 1 A current. (c) Custom simulation of detection 
sensitivity profile (Tx and Rx coils, no copper tube), using MATLAB (R2018b, https://www.mathworks.com/
products/matlab.html). Tx (red coil) simulated with 25 kHz 30 A pk field, SPIO model based on measured 
spectrometer data of VivoTrax (Magnetic Insight, Alameda, CA) nanoparticles. Colormap normalized to 1 
at center surface of detector (x, y, z) = (0, 0, 0). Iso-contour lines are shown with spacing 0.1, with the 0.3 line 
indicated.
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Figure 4.  MP detector mounted on moveable arm. Photos at two angles, one with the breast phantom and one 
without, are shown. The copper tube and aluminum cap are attached to an articulating arm made of anodized 
aluminum with three joints, enabling a wide range of motion so that the detector can be moved by hand to and 
from any desired positions. Water tubes and wires are visible and secured to the arm.

Figure 5.  Experimental setup for surface detection. A plastic stand holds the glass bulb SPIO samples, and the 
detector is positioned such that the samples are approximately at the center of the surface/end plane of the coils. 
The detector’s mounting arm can be tightened so that it stays in place. The holder can be moved up to and away 
from this position in a repeatable manner. Samples between 1 µg and 100 ng Fe are tested as well as a control 
bulb filled only with DI H 2 O (data shown in Fig. 6).
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lower outer quadrant location) and S3 (sample in right upper inner quadrant location). The person demonstrat-
ing hand-held use of the detector in Figs. 7, 8, and 9 and supplementary videos S1, S2, and S3 is E. Mattingly, 
second author. The person briefly in frame in supplementary videos S2 and S3 to remove the samples from the 
anthropomorphic breast phantom is E. E. Mason, first author. No human subjects, animals, or biological tissue 
samples were used in this work.

Results. Figure 6 shows the SPIO signal level with the sample placed at the detector’s surface and distant. 
The system is sensitive to 100 ng Fe with SNR 1.83 using a pulsed Tx signal of 72 ms and a 450 ms pause time. 
The 0 ng Fe phantom is not detectable (SNR < 1). The maximum depth at which the instrument can detect a 
500 ng sample with SNR = 2 can be inferred from the contour plots in Fig. 3c. Given that Fig. 6 shows detection 
of 500 ng at the surface of the detector with SNR = 6.5, we estimate that the maximum depth for 500 ng will be 
at approximately the 0.3 contour of Fig. 3c. This corresponds to a depth of ∼2.5 cm from the center of the coil’s 
surface.

Figure 7 shows results from the second experiment, in which the detector is moved by hand to and away 
from the stationary phantoms. Still frames from the video (see supplementary material S1) are included for two 
time points, t 1 , when the detector is held up to the sample, and t 2 , with the detector pulled away. The baseline 
drift can be seen in the time-series data.

Figure 6.  Surface detection results, sample moved. Samples of VivoTrax SPIOs (Magnetic Insight, Alameda, 
CA) of varying concentrations in 18 µL glass bulbs are moved to (gray shaded region) and away from (not 
shaded) the surface/end of the detector. The transmit field at the detector’s surface is 25 kHz, 14.3 mT peak, 
produced with 29.5 A peak current. This is pulsed in 72 ms bursts with a 450 ms pause time, for a 16% duty 
cycle. The first quarter of the received pulse is discarded to remove transient effects, for a total 54 ms received 
pulse every 450 ms, and each data point shows the magnitude of the 3f0 frequency component of the received 
pulse. Preamplifier gain is 500. In post-processing, a two-term exponential magnitude drift is removed in 
order to overlay the trials. DI water in the same glass bulb and plastic sample holder serves as an experimental 
control. A plot of the measured signal magnitudes (“avg sig diff ”) as a function of SPIO quantity can be found in 
supplementary figure S4 to illustrate the linearity of MPI signal with iron content.
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Figures 8 and 9 show detection of samples embedded in the anthropomorphic breast phantom in two loca-
tions (full videos available in supplementary materials S2 and S3, respectively). For the lower outer left breast 
location, when the sample is removed and the detector moved to that location, small perturbations in the baseline 
can be seen, indicating some coil loading or parasitic effects due to the proximity of (and/or physical contact 
with) the breast phantom (this can be seen in the orange shaded regions). For the upper inner right breast loca-
tion, no baseline perturbations are detectable.

