Liu et al. BMC Medical Genomics 2010, 3:37
http://www.biomedcentral.com/1755-8794/3/37

BMC
Medical Genomics

RESEARCH ARTICLE Open Access

The NRF2-mediated oxidative stress response
pathway is associated with tumor cell resistance
to arsenic trioxide across the NCI-60 panel

Qian Liu', Hao Zhang™®, Lisa Smeester’, Fei Zou?, Matt Kesic?, llona Jaspers®, Jingbo Pi*, Rebecca C Fry'"

Abstract

Background: Drinking water contaminated with inorganic arsenic is associated with increased risk for different
types of cancer. Paradoxically, arsenic trioxide can also be used to induce remission in patients with acute
promyelocytic leukemia (APL) with a success rate of approximately 80%. A comprehensive study examining the
mechanisms and potential signaling pathways contributing to the anti-tumor properties of arsenic trioxide has not
been carried out.

Methods: Here we applied a systems biology approach to identify gene biomarkers that underlie tumor cell
responses to arsenic-induced cytotoxicity. The baseline gene expression levels of 14,500 well characterized human
genes were associated with the Glsq data of the NCI-60 tumor cell line panel from the developmental therapeutics
program (DTP) database. Selected biomarkers were tested in vitro for the ability to influence tumor susceptibility to
arsenic trioxide.

Results: A significant association was found between the baseline expression levels of 209 human genes and the
sensitivity of the tumor cell line panel upon exposure to arsenic trioxide. These genes were overlayed onto
protein-protein network maps to identify transcriptional networks that modulate tumor cell responses to arsenic
trioxide. The analysis revealed a significant enrichment for the oxidative stress response pathway mediated by
nuclear factor erythroid 2-related factor 2 (NRF2) with high expression in arsenic resistant tumor cell lines. The role
of the NRF2 pathway in protecting cells against arsenic-induced cell killing was validated in tumor cells using
shRNA-mediated knock-down.

Conclusions: In this study, we show that the expression level of genes in the NRF2 pathway serve as potential
gene biomarkers of tumor cell responses to arsenic trioxide. Importantly, we demonstrate that tumor cells that are
deficient for NRF2 display increased sensitivity to arsenic trioxide. The results of our study will be useful in
understanding the mechanism of arsenic-induced cytotoxicity in cells, as well as the increased applicability of
arsenic trioxide as a chemotherapeutic agent in cancer treatment.

Background

Arsenic poisoning is a global health issue and epidemio-
logical studies indicate that chronic arsenic exposure in
drinking water is linked to increased risk for various
types of cancer [1-3]. More than 40 million people are
exposed to drinking water with arsenic levels that far
exceed the guideline established by the World Health
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Organization (WHO) and the limit acceptable by the US
Environmental Protection Agency (EPA) of 10 ppb [4,5].

In contrast to its carcinogenic properties, arsenic tri-
oxide can also be used as a clinically active agent to
induce complete remission of acute promyelocytic leu-
kemia (APL). The first clinical trial on arsenic trioxide
treatment of relapsed APL patients after resistance to
all-trans-retinoic acid (ATRA) treatment was carried out
in China with a complete remission rate of 72% [6]. In
another NCI-sponsored cancer and leukemia study, 77%
of newly diagnosed APL patients who received com-
bined chemotherapy and single arsenic trioxide
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treatment remained in remission 3 years after diagnosis
[7]. It is well accepted that arsenic trioxide results in
apoptosis in multidrug resistant APL cells [8,9]. A pri-
mary mechanism associated with arsenic-trioxide’s effec-
tiveness in treating APL is related to the ability to
degrade and cleave the promyelocytic leukemia retinoic
acid receptor-a. (PML-RARa) oncoprotein [10]. As well,
arsenic-induced apoptosis has been linked to the genera-
tion of hydrogen peroxide [11] and Bcl-2 down-regula-
tion [12]. However, a comprehensive study examining
the mechanisms and potential signaling pathways contri-
buting to its anti-tumor properties has not been carried
out.

