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Abstract

Despite the power of path sampling strategies in enabling simulations of rare events,

such strategies have not reached their full potential. A common challenge that remains

is the identification of a progress coordinate that captures the slow relevant motions of

a rare event. Here we have developed a weighted ensemble (WE) path sampling strat-

egy that exploits reinforcement learning to automatically identify an effective progress

coordinate among a set of potential coordinates during a simulation. We apply our WE

strategy with reinforcement learning to three benchmark systems: (i) an egg carton-

shaped toy potential, (ii) an S-shaped toy potential, and (iii) a dimer of the HIV-1

capsid protein (C-terminal domain). To enable rapid testing of the latter system at the

atomic level, we employed discrete-state synthetic molecular dynamics trajectories using

a generative, fine-grained Markov state model that was based on extensive conventional

simulations. Our results demonstrate that using concepts from reinforcement learning

with a weighted ensemble of trajectories automatically identifies relevant progress co-

ordinates among multiple candidates at a given time during a simulation. Due to the

rigorous weighting of trajectories, the simulations maintain rigorous kinetics.
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Introduction

Path sampling strategies are a powerful class of advanced simulation methods for enhancing

the sampling of pathways for rare, barrier-crossing events such as protein (un)folding and

(un)binding with rigorous kinetics.1 Prominent examples of path sampling strategies include

transition path sampling,2,3 transition interface sampling,4 forward flux sampling,5 mile-

stoning,6 and the weighted ensemble strategy.7,8 A major challenge faced by path sampling

and many other enhanced sampling methods9–11 is the identification of a progress coordinate

(also commonly referred to as a reaction coordinate or collective variable), which captures

the slowest relevant motion of the barrier-crossing process.12 The process of identifying a

progress coordinate often involves a substantial amount of trial-and-error, testing different

hypotheses of slow relevant coordinates. Furthermore, the relevant progress coordinate is

likely to change at later stages of a multi-step process.

Another class of enhanced sampling methods that requires the identification of progress

coordinates is adaptive sampling.8,11,13,14 These strategies involve running a large number of

trajectories in parallel and replicating (splitting) trajectories at regular short time intervals

according to a scoring metric and have been applied in the context of the Folding@home dis-

tributing computing project.15 In contrast to path sampling strategies, however, trajectories

generated by adaptive sampling do not directly yield rigorous rates13 and must be combined

with the construction of either Markov state models (MSMs)14,16–18 or generalized master-

equation-based models19,20 to estimate rates and other long-timescale observables such as

state populations. Adaptive sampling strategies can be broadly classified into Markov state

model (MSM)-based and machine learning (ML)-based methods. MSM-based methods such

as least-count adaptive sampling are useful for the exploration of configurational space.21

ML-based methods such as reinforcement learning (RL)-based methods are useful for balanc-

ing the exploration of configurational space with exploitation of pathways towards a target

state and have been used to identify effective progress coordinates among multiple candi-

dates on-the-fly while running the simulation.13 Examples of RL-based adaptive sampling
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methods include FAST,22 AdaptiveBandit,23 TSLC,24 and REAP.25

Inspired by adaptive sampling efforts, we present here a weighted ensemble (WE) path

sampling strategy that employs reinforcement learning (WE-RL) to automatically identify

an effective progress coordinate during a simulation. Rather than applying ML to learn the

progress coordinate from the atomic coordinates of sampled conformations,12,26–28 our WE-

RL method employs the strategy of periodically identifying the most effective coordinate

among multiple proposed candidates during a simulation.29–31 WE path sampling is a "split-

ting strategy" like adaptive sampling where promising trajectories are replicated at regular

short time intervals. In contrast to adaptive sampling, WE sampling involves the rigorous

assignment of statistical weights to the trajectories to ensure that no bias is introduced

into the dynamics, enabling direct calculations of rates from the simulations themselves.

