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Abstract

A simple approach to enable water-management agencies employing free data to create a

single set of water quality predictive equations with satisfactory accuracy is proposed. Multi-

ple regression-derived equations based on surface reflectance, band ratios, and environ-

mental factors as predictor variables for concentrations of Total Suspended Solids (TSS)

and Total Nitrogen (TN) were derived using a hybrid forward-selection method that consid-

ers both p-value and Variance Inflation Factor (VIF) in the forward-selection process. Land-

sat TM, ETM+, and OLI/TIRS images were jointly utilized with environmental factors, such

as wind speed and water surface temperature, to derive the single set of equations. Through

splitting data into calibration and validation groups, the coefficients of determination are

0.73 for TSS calibration and 0.70 for TSS validation, respectively. The coefficients of deter-

mination for TN calibration and validation are 0.64 and 0.37, respectively. Among all chosen

predictor variables, ratio of reflectance of visible red (Band 3 for Landsat TM and ETM+, or

Band 4 for Landsat OLI/TIRS) to visible blue (Band 1 for Landsat TM and ETM+, or Band 2

for Landsat OLI/TIRS) has a strong influence on the predictive power for TSS retrieval. Envi-

ronmental factors including wind speed, remote sensing-derived water surface temperature,

and time difference (in days) between the image acquisition and water sampling were found

to be important in water-quality quantity estimation. The hybrid forward-selection method

consistently yielded higher validation accuracy than that of the conventional forward-selec-

tion approach.

PLOS ONE | https://doi.org/10.1371/journal.pone.0201255 July 30, 2018 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tu M-C, Smith P, Filippi AM (2018)

Hybrid forward-selection method-based water-

quality estimation via combining Landsat TM, ETM

+, and OLI/TIRS images and ancillary

environmental data. PLoS ONE 13(7): e0201255.

https://doi.org/10.1371/journal.pone.0201255

Editor: Fei Li, Zhongnan University of Economics

and Law, CHINA

Received: January 16, 2018

Accepted: July 11, 2018

Published: July 30, 2018

Copyright: © 2018 Tu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Data are available

from USGS (http://glovis.usgs.gov/; https://

waterdata.usgs.gov/nwis). Sections of data used

are delineated in the paper. Both websites are

USGS websites, and data is open to the public free

of charge without any restriction.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0201255
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201255&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201255&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201255&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201255&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201255&domain=pdf&date_stamp=2018-07-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0201255&domain=pdf&date_stamp=2018-07-30
https://doi.org/10.1371/journal.pone.0201255
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://glovis.usgs.gov/
https://waterdata.usgs.gov/nwis
https://waterdata.usgs.gov/nwis


1. Introduction

Continuous monitoring of water quality is essential for the health and welfare of the people

and ecosystems reliant upon them. Urbanization, agriculture, and other anthropogenic factors

can alter water quality [1], and waiting to remediate until a change is clearly visible can be

much more costly than early prevention. Despite this, the cost of adequate temporal and spatial

physical measurements can potentially be prohibitive [2]. For example, the United States Geo-

logical Survey (USGS) regularly monitors water quality in Lady Bird Lake in Austin, Texas,

USA; however, the frequency is only approximately twice per year at a single point near the

outlet over the past decade [3]. Additionally, in situ measurements from year to year do not

occur in the same months. As a result, it is difficult to distinguish whether a change in the

water quality measured at a point is truly a long-term change or the result of a seasonal differ-

ence or recent event (e.g., a large precipitation event) [4]. Additionally, it is impossible to eval-

uate the spatial variation in water quality from single-point measurements.

In recent decades, remote sensing has provided an alternative method for monitoring water

quality in a spatially synoptic manner at a lower cost compared with extensive in situ measure-

ment. Each water-column constituent exhibits a specific spectral response that can be observed

by satellite- and aircraft-mounted remote sensors [5]. Suspended sediment usually exhibits

strong backscattering of incident light [5], where the actual color depends on the terrestrial

origin [6]. CDOM generally exhibits an exponential reduction in absorption with increasing

wavelength; CDOM spectral absorption curves typically entail strong absorption features in

the ultraviolet to blue wavelength region (280–400 nm), with dramatic decreases to near zero

in the red and near infrared portions of the spectrum [7]. Chlorophyll a (e.g., in algae-laden

waters) entails strong absorption in the blue and red portions of the spectrum, as well as a

reflectance maximum around 550 nm (i.e., a green peak) [8]”.