In this research, we set out to identify gene biomar-
kers that are highly correlated with tumor cell responses
to arsenic-induced cytotoxicity. The rationale was based
on studies demonstrating that gene biomarkers can be
used as predictors of tumor cell responses to therapeutic
treatments [13,14]. The NCI-60 cell panel contains 60
human tumor cell lines that originate from nine differ-
ent tumor types. Based on our systems biology analysis
of the NCI-60 cell panel, we identified 209 human genes
whose baseline expression levels were statistically asso-
ciated with tumor cell susceptibility to arsenic trioxide.
By integrating the gene biomarkers with known protein-
protein networks, we show that the NRF2-mediated oxi-
dative stress response pathway is significantly associated
with tumor cell resistance to arsenic-induced cytotoxi-
city. Importantly, by generating tumor cells deficient for
the expression of NRF2, we validate our computational
prediction and demonstrate that, indeed, this pathway is
involved in tumor cell resistance to arsenic trioxide.
Moreover, our results also indicate possible interactions
between NRF2 and NFxB, which might contribute to
the cellular resistance upon exposure to arsenic trioxide.
Results from this study will help us to better understand
the genes that influence the dual properties of arsenic
trioxide as a human carcinogen and an effective che-
motherapeutic agent.

Methods

In vitro arsenic trioxide screening data

The arsenic trioxide GIs, data were obtained from the
Developmental Therapeutics Program (DTP) database at
http://dtp.nci.nih.gov. The NCI-60 human tumor cell
panel was used in the in vitro cell line screening project
(IVCLSP) under the DTP program, where 59 cell lines
in the NCI-60 cell panel were exposed to arsenic triox-
ide for 48 hours and growth inhibition of 50% (GlI5()
was recorded as the drug concentration resulting in a
50% reduction in the net protein increase in control
cells during the drug incubation [15]. Cell lines were
numbered from 1 to 59, corresponding to the increased
cellular sensitivity to arsenic trioxide (Additional File 1).
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Baseline gene expression data

The baseline gene expression data was from a previous
publication [16] and the data are available online at
http://discover.nci.nih.gov/. Using 59 cell lines of the
NCI-60 human tumor cell panel, the investigators mea-
sured the baseline gene expression levels of 22,238 gene
probes (representative of 14,500 human genes) using the
Affymetrix HG-U133A chip [17].

Significance Analysis of Microarrays (SAM)

Significance analysis of microarrays (SAM) [18] was
used to identify the association between the baseline
gene expression levels and tumor cell responses (e.g.
resistance or sensitivity) to arsenic trioxide. Specifically,
SAM was used to identify statistically significant gene
probes by carrying out gene specific t-tests and comput-
ing a score which measures the strength of the relation-
ship between the expression of each gene (transcription
profile) and the response variable (Glsg). The use of per-
mutation-based analysis accounts for correlations in
genes and avoids parametric assumptions about the dis-
tribution of individual genes [19]. In this study, we set
the false discovery rate (FDR) to 0.05 for declaring the
significance of genes. According to data availability, 58
cell lines of the NCI-60 cell panel were included in our
analysis - cell line 36 was excluded.

Network analysis and pathway mapping

Molecular network analysis and pathway mapping were
carried out using the Ingenuity Knowledge Base http://
www.ingenuity.com, a repository database of molecular
interactions, regulatory events, gene-to-phenotype
associations, and chemical knowledge [20]. With this
systems biology tool, we integrated differentially
expressed genes with known molecular networks.
Networks are algorithmically generated based on their
connectivity. The functional analysis of a network
identifies the biological functions and/or diseases that
are most significantly enriched in the network using a
Fisher’s Exact test [21].

NRF2 knock-down cell generation and real-time RT-PCR
validation

The A549 lung carcinoma tumor cell line (cell line #2 in
Additional File 1) was used to generate cells deficient
for the expression of NRF2 using short hairpin RNAs
(shRNAs). Additionally, a control shRNA that has a
scrambled sequence with no genome targeting, but that
controls for the activation of RNAi machinery was also
infected into the tumor cell line. For the lentiviral-based
shRNA transduction, MISSION shRNA lentiviral parti-
cles were obtained from Sigma. The lentiviral transduc-
tion of A549 cells with particles for sShRNAs targeting
NRF2 (SHVRS-NM_006164), scrambled non-target
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negative control (Scramble, SHC002V) or TurboGFP
control (GFP, SHC003) was performed as described pre-
viously [22]. The cells were maintained in medium con-
taining 3.0 pg/ml of puromycin. Knock-down of NRF2
was confirmed with real-time RT-PCR where expression
was normalized to 18S. Primer sequences used to
amplify NRF2 (NM-006164), NQOI (NM_000903), 3-
ACTIN (X00351) and housekeeping gene 18 S (N87634)
are as follows: (1) NRF2: forward: (ACCAGTG-
GATCTGCCAACTACTC) and reverse: (CTGCGCCAA
A GCTGCAT); (2) NQOI: forward (ACTGCCCTCTT
GTGGTGCAT) and reverse: GCTCGGTCCAAT
CCCTTCAT; (3) B-ACTIN: forward (GTCCACCTTC-
CAGCAGATGTG); reverse (GCATTTGCGGTGGAC-
GAT) and (4) 18S: forward (CGCCCCAGCACTTTGG)
and reverse (TTACCAGCGGATGGATGGA).