While the progress coordinate for WE simulations is typically divided into bins, our WE-RL

method involves a "binless" framework in which conformations are automatically clustered

by similarity along the progress coordinate at periodic intervals, circumventing the need to

manually position bins.

To demonstrate the power of our RL-based WE method, we focus on three benchmark

systems: (i) an egg carton-shaped toy potential to test exploration of unknown regions,

(ii) an S-shaped toy potential to test the generation of pathways toward a target state,

and (iii) a dimer of the HIV-1 capsid protein (C-terminal domain) to test conformational

sampling of an atomistic system. To enable rapid testing of the latter, we ran discrete-

state synthetic molecular dynamics trajectories that were propagated using a generative,

fine-grained Markov state model based on extensive conventional MD simulations.

Theory

In this section, we outline key features of the weighted ensemble (WE) strategy and then

present an adaptation of this approach that utilizes reinforcement learning (WE-RL) to sam-
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ple underexplored regions of phase space. As a step towards developing our WE-RL method,

we first adapted the WE strategy to utilize least-count sampling (WE-LC), another feature

besides reinforcement learning that was inspired by efforts involving adaptive sampling of

free energy landscapes.21,32,33

The Weighted Ensemble Strategy

The weighted ensemble (WE) strategy involves running a large number of weighted tra-

jectories in parallel and iteratively applying a resampling procedure to efficiently generate

region-to-region transitions toward a target state.7,8,34 Typically, regions are defined as bins

along a progress coordinate that is intended to capture the slowest relevant motion of the

process of interest. The resampling procedure is applied at short fixed time intervals τ with

the goal of evenly distributing trajectories along the progress coordinate by maintaining an

equal number of trajectories per bin. To achieve this goal, the procedure replicates (split-

ting) trajectories that transition to a less-visited bin and occasionally terminates (merging)

trajectories that occupy a more frequently-visited bin. Importantly, trajectory weights are

rigorously tracked such that no bias is introduced into the dynamics, enabling direct calcu-

lations of rates.

The methods below exploit a key feature of the WE strategy: trajectory weights are

independent of the progress coordinate such that the progress coordinate (and bin positions)

can be switched on-the-fly during a simulation. While the original WE strategy involves

the use of bins along a progress coordinate, the strategy can also be adapted for a "binless"

framework35 in which clusters of conformations instead of bins are used to guide the WE

resampling procedure. Below, we present the use of a binless framework for a least-count WE

sampling (WE-LC) method and a reinforcement learning-based weighted ensemble (WE-RL)

method. For both of these methods, the number of generated clusters is tunable. If no input

is provided, the number of clusters will be determined using a heuristic function.24
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Least-Count Sampling with Weighted Ensembles of Trajectories

Our least-count weighted ensemble sampling method (WE-LC) involves periodically apply-

ing a clustering procedure such as k-means during a simulation, splitting trajectories in

lower-count clusters and merging trajectories in higher-count clusters. We outline the steps

of the WE-LC workflow below.

1. Initiate multiple weighted trajectories.

2. Run dynamics of the ensemble in parallel for a fixed time interval τ .

3. Cluster across all candidate progress coordinates of the trajectories in the current WE

iteration using k-means clustering, generating the cluster set C, where each individual

cluster c ∈ C.

4. Sort the resulting clusters based on member counts.

5. Split within the low count cluster(s) and merge within the high count cluster(s), main-

taining a constant number of trajectories per WE iteration.

6. Repeat steps 2-5 for N WE iterations.

Reinforcement Learning with Weighted Ensembles of Trajectories

Our reinforcement learning-based WE strategy (WE-RL) involves the periodic application

of reinforcement learning25 to identify the most effective progress coordinate among multiple

candidates at a given time during a simulation. From RL, we use the concept of a sampling

"policy" π, which maps an agent’s "state" (S) within the environment to an "action" (A):

π : S → A. The RL definition of state should not be confused with the biophysical defini-

tion referring to protein conformational states. In our implementation, we seek to identify a

sampling policy which is dependent on a corresponding set of K progress coordinates (πK ,
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K = {θ1, θ2, . . . , θk}), where the agent is the ensemble of weighted trajectories, the state is

the current set of progress coordinate data available for the current WE iteration, and the

action is the trajectory resampling procedure.