Discussion. The detector is capable of detecting an estimated clinically relevant quantity of SPIO (100 ng Fe 
VivoTrax). Assuming tumor SPIO accumulation of 0.12% ID/g, the 100 ng Fe sample represents the expected 
accumulation in a 790 µm diameter tumor. The detector’s feasibility for hand-held intraoperative use is strongly 
supported by the experiments in which the detector is moved to and away from stationary samples (either in the 
plastic holder or the anthropomorphic phantom). The detector is held and moved with minimal compromising 
changes in the baseline signal and with no addition of noise, and it detects a 500 ng Fe sample embedded in dif-
ferent areas of the breast phantom with high sensitivity.

For one of the two sample locations in the breast phantom, a small baseline elevation is present when the 
sample is removed. Such false baseline perturbations, due to body-loading or parasitic effects, present a critical 
challenge for the detector’s functionality, as the detector has no ability to distinguish an elevated baseline from a 
true SPIO signal with its current acquisition and data processing paradigm. Additionally, we note a slow baseline 
drift. This is likely due to thermal effects, either in the Tx coil (thermal contact between the water tubing and the 
Tx coil has room for improvement), and/or in the capacitors of the Tx filter (these can have active temperature 
control in future developments). Baseline drift is problematic when it is fast compared to the rate at which the 
detector is moved to and away; for this application, the drift is relatively slow and so does not inhibit detection, 
and is shown here without post-processing such as baseline drift removal. For a clinical implementation, it would 
be beneficial to mitigate this effect as indicated above in hardware and/or in digital signal processing to further 
simplify data presentation to the clinician.

We also note that here, voltage amplitude was used as the metric for tracer detection; a more meaningful 
metric could be used in a clinical device, such as report of SNR or a statistical metric of expected false-positive 
confidence level. Overall, the results presented demonstrate that a single-sided hand-held MPI detector has the 

Figure 7.  Surface detection results, detector moved. Detection of a 500 ng Fe SPIO sample, for which the 
sample is stationary and the detector is moved by hand to and away from it. Shaded gray regions indicate when 
the detector is moved such that the sample is near its surface. A slow drift of a few mV in the baseline signal is 
apparent over the 2-min. time-series. For two time points, t 1 and t 2 , still frames from a video of the experiment 
are shown. (See supplementary material S1 for video.) Each data point is the magnitude at 3f0 of the FFT of a 
36 ms long time trace acquired during the application of a 48 ms long drive pulse. A 300 ms pause follows each 
48 ms drive pulse. Tx amplitude is 14.3 mT peak, produced with 29.5 A peak current. Rx chain includes Ithaco 
1201 preamp with G = 500 and SR650 band-pass filtering 40–99.9 kHz. No post-processing used.
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potential for use as a fast intraoperative device, with the sensitivity and stability for detection of small quantities 
of residual tumor.

Lumpectomy specimen imaging with small‑bore scanner
Materials and methods. The MPI scanner for intraoperative specimen imaging is envisioned as a compact 
and portable tabletop or cart-mounted system that can be placed in the operating room and produce fast 3D 
images of the spatial distribution of SPIOs in the excised tissue. We test a small-bore, mechanically rotated 2D 
field-free line (FFL) permanent magnet-based imager for this purpose. The imager was previously  described31,32, 
and design details and specifications are available open source at https://os-mpi.github.io/33.

A schematic and photo of the imager are shown in Fig. 10a and b, respectively. Rare earth NdFeB permanent 
magnets (PMs) produce the FFL along y′ (primed axes referring to a mechanically-rotating coordinate system) 
and electromagnet (EM) shift coils (diamond-shaped, circumscribing the PMs) sweep the FFL across the projec-
tion axis, x′ . The FFL is produced by permanent magnets (two 2” x 2” x 16” N48), and has a measured gradient 
strength of 2.83 T/m. The EM shift coils are each 250 turns of 14 AWG magnet wire, water-cooled, and produce 
a 1.31 mT/A field. A 30 A peak current sweeps the FFL across a ∼3 cm field of view (FOV).