Cytotoxicity assays

To measure arsenic-induced cytotoxicity in the knock-
down cells relative to control cells, a non-Radioactive Cell-
Proliferation Assay Kit was used (Promega, Madison, WI).
A minimum of 5 replicates of 10,000 cells per well were
plated in 96-well plates and allowed to adhere to the plate
for 24 hrs, at which time the media was removed and
replaced with fresh media containing arsenic trioxide.
Cells were then incubated for an additional 24 hrs and cell
viability was determined. Measurements are expressed as
percent of untreated control (vehicle) of appropriate cells.
As a second method to assess arsenic-induced cytotoxicity,
the enzyme lactate dehydrogenase (LDH) was measured in
control or exposed cells. Cells were exposed in biological
duplicate to inorganic arsenic across a dose range for 24
hrs and cytotoxicity determined using LDH release. Mea-
surements were acquired using a coupled enzymatic assay
according to the supplier’s instructions (Takara Bio Inc.,
Japan) and are represented as fold increase in LDH of
NRF2-KD versus control.

Results

The baseline expression levels of 209 human genes are
associated with tumor cell responses to arsenic trioxide
We set out to identify gene biomarkers of tumor cell
responses to arsenic trioxide. Using data obtained from
the DTP database [23], it is clear that the NCI-60
human tumor cell lines show differential cytotoxicity
responses upon exposure to arsenic trioxide (see Meth-
ods; Figure 1; Additional File 1). The baseline gene
expression data for the tumor cell lines were derived
from a previous study [16]. The baseline gene expres-
sion levels of more than 14,500 well characterized
human genes were analyzed for the NCI-60 cell panel
using the Affymetrix Human Genome Array U133A.
Because of data availability, our study included 58 of the
60 human tumor cell lines.
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To identify genes with expression levels associated
with tumor cell susceptibility to arsenic trioxide, we
applied a significance analysis of microarray (SAM)
analysis [18] (see Methods). This resulted in the identifi-
cation of 209 human genes (represented by 242 gene
probes) whose baseline expression levels were statisti-
cally associated with tumor cell responses to arsenic
trioxide (FDR < 0.05) (Figure 2; Additional File 2). Of
the 209 genes, 169 genes had high expression in arsenic
resistant tumor cell lines, whereas the other 40 genes
had high expression in arsenic sensitive tumor cell lines.

Arsenic susceptibility genes are enriched for numerous
biological processes including tumorigenesis

To identify biological processes associated with tumor
cell responses to arsenic trioxide, we analyzed the 209
arsenic susceptibility-associated genes for network inter-
actions (see Methods). A total of 188 of the 209 genes
were eligible (e.g. present in the database) for network
generation.

Through network mapping, we identified a large inter-
actome associated with cellular response to arsenic
trioxide (p < 107'®), which contained a total 317 proteins
(Figure 3A). This large interactome is enriched for bio-
logical processes related to tumorigenesis, including can-
cer, cell death, cellular movement, cell-to-cell signaling
and interaction, cellular growth and proliferation, and
tumor morphology (Additional File 3 and 4). Within
this large arsenic-susceptibility-associated interactome,
we identified 10 smaller, more focused sub-networks
with p values < 10™®. The top three sub-networks range
in significance from p < 10°” to p < 10, and they are
enriched for 64 biological functions, among the most
significant are cancer and cell death (Figure 3; Addi-
tional File 5).