Our WE-RL workflow involves steps 1-4 in the WE-LC workflow with the following additional

steps.

5. Select a subset of the lowest count clusters where CLC ⊂ C. Selecting a subset of low

count clusters ensures that the worst this algorithm performs should still be comparable

to least-count adaptive sampling.21

6. Set the weight wi for each θi ∈ K, where wi ∈ [0, 1]. Weights for each progress

coordinate can be set ahead of time, and otherwise will default to 1/k, where k is the

total number of progress coordinates for the sampling policy πK .

7. Given the set of K progress coordinates for policy πK , calculate the reward for each

cluster, noting that cj ∈ CLC .

rK(cj) =
k∑

i=1

wS
i

| (θi(cj)− ⟨θi(C)⟩ |
σi(C)

(1)

Where wS
i represents the weight of each progress coordinate for the state space S, θi(cj)

is the progress coordinate calculated for cluster cj, ⟨θi(C)⟩ is the arithmetic mean of

θi for all c ∈ C, and σi(C) represents the standard deviation of θi for all c ∈ C.

8. We then calculate the cumulative reward:

R(CLC) =

|CLC |∑
j=1

rK(cj) (2)

Where the sum is over each element in the least-count cluster set (CLC).

9. Equation 2 is maximized using the Sequential Least SQuares Programming (SLSQP)
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method in SciPy36 to optimize the contribution of each progress coordinate weight

(wS
i ). The following conditions were enforced as constraints during the optimization

process:
∑

iwi = 1 and | wt−1
i − wt

i |≤ δ, ∀i, where 0 < δ < 1 and t represents

the current WE iteration while t − 1 represents the previous WE iteration. In short,

the progress coordinate weights always sum to 1 and the δ parameter prevents the

progress coordinate weights from changing drastically. Using the updated weights,

step 7 is repeated to calculate the updated reward values of each cluster.

10. We then split the trajectories within clusters with the highest reward, while merg-

ing the trajectories in the highest count cluster(s), maintaining a constant number of

trajectories per WE iteration.

11. Repeat steps 2-10 for N WE iterations.

Methods

Weighted Ensemble Simulations

All WE simulations were carried out using the open-source and highly scalable Weighted En-

semble Simulation Toolkit with Parallelization and Analysis (WESTPA) 2.0 software pack-

age.37 WE simulations were performed in a non-equilibrium steady-state ensemble, where

trajectories that reached the target state were "recycled" back to the initial state while

maintaining the same trajectory weight. WE data analysis and plotting was done using the

WEDAP package.38 Based on the Hill relation,39,40 rate constants were calculated from the

probability flux into the target state by tracking the total weight among successful (recycled)

trajectories per unit time.
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Conventional Simulations

To assess the advantage of periodically applying the WE resampling procedure, a compa-

rable number of trajectories were run in parallel using conventional simulations (without

resampling) as a reference set. For example, for a custom binless WE simulation with 80

trajectories, the reference set consisted of 80 conventional trajectories.

An Egg Carton-shaped Toy Potential

The egg carton-shaped potential consists of a series of low-energy wells separated by modest

energy barriers (Figure 1.A). The potential in one dimension is defined as:

V (x) =
−1

exp (x
2
)− 1

· cos (π · x) (3)

This potential was used with both the X and Y positions to create a two-dimensional

egg carton-shaped potential, and dynamics were propagated using the overdamped Langevin

equation:

X(t+ δt) = X(t)− δt

γ
∇XV + δXG (4)

where γ is the friction coefficient, δt is the time step, and δXG is a random displacement

with zero mean and variance 2γkBTδt with δt = 5 · 10−5 and reduced units of γ = 1 and

kBT = 1. Reflecting boundaries were placed at -10 and 0 in both the X and Y dimensions and

WE simulations were run with a dynamics propagation interval (τ) of 20 integrator steps per

iteration. All simulations were initialized with X and Y positions at -9.5 and recycling was

carried out once a trajectory reached the target state past -1.5 in both X and Y positions.