A copper tube bore is stationary in the (x, y, z) frame and houses the transmit and receive coils. The PM and 
EM hardware is mechanically rotated about the bore by a motor to acquire 1D projections at multiple angles, 
using slip rings to enable continuous rotation (rather than having to change rotation directions to avoid twisting 
wires). The transmit/receive coils and signal chain are similar to that of the MP detector, with a bore diameter 
of 5 cm. The drive coil is a 12 cm long solenoid with two 41-turn layers of 16 AWG Litz wire (New England 
Wire). It has L = 195 µH and produces 0.62 mT/A at the center of the imaging FOV (2 cm from end of coil). A 
gradiometer receive coil is epoxied concentrically inside the drive coil. Its two oppositely wound 20 AWG Litz 
wire coils (4 cm long, 66 turns each, 4 cm separation) provide first-order drive cancellation. The signal chain 
utilizes a NI DAQ console and a drive frequency of f 0 = 25 kHz. This signal is amplified by an AE Techron 7548 
power amplifier, and filtered by a custom high-power low-pass filter tuned to f 0 . On the receive side, a custom 
tuning/notch filter provides a measured 60 dB attenuation between 3f0 and f 0 , followed by further low-noise 
amplification (Ametek Signal Recovery 5113, Scientific Instruments, Berwyn, PA) and bandpass filtering (SR650, 
Stanford Research Systems).

A typical image acquisition sweeps the FFL with either a triangular or sinusoidal shift waveform and acquires 
27 projections covering 180◦ with 66 readouts per projection and 150 cycles of the 25 kHz transmit field per read-
out. The projections are then reconstructed to form a 2D image utilizing a model-based preconditioned conjugate 

Figure 8.  Breast phantom detection results, detector moved, left breast lower outer quadrant. Detection of a 
500 ng Fe SPIO sample embedded in the anthropomorphic breast phantom in the lower outer quadrant of the 
left breast. The detector is held by hand and moved around during data acquisition to and away from the breast 
at the sample’s location. Four time points (t1–t4 ) are selected to show still frames from a video of the experiment. 
(See S2 for video.) The SPIO sample (in glass bulb) is removed from the breast phantom at data point 855 (thick 
green dashed line). The acquisition scheme, receive chain setup, and data analysis are the same as described in 
the caption of Fig. 7.
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gradients minimization; this method uses a numerical model of the FFL smeared by a Gaussian (empirically 
determined σ = 1.5 mm), which is swept and rotated according to the measured shift current and rotation angle. 
This accounts for the sensitivity width as well as imperfections in shift current and angular position, which are 
not represented in a simple iradon transform. 3D imaging can be enabled by mechanically translating the object 
(e.g. excised specimen) along the bore (z axis). Figure 10c illustrates the transmit and receive coils positioned 
inside the copper tube, with the breast specimen positioned inside the first half of the gradiometer receive coil 
(the z location of the FFL and location of imaging slice).

The imager can produce 2D images in down to 2.9 s; this temporal resolution is not a lower bound, as the 
system can rotate and image faster than this. However, image speed comes at the expense of SNR and further 
temporal resolution improvement is unnecessary for this intraoperative application. Spatial resolution in MPI 
is dependent on SPIO properties and gradient strength; this imager’s spatial resolution has been estimated to 
be ∼2–3 mm for VivoTrax. The imager is sensitive to 100 ng Fe (VivoTrax) (in a 3 mm bulb) in a 5 s image with 
SNR = 5.