The three sub-networks contain a total of 105 unique
proteins. Of these, 70 were associated with tumor cell
susceptibility to arsenic trioxide (Figure 3; Additional
File 3). Within the 70 arsenic-susceptibility-associated
proteins, 13 had high expression in arsenic-sensitive cell
lines (19%) and 57 genes had high expression in arsenic-
resistant cell lines (81%) (Additional File 3). Of these 70
proteins, 54 are associated with cancer, and 40 are asso-
ciated with cell death (Figure 3).

The three sub-networks were found to be enriched for
18 transcriptional regulators (Table 1). Within these
transcription factors, ID1 is known for its function in
tumorigenesis [24] and also a possible therapeutic target
for cancer treatment [25]. Other than these transcription
factors, we also discovered protein complexes as inte-
grated nodes in the three sub-networks that are asso-
ciated with cellular response to arsenic-induced
cytotoxicity, including activator protein 1 (Apl) [26] and
nuclear factor kappa B (NFxB) [27].
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Figure 1 A range of susceptibilities to arsenic trioxide across the NCI-60 tumor cell panel. The Gls, data of 59 tumor cell lines screened
for arsenic trioxide-induced cell death are displayed. A total of nine tumor types were screened, including: breast, central nervous system (CNS),
colon, leukemia, melanoma, non-small cell lung (NSCL), ovarian, prostate, and renal tumors. For the complete list of tumor cell lines refer to
Additional File 1.

The NRF2-mediated oxidative stress response pathway shows
increased expression in arsenic-resistant tumor cell lines
We next set out to identify the canonical signaling path-
ways that possibly underlie tumor cell responses to
arsenic trioxide by applying pathway analysis to the 209
differentially expressed genes (see Methods). A total of
177 genes were eligible for canonical pathway analysis.
The NRF2-mediated oxidative stress response pathway
was the most significant canonical pathway enriched in
this dataset (p < 10°%). This canonical pathway contains
eight NRF2 target genes, whose baseline expression
levels were statistically associated with arsenic suscept-
ibility (Figure 4). Interestingly, all eight genes showed
high expression levels in the arsenic-resistant tumor cell
lines (Figure 4). The eight genes are: ATP-binding cas-
sette sub-family C (CFTR/MRP) member 1 (ABCCI),
ferritin heavy polypeptide 1 (FTHI), glutamate-cysteine
ligase catalytic subunit (GCLC), glutathione reductase
(GSR), NAD(P)H dehydrogenase, quinone 1 (NQOI),
sequestosome 1 (SQSTM1I), thioredoxin (TXN), and
thioredoxin reductase 1 (TXNRDI).

Tumor cells deficient for NRF2 are sensitized to arsenic-
induced cell killing

To validate the role of NRF2 in mediating cellular survival
in response to arsenic treatment, we generated tumor cells

(A549 lung carcinoma) that were deficient for NRF2
expression using shRNAs (see Methods). As controls, we
also generated tumor cells that expressed a scrambled
shRNA sequence that activates the RNAi machinery with-
out inducing knock-down of NRF2. Cells were exposed to
arsenic trioxide over a dose range and their differential
survival assessed after 24 hours. The data demonstrate
that cells that are deficient for NRF2 are sensitized to
arsenic-induced killing (Figure 5; Additional File 6).

Discussion

In this study, we set out to identify gene biomarkers of
tumor cell responses to arsenic trioxide-induced cyto-
toxicity. Using the cytotoxicity data established by the
Developmental Therapeutics Program of the NCI, we
ranked the tumor cell lines of the NCI-60 panel by their
susceptibility to arsenic trioxide-induced Kkilling.
Through this ranking we find that there is a general
trend of tumor cell susceptibility to arsenic trioxide for
different tumor types. For instance, leukemia cell lines
are distributed in the range of sensitivity to arsenic tri-
oxide relative to the other tumor types. By associating
the baseline gene expression levels of the NCI-60
human tumor cell panel with the arsenic trioxide-speci-
fic drug screening results, we identified 209 potential
gene biomarkers with baseline expression levels that
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58 tumor cell lines

242 gene probes (209 genes)

Figure 2 Potential gene biomarkers of tumor cell susceptibility to arsenic trioxide. A total of 209 genes (242 gene probes) were identified
with significant expression association with tumor cell susceptibility to arsenic trioxide across 58 tumor cell lines (FDR < 0.05). Cell line numbers
are displayed on the X-axis. For the complete list of tumor cell lines refer to Additional File 1. Gene expression values were mean centered and
high relative expression is indicated in red and low relative expression indicated in blue.