For a particular wavelength, λ, the spectral radiance from the water observed vertically,

known as the upwelling radiance, Lu, is given by

LuðlÞ ¼ LwðlÞ þ OLsðlÞ ð1Þ

where Lw is the radiance reflected/backscattered by the water column, in-water constituents,

and the bottom if the water column is optically shallow; Ls is the skylight radiance; and O is the

ratio of radiance directly reflected by the water surface to Ls [9]. Note that the radiance

observed by a satellite is composed of Lu, plus atmospheric interference; therefore, it requires

atmospheric correction (discussed below). Lw, Ls, and O are influenced by a variety of factors.

If the water column is sufficiently deep, bottom reflectance may be ignored, and Lw can be

assumed to be a measure of the effects of water-column constituents alone. Atmospheric con-

ditions (e.g., clear, cloudy, overcast) affect both O and Ls, whereas O can be further affected by

wind speed in the form of surface ripples (e.g., temporary sun glint) [9]. Wind speed has also

been found to have some influence on water clarity [10].

Because of their higher capability to penetrate the water column, visible bands have conven-

tionally been used to estimate water quality [5]. In addition, infrared bands have also shown

significance in determining water-quality quantities in some studies [11, 12]. However, only

near infrared wavelengths were used in these studies. Thermal infrared bands have not exten-

sively been used in water-quality estimation.

Site-specific predictive models can be created to relate a number of band radiance measure-

ments or derived reflectance values [5] to the water-quality quantity of interest by fitting the

model to in situ water-quality measurements. Multiple regression analysis and artificial neural

networks (ANNs) constitute two methods that are frequently used to generate such predictive

models [5, 12, 13, 14].
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In academia, satellite remote-sensing images have been increasingly available for water-

quality determination. However, the popularity of this approach has not been extended to

decision making by management agencies in general [15]. According to Schaeffer et al. [15],

the reasons for this phenomenon include cost, product accuracy, data continuity, and pro-

grammatic support.

Cost is always a major constraint, as many water-management agencies have limited bud-

gets [15]. Even though there are many free remote-sensing data sets available, such as the mul-

tispectral satellite images available from the Landsat program (e.g., Landsat Thematic Mapper

(TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI)/ Ther-

mal Infrared Sensor (TIRS)) [16], MODIS [17], SeaWiFS [18], etc., terrestrial pond/lake appli-

cations are predominately limited to moderate spatial-resolution images from the Landsat

program due to its relatively finer spatial resolution. Another aspect of the cost constraint is

the cost to collect field water-sampling data, as the creation of empirical predictive models

necessitates in situ water-quality data. Sometimes, due to cost, logistical, and other constraints,

a water-management agency can only resort to free water-quality data, such as those made

available by the USGS. The downside, as noted above, is that spatio-temporal sampling den-

sity/data availability may be low. This drawback seriously limits the ability of a water-manage-

ment agency to utilize free Landsat program data, for example, as the basis of a water-quality

monitoring program since the satellite images and corresponding in situ measurements must

be acquired in a temporally proximal manner [19]. Furthermore, water-quality variables of

interest may not even be measured, given the complexity or cost of the measuring techniques

needed, making regular/automatic sampling difficult.

As a result of these issues, water-management agencies that resort to using only free data

resources often have access to a limited number of useable satellite images for water-quality

monitoring. Such a scenario often leads to the use of a single predictive model to determine

water-quality information from satellite images. Nevertheless, many studies divide their analy-

ses by season [20, 21] due to systemic seasonal differences in factors such as concentrations of

color-producing substances (including phytoplankton), atmospheric disturbances [21], and

solar zenith angle [22]. Some studies have shown that the predictive power of equations cre-

ated without distinguishing by season is lower than it would otherwise be [23, 24].

Since the derived predictive equation is seasonally affected by the environment, a few stud-

ies have incorporated the influencing factors into predictive equation generation. One example

is with the estimation of chlorophyll-a concentration. It is known that phytoplankton growth is

statistically significantly dependent on water temperature [25, 26]. Incorporating water tem-

perature (derived from the satellite remote-sensor thermal band) in development of predictive

equations has proven to be helpful in determining chlorophyll-a concentration [27]. However,

this approach has not been investigated extensively. In this study, we consider additional envi-

ronmental factors based on energy fluxes between a waterbody and the atmosphere. We posit

that including these environmental factors in predictive equations not only increases predic-

tion accuracy, but also facilitates the usage of a single set of predictive equations throughout

different seasons. The direct benefit is that one can pool all observation data in creating equa-

tions, thus resulting in higher predictive power.

Programmatic support is also important to water-management agencies, according to

Schaeffer et al. [15]. In most cases, local universities should be sufficient in providing support

to water-management agencies. However, we posit that the methodology adopted for generat-

ing predictive models should entail model construction in a step-wise manner, such that most

people with basic training could implement itwithout much difficulty. For this reason, in

choosing a methodology to be implemented by water-management agencies, simple and well-
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understood methods such as multiple regression should be weighed against more complex

methods, such as ANNs.