We developed and 3D printed “lumpectomy specimen” phantoms, in which the healthy tissue of the excised 
specimen is the 3D printed plastic (no SPIOs), and the “tumor” is a cavity filled with a chosen SPIO concentration 
relevant for passive accumulation rates. Based on specimen and tumor sizes found in the  literature91–94 and the 
imager’s ∼3 cm field of view, the phantoms are designed with specimen diameter of ∼1.6 cm and tumor diameter 
∼6.5 mm, with two 2.5 mm fiducials. The phantom is a 5 mm-thick 2D slice for simplicity and proof-of-concept. 
The arbitrarily shaped “tumor” is filled with a 0.5 mg/mL Fe solution for a total of 51.2 µg Fe. Assuming a 5 mg/
kg dose and 65 kg patient, this corresponds to tumor accumulation of 0.154% ID/g. The fiducials are filled with 
undiluted VivoTrax and each contains 61.1 µg Fe. A margin is considered positive/close if the tumor is ≤ 1 mm 
from the inked surface, and negative if > 1 mm from the  surface92,93. Three versions of the lumpectomy speci-
men phantoms are developed: a negative margin in which the tumor is centered and ≥ 3.8 mm from the margin, 
and two positive margin phantoms in which the tumor is as close to the edge as feasible with 3D printing ( ∼
0.8–0.9 mm), one of which has the tumor far from the fiducials and the other close to the fiducials to ensure 
the fiducial-tumor proximity does not produce artifacts. Photos of the three phantoms are shown in Fig. 11a.

Results. Figure 11b shows MPI images of the three “lumpectomy specimen” phantoms, each acquired in 
10.7 s. In Fig. 11c, these are shown overlaid onto the optical images of the phantoms using the fiducial locations. 
By measuring the distance between the tumor edge and the specimen margin, all three images are classified cor-

Figure 9.  Breast phantom detection results, detector moved, right breast upper inner quadrant. Detection 
of a 500 ng Fe SPIO sample embedded in the anthropomorphic breast phantom in the upper inner quadrant 
of the right breast. The detector is held by hand and moved around during data acquisition to and away from 
the breast at the sample’s location. Four time points (t1–t4 ) are selected to show still frames from a video of the 
experiment. (See S3 for video.) The SPIO sample (in glass bulb) is removed from the breast phantom at data 
point 1016 (thick green dashed line). The acquisition scheme, receive chain setup, and data analysis are the same 
as described in the caption of Fig. 7.
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rectly to their respective margin types (positive/negative) and provide visual information for the location of the 
tumor within the specimen.

Discussion. Imaging of phantoms representative of excised breast specimens is demonstrated with high sen-
sitivity and with 10.7 s imaging times, fast enough for intraoperative application, and fiducial coregistration is 
utilized to show tumor location and proximity to margins. The differing intensities between the fiducials is most 
likely due to imperfect fiducial shape/filling/sealing of the 3D printed wells in these phantoms, since the 3D 
printer does not always print repeatable small cylindrical wells. Also, the lower fiducial in the negative margin 
phantom appears to have a small air bubble. Even with this MPI scanner with spatial resolution ∼2–3 mm, 
points closer can still be distinguished given sufficient SNR by locating the centers of their overlapping point 
spread functions. Ultimately, increased gradient strength will be desired to improve spatial resolution for clinical 
application.

To be useful in a clinical setting, the MPI must be extended to imaging a full 3D volume. With a 2D FFL 
scanner like the one used here, this can be done by imaging multiple 2D planes as the sample is moved through 
the bore by a motorized bed. In this process, out-of-slice imaging artifacts must be addressed by either a 3D 
model-based reconstruction or further encoding along the bore. These approaches have been demonstrated in 
x-space36,95 or system  matrix96 reconstructions. To assess the degree to which the detected nanoparticles near the 
surface of the specimen, it is important to have 3D knowledge of the surface location. Since disease-free tissue is 
free of nanoparticles and thus invisible to MPI, this requires a second co-registered imaging modality. Since only 
the surface location is needed, this could be readily supplied by a 3D optical surface  scanner97,98 prior to insertion 