were significantly associated with tumor cell susceptibil-
ity to arsenic trioxide. Of the 209 genes, 169 (80.9%)
were associated with arsenic resistance whereas the
other 40 (19.1%) were associated with arsenic sensitivity.
As expected, there is an association of the gene expres-
sion levels of these 209 genes with tumor type whereby
many of same types of tumors show similar patterns of
gene expression. As an example, in these analyses it is
evident that the baseline gene expression levels of leuke-
mia tumor cells with sensitivity to arsenic-induced kill-
ing are similar and cluster together. Likewise, colon
tumor cells that show resistance to arsenic-induced kill-
ing also show baseline gene expression levels that are
similar to each other, yet quite distinct from the leuke-
mia tumor cell lines.

We applied a systems biology approach to examine
these differentially expressed genes and affiliated

networks and pathways, as well as the biological pro-
cesses underlying tumor cell responses to arsenic-
induced cytotoxicity. More specifically, in order to
establish the potential biological mechanisms that
underlie tumor cell responses to arsenic trioxide, we
analyzed the 209 genes for known protein-protein inter-
actions and enriched biological functions. We identified
64 common biological functions that were related to
tumor cell responses to arsenic trioxide. Not surpris-
ingly, we found that genes that are associated with
arsenic susceptibility in the NCI-60 panel are statistically
enriched for biological functions related to tumorigen-
esis, including cancer, cell death, cell-to-cell signaling
and interaction, tumor morphology, and other functions
relating to cancer disease.

We were intrigued to find numerous transcription fac-
tors with known links to tumorigenesis as well as with
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Figure 3 Molecular interactomes and sub-networks associated with tumor cell susceptibility to arsenic trioxide. (A) A large arsenic-
susceptibility interactome containing 317 proteins was identified. (B-D) The three most significant cancer and cell death enriched sub-networks
within the large interactome were identified. Networks are displayed with symbols representing encoded proteins corresponding to their RNA
transcripts that were either highly expressed in arsenic resistant cell lines (green symbols), highly expressed in arsenic sensitive cell lines (red
symbols), or associated to the modified transcripts (white symbols). P-values representing the statistical significance of networks are shown.

known association to arsenic trioxide are among our
most significant arsenic-susceptibility gene biomarkers.
For example, the transcription factor ID1 is well known
for its function in carcinogenesis [25,28]. Furthermore, a
study has shown that the ID1 was induced by inorganic
arsenite and may contribute to cell survival after expo-
sure to sodium arsenite [29]. Our findings suggest a
potential link between the expression level of this tran-
scription factor and how tumor cells respond when
exposed to arsenic trioxide.

By examining canonical pathways in the gene biomar-
kers, we identified the enrichment of the NRF2-

mediated oxidative stress response pathway. Specifically,
eight NRF2 target genes were identified as significantly
associated and all eight target genes showed high
expression in arsenic-resistant tumor cell lines. The
NRF2 gene itself did not show an association of its base-
line gene expression and arsenic susceptibility. These
findings may indicate that the arsenic-resistant tumor
cell lines express the same levels of NRF2 mRNA but
with higher transcriptional activity compared to the
arsenic sensitive cell lines.

NRF?2 is a transcription factor that responses to envir-
onmental hazardous insults [30], including reactive
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Table 1 Transcription factors identified within the sub-networks

Transcription Factor Description Sub-network
ELF3 E74-like factor 3 1
MTF2 metal response element binding transcription factor 2 1
ZEB1 zinc finger E-box binding homeobox 1 1
SMAD3 SMAD family member 3 1
KLF4 Kruppel-like factor 4 (gut) 1
KLF5 Kruppel-like factor 5 (intestinal) 1
CTBP2 C-terminal binding protein 2 1
GLI2 GLI family zinc finger 2 1
SQSTM1 sequestosome 1 2
D1 inhibitor of DNA binding 1 2
HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 2
SMARCC1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily ¢, member 1 2
ARIDTA AT rich interactive domain 1A (SWI-like) 2
MSX2 msh homeobox 2 2
IFlé interferon, gamma-inducible protein 16 2
JARID2 AT rich interactive domain 2 2
E2F3 E2F transcription factor 3 2
IRF6 interferon regulatory factor 6 3

Table 1 lists the 18 transcription factors identified within the enriched sub-networks. The corresponding descriptions and locations within the sub-networks are

included.