For the one-dimensional rectilinear WE binning scheme, 4 bins were positioned along

the Y dimension at -7, -5, and -3 with a target of 20 trajectories per bin. For the two-

dimensional WE binning scheme, 24 bins were symmetrically positioned along both the X

and Y positions at -7, -5, -3, and -1.5, with a target of 4 trajectories per bin. For the reference
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set of conventional simulations and the binless WE methods, 80 trajectories were maintained

throughout the simulation. Each WE simulation method was run for 5 independent trials.

The conventional simulations were run for a length equivalent to 5000 WE iterations to

ensure convergence in the estimated rate constant. The WE-1D, WE-2D, WE-LC, and

WE-RL simulations were each run for 2000 WE iterations.

An S-shaped Toy Potential

The S-shaped toy potential consists of a pathway that "snakes" along small-to-medium sized

barriers and meta-stable intermediate states (Figure 2.A), defined as:

V (x, y) =
x4 + y4

20480
− 3 · exp

(
−0.01 · (x+ 5)2 − 0.2 · (y + 5)2

)
− 60 · exp

(
−0.003 · (x− 5)2 − 0.2 · (y − 5)2

)
− 35 · exp (−0.075 · (x+ 3 · (y − 3)2))

1 + exp(−x− 3)

+ 50 · exp (−0.2 · (x+ 3 · (y + 3)2))

1 + exp(x− 3)

+ 16 · exp
(
−0.01 · (x2 + y2)

)
(5)

Dynamics propagation was carried out using the OpenMM dynamics engine,41 where each

individual simulation consisted of a single particle with a mass of 1 AMU. Each simulation

was run at a temperature of 300 K with a friction coefficient of 1 ps-1 using a Langevin

integrator. Simulations were initialized at X and Y positions of -15. All WE simulations

used a resampling time interval (τ) of 20 integrator steps. To reach a non-equilibrium steady

state, trajectories were recycled back to the initial state positions after reaching X and Y

values greater than 10.

For both the binless WE methods tested and the corresponding reference set of conven-

tional simulations, the total number of trajectories was maintained at 80. As another point

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2024. ; https://doi.org/10.1101/2024.10.09.617475doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.09.617475
http://creativecommons.org/licenses/by-nc-nd/4.0/


of reference, WE simulations were carried out using two different binning approaches. The

first approach used a one-dimensional binning scheme (WE-1D) with 10 bins placed along

the X position at intervals of 5 from -20 to 20 with a target of 8 trajectories per bin. The

second approach involved a two-dimensional binning scheme (WE-2D) where 6 bins were

positioned along both the X and Y positions at intervals of 10 from -20 to 20, yielding a

total of 36 bins and a target count of 4 trajectories per bin.

For each resampling scheme, five independent WE simulations were run. The reference set

of conventional simulations was run to a length that was equivalent to 10000 WE iterations

to ensure convergence of the reference rate constant. The WE-1D, WE-2D, WE-LC, and

WE-RL simulations were each run for 2000 WE iterations.