Figure 10.  Small-bore imager. (a) Schematic of imager, showing the permanent and electromagnet hardware 
(permanent magnets and shift coils) which rotates about the copper tube bore with the illustrated (x′, y′, z) 
coordinate system. Figure made using MATLAB (R2018b, https://www.mathworks.com/products/matlab.
html). (b) Photo of the imager. The permanent magnets are in an ABS plastic housing, the diamond-shaped 
shift coils are covered by copper tubing for water cooling (fitted in a milled aluminum plate), and the large gear 
(3D printed plastic) used to rotate the hardware can be seen behind them. (c) The Tx coil (red) and gradiometer 
Rx coil (black) are illustrated within the copper tube; the tube axis is along z. A dashed blue line indicates the 
imaging plane, i.e., the location of the FFL. The object to be imaged (excised breast specimen), is positioned in 
the first of the two gradiometer coils. Figure created with MS PowerPoint and MATLAB (R2018b, https://www.
mathworks.com/products/matlab.html).
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in the MPI. The results in Fig. 11 show this registered with 2D optical images as opposed to 3D. Alternatively, 
the surface information could be provided by a combined MPI/CT99 or MPI/MRI  scanner100.

Conclusion
For the clinical need of improved intraoperative margin assessment in BCS, we propose a two-part MPI solu-
tion involving a hand-held MP detector and a small-bore MPI imager, used along with an injected SPIO agent 
as a tumor marker. MPI offers high sensitivity detection and imaging with fast acquisition times, and can both 
detect residual SPIO in the excision cavity as well as image its spatial distribution on the removed specimen. 
With these features, MPI can be used iteratively during surgery to better achieve complete tumor removal and 
thus a higher likelihood of negative margins. Both proposed hardware systems are designed, constructed and 
validated in phantoms.

Figure 11.  Lumpectomy specimen phantoms, MPI images, and co-registration. (a) Optical images of 
lumpectomy specimen phantoms. The “tumor” is a cavity with a maximum diameter of ∼6.5 mm filled with 
0.5 mg/mL VivoTrax (51.2 µg total Fe quantity). The fiducials are 1.75 mm diameter cylinders filled with 
undiluted (5.5 mg/mL) VivoTrax (61.1 µg total Fe quantity). The “healthy tissue” is 3D print material containing 
no SPIOs. Negative margin is defined as tumor > 1 mm from specimen’s surface; positive margin is defined as 
tumor ≤ 1 mm from surface. (b) Each MPI image is acquired in 10.7 s using a triangular-waveform shift field 
with 27 projections, 66 readouts per projection, and 150 Tx cycles per readout. Receive chain has total G = 1000. 
Image reconstructed with model-based preconditioned conjugate gradient recon. Each MPI image is scaled to 
its individual maximum. (c) MPI images from (b) are co-registered with the optical images of the phantoms 
from (a) using the fiducial locations. The distances between the tumor edge and the specimen margin are 
measured (using the Distance Tool in MATLAB (R2018b, https://www.mathworks.com/products/matlab.html)), 
correctly classifying the specimen phantoms as negative or positive.
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The hand-held detector is demonstrated to have clinically relevant sensitivity (down to 100 ng Fe, represent-
ing a 790 µm diameter tumor), as well as stable and reproducible hand-held use for samples embedded in an 
anthropomorphic breast phantom. This demonstrates its ability to detect small volumes of residual tumor tissue 
in the breast after initial specimen excision.

A small-bore 2D FFL projection imager is developed with a 5 cm imaging bore, 2.83 T/m gradient field, and 
3 s temporal resolution with the ability to image continuously. The imager is sensitive to 100 ng Fe (VivoTrax) 
(in a 3 mm bulb) in 5 s with SNR of 5, and has spatial resolution ∼2–3 mm. We demonstrate imaging of phan-
toms representative of excised breast specimens, showing tumor location and proximity to margins with high 
sensitivity and with 10.7 s imaging times, fast enough for intraoperative use. This serves as a proof-of-concept 
demonstration of MPI’s potential for fast imaging of excised specimens with relevant tracer levels. Combined 
with a 3D optical surface scan or other co-registered structural imaging modality, small-bore MPI may be able 
to determine the distance between tumor and specimen surface and thus provide a timely margin assessment to 
the surgeon. Together with the hand-held detector, this work demonstrates the potential for MPI as a clinically 
realizable solution to the problem of positive margins in breast-conserving surgery.
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