oxygen species (ROS) [31]. It has been a promising thera-
peutic target for various diseases [32-35] and recently
linked to chemoprevention as well [14,36,37]. NRF2
works as a system with the protein Kelch-like ECH-asso-
ciated protein 1 (KEAP1) [30]. Under normal conditions,
NREF2 is bound by KEAP1 [38]. Exposure to NRF2 indu-
cing agents results in the dissociation of NRF2 from
KEAP1 and allows nuclear accumulation of NRF2, which
triggers the expression of downstream target genes of
NRF2 [30]. The NRF2 signaling pathway has been related
to cell survival [39] and previous studies shown that
NREF2 deficiency was associated with decreased rates on
cell proliferation and tumor formation [40]. Interestingly,
it has also been found that NRF2 and some of its down-
stream target genes were overexpressed in numerous
tumor cell lines and human cancer tissues, which indi-
cates its involvement in tumor formation [41-43]. NRF2
has also been shown to play a role in cellular responses
to arsenic. For example, arsenic enhances the cellular
expression of NRF2 at the transcript and protein levels
and activates the expression of NRF2-related genes in
skin cells [44]. In addition, arsenic-induced malignant
transformation of human keratinocytes appears to
require constitutive NRF2 activation [45].

To validate our computational prediction that NRF2
may mediate tumor cell survival in response to arsenic,
we generated lung carcinoma cells that were deficient
for the expression of NRF2. Through the computational
analyses we predicted that cells with lower levels of

NRF2 would be more sensitive to arsenic trioxide-
induced killing. The results of the knock-down experi-
ments support this and show that, as expected, cells that
are deficient for NRF2 show increased sensitivity to
arsenic-induced cytotoxicity. It should be noted the lung
carcinoma cells that were used for these experiments
are among the most resistant tumor cells of the NCI-60
panel to arsenic trioxide. It is therefore noteworthy that
these highly resistant tumor cells can be altered to show
increased cell killing to arsenic trioxide via their expres-
sion levels of NRF2.

Several of the NRF2 target genes identified from our
study are of interest and support our findings in this
work. For example, TXN and TXNRDI are the key com-
ponents of the thioredoxin system [46], which is an
anti-oxidant system that has been linked to redoxin-
duced cell death [47], cellular growth [48], and apoptosis
[49]. Previous studies shown that the redox status of
TXN determines the sensitivity of human liver carci-
noma cells (HepG2) to arsenic trioxide-induced cell
death [50]. Moreover, research indicates that targeting
the thioredoxin system to induce tumor cell apoptosis
might underlie the anti-cancer mechanisms of several
therapeutic agents, including arsenic trioxide [49].

ABCCI is another noteworthy NRF2 target gene, and
it is also known as multidrug resistance-associated pro-
tein 1 (MRP1). ABCC1 has been associated with che-
motherapeutic resistance in several types of cancer [51],
including cancers of the kidney [52], breast [53], and
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Figure 4 Baseline expression levels of NRF2 target genes and tumor cell responses to arsenic trioxide. (A) Baseline gene expression
levels of eight NRF2 target genes in the NCI-60 tumor cell panel. For each of the nine tumor types, the average gene expression level was
calculated for all the tumor cell lines within this group. The cumulative gene expression levels of the eight target genes were calculated to
represent the general gene expression level of that tumor type (Leu = Leukemia; CNS = Central Nervous System; Mel = Melanoma; Ov =
Ovarian; NSCL = Non-small Cell Lung; Pro = Prostate). (B) Arsenic-specific 1og(Glsp) values of the NCI-60 tumor cell panel. For each of the nine
tumor types, the average log(GI50) was calculated for all the tumor cell lines within this group to represent the general susceptibility of this

prostate [54,55]. ABCC1, as an ATP binding cassette
protein, is believed to participate in chemotherapeutic
agents transportation [51], including arsenic trioxide
[56]; and possibly contributes to the chemoresistance in
cancer treatment [51,57]. Chemotherapy resistance has
been a huge obstacle in cancer treatment, and multidrug
transporters like ABCC1 provide promising targets in
chemotherapy [58-60] and valuable information for drug
development. Our results indicate that ABCCI could be
a gene biomarker of arsenic response, as well as a
potential chemotherapeutic target when using arsenic
trioxide in cancer treatment, for APL and possibly other
tumor types.