Synthetic Molecular Dynamics of a HIV-1 Capsid Protein Dimer

A fine-grained Markov state model was constructed using ∼90 µs of conventional MD simu-

lations of the HIV-1 capsid protein C-terminal domain dimer, a 100-ps MSM lag time τ , and

a non-standard, stratified clustering scheme to better preserve kinetic properties at shorter

lag times.42 Discrete-state synthetic molecular dynamics trajectories were propagated along

a Markov chain using the Markov state model, as implemented in the Synthetic Dynamics

(SynD)42 Python package. At each τ , each microbin was back-mapped to representative

structure of that microbin in a multi-dimensional progress-coordinate space, which was de-

fined using the following six features: (i) orientation angle 1, (ii) orientation angle 2, (iii)

T188-T188 distance, (iv) C2 angle, (v) the W184 χ1 angle of monomer 1, and (vi) the W184

χ1 angle of monomer 2. Simulations began at the correspondingly ordered progress coordi-

nate values of (i) 39.8°, (ii) 42.7°, (ii) 15.3 Å, (iv) 70.6°, (v) 173°, and (vi) 176°. Trajectories

were recycled upon reaching the target state, which was defined by both orientation angles

being less than 10°, the T188-T188 distance being less than 5 Å, the C2 angle being greater

than 40°, and the W184 χ1 angles being between -95° and -40°. Trajectories were propagated

1 step for each WE iteration, which corresponds to the MSM lag time of 100 ps.
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For our binned WE simulation scheme, 10 bins were placed along the T188-T188 distance

in 1 Å intervals from 5 to 14 Å with a target of 8 trajectories in each bin. The WE-LC and

WE-RL methods were run with 80 trajectories per iteration and the following four progress

coordinates: orientation angle 1, orientation angle 2, T188-T188 distance, and the C2 angle.

Min-max scaling of input progress coordinates was carried out to ensure that different ranges

of input progress coordinates were clustered with equal contributions. Overall, 5 independent

WE simulations using a binned WE approach, the WE-LC method, and the WE-RL method

were run for 2,000 WE iterations each (∼0.24 ms of aggregate "synthetic" simulation time).

The reference rate constant estimate was obtained directly from the MSM transition matrix,

where the mean first passage time was 3.83 µs.

Results and Discussion

We first examined the performance of our modified WE methods with two toy potentials: (i)

an egg carton-like potential with small barriers and wells symmetrically distributed along the

X and Y dimensions (Figure 1.A) to test the efficiency of general phase space exploration,

and (ii) a narrowing, S-shaped potential where regions outside of the "S" shape are out of

reach (Figure 2.A), thus testing the ability of our WE algorithms to find and exploit a single

pathway to a target state. Finally, we explore a more realistic molecular system by sampling

alternate dimer orientations of the HIV-1 capsid protein C-terminal domain (CTD) using

synthetic MD trajectories (Figure 3.A).

Exploration: Simulations using an Egg Carton-shaped Potential

Using an egg carton-shaped potential (Figure 1.A), we compared WE simulations using bins

in either one or two dimensions with our binless WE-LC and WE-RL methods. For the

former, we binned in only one dimension to represent a "bad" choice of progress coordinate

(neglecting movements in the second dimension), while the two-dimensional binning scheme

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2024. ; https://doi.org/10.1101/2024.10.09.617475doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.09.617475
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. B.

C. D.

Figure 1: The performance of various WE simulation schemes along an egg carton-like toy
potential. (A) The egg carton-shaped potential energy function from a two-dimensional
version of Equation 3. The initial and target states are marked by a white circle and a
white X, respectively. (B) Rate estimates of each WE simulation scheme, compared to the
conventional, parallel dynamics reference rate (dashed, horizontal black line). Uncertainties
for each scheme were calculated using Bayesian bootstrapping43 and 95% credibility regions
are shown in translucent coloration. (C) Evolution of progress coordinate weights during the
WE-RL simulations, where the average (solid lines) and one standard deviation (translucent
fill) are shown. (D) The amount of successfully recycled trajectories over time for each
sampling scheme. The identities of each line are the same as depicted in the legend on panel
(B).

is ideal for exploring the entire potential. Typically, not all degrees of freedom in a simulation

system are known a priori. Therefore, in the case of the two-dimensional binning example,

we anticipated it would perform more efficiently than our binless WE methods. Indeed,

both WE-LC and WE-RL outperformed WE simulations using the one-dimensional binning

scheme. However, they under-performed compared to WE simulations employing the ideal

two-dimensional binning scheme, specifically in terms of yielding a converged rate estimate

that was comparable to the reference rate from extensive conventional simulations (Figure

13
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1.B) and the amount of successful events (Figure 1.D).