Another interesting finding is the identification of the
transcription factor NFxB as an integrated node in the
arsenic-susceptibility sub-network. NFxB is well known
for its function in regulating genes for immune
response, inflammation and apoptosis [61-63]. Numer-
ous studies have shown that the NFxB signaling path-
way is altered in the presence of arsenic trioxide
[64-66]. For example, NFxB has been shown to be acti-
vated by arsenic at environmentally relevant concentra-
tions [64,67-71] (reviewed in [72-74]). At higher doses,
arsenic represses NF-xB activation [75]. The varied
responses of NF-xB upon exposure to arsenic are cer-
tainly influenced by arsenic dose, arsenic species, and
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cell type differences. Similar to NRF2, the baseline
expression levels of NFkKB were not statistically asso-
ciated with tumor cell responses to arsenic trioxide.
However, its transcriptional targets are. Previous studies
have demonstrated the crosstalk between NRF2 and
NE&B in biological processes including inflammation
and carcinogenesis [76,77], but the interaction between
these two transcription factors under cellular stress is
not clearly understood. Our results suggest that NRF2
and NFxB both may contribute to tumor cell resistance
upon exposure to arsenic trioxide, and the two tran-
scription factors may work cooperatively in protecting
tumor cells from arsenic-induced cytotoxicity.

Conclusions

In this study, we identified potential gene biomarkers of
tumor cell responses to arsenic trioxide. These gene bio-
markers have baseline expression levels that are statisti-
cally associated with tumor cell susceptibility to arsenic
trioxide. Among the biomarkers are genes that are
enriched for the NRF2 pathway. Using shRNA-mediated

knock-down in a highly resistant lung tumor cell line,
we show for the first time that deficiency for NRF2 in a
tumor cell line results in increased sensitivity to arsenic
trioxide. It may be the case that the other gene biomar-
kers are also potential modulators of cellular response
to arsenic-induced cytotoxicity. The identification of the
genetic factors such as NRF2 that underlie the tumor
cell responses to arsenic trioxide will have direct impli-
cations in the continued application of arsenic trioxide
as a chemotherapeutic agent in treating APL and other
types of cancer. For example, these results can be
applied for a better understanding of which tumor types
will be responsive to arsenic treatment, thus facilitating
the development of personalized medication.

Additional material

Additional file 1: Glso of 59 cell lines of the NCI-60 human tumor
cell panel. Lists the GI50 of 59 cell lines of the NCI-60 cell panel.
Corresponding tumor type, cell line number, and cell line name are
included. The cell lines were numbered from 1 to 59, according to
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cellular sensitivity to arsenic trioxide (e.g. cell line number 1 is the most
resistant cell line, whereas cell line 59 is the most sensitive cell line.)

Additional file 2: Potential gene biomarkers of tumor cell
susceptibility to arsenic trioxide. Lists all the 242 gene probes (209
genes) that were statistically associated with tumor cell susceptibility to
arsenic trioxide. Corresponding gene IDs, g-values, and gene descriptions
are included.

Additional file 3: Gene products in network analysis. Lists all the 317
proteins contained within the large interactome. Each protein is listed as
either its baseline expression level statistically associated with arsenic
resistance/sensitivity, or it interacts with the directly associated
transcripts. Corresponding gene symbols, gene names, gene IDs, and
other relative information are included. Proteins within the three most
significant sub-networks are also identified.

Additional file 4: 64 common biological functions enriched in
arsenic susceptibility associated networks. Lists all the 64 biological
functions enriched in arsenic susceptibility associated networks. The
functional category, p-value, and arsenic susceptibility-associated
molecules within these functions are included.

Additional file 5: Ten sub-networks within the large interactome.
Lists the top ten sub-networks within the large interactome. Networks
were built on the “Focus Molecules”, whose baseline expression levels
are statistically associated with tumor cell susceptibility to arsenic
trioxide. Molecules in the networks are either focus molecules (e.g. gene
biomarkers of arsenic susceptibility) or molecules interact with them. P-
values for the ten sub-networks are detailed.

Additional file 6: LDH release in NRF2 knock-down tumor cells.
Lactate dehydrogenase (LDH) release was measured in NRF2 knock-down
tumor (A549) cells (NRF2-KD) or control cells (expressing GFP reporter)
exposed to inorganic arsenic.* indicates p < 0.05.
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