For the goal of exploration, WE-LC and WE-RL performed similarly, likely due to the

purely exploration-based sampling process, where adaptive sampling has previously been

shown to be highly efficient.21,32,33 For the egg carton potential, the WE-RL method main-

tains equal importance contributions to both the X and Y progress coordinates (Figure 1.C),

which is logical considering the symmetry of the potential. Thus, as expected, the general

task of symmetric phase-space exploration did not benefit from the exploration/exploitation

balance of the WE-RL method.

Exploitation: Simulations using an S-shaped Potential

Using a narrowing S-shaped potential (Figure 2.A), we compared the ability of binned WE

simulations with our binless WE methods for exploiting the S-shaped pathway. We again use

a one-dimensional binning scheme to represent a "bad" choice of progress coordinates and a

two-dimensional binning scheme to present a "good" choice of progress coordinates. We find

that the one-dimensional binning scheme performs poorly as expected, the WE-LC and WE

simulations with two-dimensional binning perform similarly in rate constant convergence

(Figure 2.B) and number of successful events (Figure 2.D), and the WE-RL simulations are

able to perform on par with the two-dimensional binning scheme simulations in terms of rate

constant convergence, while being able to sample more early transition events.

For the task of path exploitation, WE-RL performed better than WE-LC and the binned

WE simulation schemes. WE-RL simulations were shown to place more importance on

the Y dimension of the progress coordinate over time (Figure 2.C), which may correlate to

the presence of the highest barrier being in the Y dimension (Figure 2.A). When sampling

along a single pathway, the balance of exploration and exploitation provided by the WE-RL

algorithm may have an advantage compared to the other WE simulation schemes.
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A. B.

C. D.

Figure 2: The performance of various WE simulation schemes for simulating an S-shaped
pathway. (A) The S-shaped potential energy function (Equation 5). The initial and target
states are marked by a white circle and a white X, respectively. (B) Rate estimates of
each WE simulation scheme, compared to the conventional, parallel dynamics reference
rate (dashed, horizontal black line). Uncertainties for each scheme were calculated using
Bayesian bootstrapping43 and 95% credibility regions are shown in translucent coloration.
(C) Evolution of progress coordinate weights during the WE-RL simulations, where the
average (solid lines) and one standard deviation (translucent fill) are shown. (D) The amount
of successfully recycled trajectories over time for each sampling scheme. The identities of
each line are the same as depicted in the legend on panel (B).

Conformational Dynamics of the HIV-1 Capsid Protein Dimer

The HIV-1 capsid protein (CA) self-assembles into the mature viral capsid, which is crucial

for successful host cell infection and encapsulates the viral RNA genome within a flexi-

ble hexameric lattice, enclosed at the ends of the ovoid by pentameric subunits.44,45 The

flexibility of the capsid is attributable to the CA, which connects adjacent hexameric and

pentameric subunits along the inside of the core through dimerization of the CA-CTD. We

previously explored the multi-state ensemble of the CA-CTD dimer (Figure 3.A) through
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Figure 3: The performance of various WE simulation schemes for conformational sampling
of the HIV-1 capsid protein CTD dimer. (A) Representative states of the capsid protein
CTD dimer. (B) The pathway of interconversion between states 1, 2, and 3 along two
candidate progress coordinates. (C) Rate estimates of each simulation scheme, compared
to the reference rate from the MSM (dashed, horizontal black line). Uncertainties for each
scheme were calculated using Bayesian bootstrapping43 and 95% credibility regions are shown
in translucent coloration. (D) Early evolution of progress coordinate weights during the
WE-RL simulations, where the average (solid lines) and one standard deviation (translucent
fill) are shown for all four progress coordinates. (E) The amount of successfully recycled
trajectories over time for each sampling scheme.

19F NMR experiments and an extensive set of both WE and conventional MD simulations

(unpublished), identifying a set of progress coordinates to describe the flexibility of the dimer

interface. The ∼90 µs of WE simulation-seeded conventional MD simulations from our pre-

vious study were used to build an MSM of the CA-CTD dimer with discrete transitions
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between multiple dimer states. Using this MSM, we generated "synthetic" trajectories42 of

the CA-CTD dimer, to test our modified WE algorithms by sampling the transition from

state 1 to state 3 (Figure 3.B).

We compared the ability of WE-LC and WE-RL to sample the CA-CTD dimer interface

using multiple candidate progress coordinates against a binned WE simulation with a single

progress coordinate. The WE-LC and WE-RL simulations used a four-dimensional progress

coordinate consisting of orientation angles 1 and 2, the T188-T188 distance, and the C2

angle, while the binned WE simulation used just the T188-T188 distance, which we have

previously shown to be a "good" progress coordinate that describes the entire ensemble

of dimer states (unpublished). We found that while WE-LC simulations captured events

faster than conventional MD (cMD), both binned WE and WE-RL simulations recorded

more transition events (Figure 3.C) and achieved faster convergence of rate constants to

the reference MSM rate (Figure 3.E) compared to both cMD and WE-LC. Notably, WE-RL

simulations sampled transition events slightly faster than even the binned WE approach, but

required marginally more simulation time for rate constant convergence. The performance of

our binless WE approaches in sampling the CA-CTD dimer conformations mirrors the trends

observed in our simulations of the S-shaped potential, likely due to the path-like nature of

the multi-state CA-CTD conformational transition network.

Using the WE-RL method, we consistently found that T188-T188 distance was the most

important progress coordinate to focus sampling along, while also identifying the C2 angle

as a useful early coordinate (Figure 3.D). The initial focus of the WE-RL simulations on

C2 angle is consistent with the state distribution of this transition process (Figure 3.B) and

may explain the early jump in successful events since the C2 angle is known to promote the

CA-CTD state 1 to state 2 transition. The T188-T188 distance, however, can effectively

capture the entire transition process from S1 to S3, which is reflected in the overall progress

coordinate weight distribution as the WE-RL simulations progressed. In the CA-CTD dimer

system, WE-RL is able to identify ideal early and overall progress coordinate contributions.
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Conclusions

We have developed a WE path sampling strategy that integrates features of adaptive sam-

pling (WE-LC) and reinforcement learning (WE-RL) to automate the selection of progress

coordinates. In a binless framework, reinforcement learning was used to "learn" the impor-

tance of each candidate progress coordinate during a WE simulation. Unlike adaptive sam-

pling and reinforcement learning algorithms that do not employ weighted trajectories,13,22–25

our WE strategies enable the direct calculation of rate constants. By testing the explo-

ration and exploitation capabilities of our modified WE algorithms on model potentials,

we found that WE-LC and WE-RL could outperform the binned WE strategy, especially

when effective progress coordinates and bin placements were unknown. For the S-shaped

potential used to assess path exploitation, the WE-RL algorithm slightly outperformed the

two-dimensional binning scheme, which fully captured the potential energy landscape. This

improvement may be due to the WE-RL algorithm "learning" to prioritize the Y dimen-

sion of the progress coordinate, where the largest barrier was present. In simulations of the

HIV-1 capsid protein CTD dimer, WE-RL performed comparably to WE simulations using

a "good" progress coordinate and was able to identify this same coordinate as the most

critical. Overall, WE-RL is a promising initial approach when system-specific information is

unknown and can be used to identify ideal progress coordinates for subsequent simulations.
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