Product accuracy is another major concern expressed by the water-management agencies

[15]. Even though water-management agencies could utilize predictive models from peer-

reviewed journals, such models may not yield high-accuracy estimates in a given application.

Multiple regression analysis has been employed in many studies for its ease of application.

However, for applications using this method, overfitting from multicollinearity can be a seri-

ous concern. Multicollinearity means that some of the explanatory variables in the multiple

regression model are dependent on one another. The direct result of multicollinearity is that

the standard error of coefficients of explanatory variables is inflated, which means that coeffi-

cients of the derived model are not reliable. Unfortunately, many past studies neither discuss

the issue of multicollinearity, nor provide results of validation of the derived regression models

[4, 5, 11, 19, 28, 29, 30, 31]. A common way to identify multicollinearity of a model is through

the use of indicators such as Akaike’s Information Criteria [32], Mallow’s Cp [33], PRESS [34],

etc. However, such indicators apply to the whole model so all possible subsets of explanatory

variables must be examined, and this approach becomes difficult when the number of variables

increases [35], even with modern computing power.

Other popular methods to identify multicollinearity include the deployment of principal

component analysis (PCA) or structural equation modeling (SEM) [35]. PCA creates orthogo-

nal principal components, which are linear combination of variables, and a regression model

can be created based on the orthogonal components in order to eliminate multicollinearity

completely. However, some studies show that this methodology can result in a loss of explana-

tory power. Additionally, the main limitation of the PCA approach is that physical interpreta-

tions of the principal components are required. On the other hand, SEM accepts the existence

of collinearity among explanatory variables and hypothesizes that a model exists among vari-

ables. Then all possible combinations of causal links among variables are tested against the

hypothesized model. Since SEM is not an exploratory technique, SEM is prone to inferential

errors made during development and selection of the hypothetical models [35].

We use the variation inflation factor (VIF) in step-wise variable selection, which is based

on p-value, to minimize multicollinearity. Unlike other indicators described above, VIF is

calculated for each predictor variable. VIF has been used in the field of remote sensing on a

limited basis to check multicollinearity of results [36, 37]. Dubovyk et al. [38] used VIF to

choose variables to enter into a logistic regression model. VIF has not previously been

incorporated along with established variable-selection methods (e.g., forward step-wise

selection) to derive predictive equations for water-quality quantities. Details regarding VIF

computation and the methodology to include VIF in equation derivation is discussed below

in the Methodology section.

Although the Landsat program entails a few limitations, such as the inflexible satellite over-

pass schedule and the relatively lower sensitivity of sensors prior to Landsat 8, the Landsat pro-

gram constitutes a truly ideal free data-source candidate for water-management agencies,

given the characteristics of the various Landsat sensors, as well its long-term data continuity.

The Landsat program has maintained the longest uninterrupted satellite observation record of

Earth from its beginning in 1970s, employing several sensors over time including MSS, TM,

ETM+, and OLI/TIRS (Landsat 8), with improving sensor sensitivities. Only a few water-qual-

ity studies have taken advantage of combining TM, ETM+, and OLI/TIRS datasets [39, 40, 41]

even though these sensors have been shown to be compatible, as shown in Table 1 [41, 42, 43].

Note Table 1 shows only comparable bands among Landsat TM, ETM+, and OLI/TIRS

sensors.

Hybrid forward-selection method-based water-quality estimation with ancillary environmental data
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Because band numbering is different in OLI/TIRS, in this study, band numbers will be

based on TM/ETM+. For example, if Band 3 is noted, it means Band 3 for TM and ETM+, but

Band 4 for OLI/TIRS.

Based on the gaps in the research literature illustrated above, the objectives of this study

were:

1. Incorporate environmental factors (such as temperature, wind speed, etc.) into a single set

of predictive equations for remote-sensing water-quality measure estimation; and

2. Increase model predictive power for a limnological water-quality quantity-estimation appli-

cation by considering the effect of multicollinearity in established model-creation method-

ologies such as forward step-wise selection.

The goal of this study is to address all four concerns of utilizing satellite data in decision

making by water-management agencies—i.e., cost, product accuracy, data continuity, and pro-

grammatic support. This study provides water-management agencies with a simple, easy-to-

follow methodology for utilizing free observation data (from Landsat program, USGS, etc.) in

order to address cost and programmatic-support issues for water-quality monitoring. The

Landsat program guarantees long-term data continuity. The proposed methodology provides

a single set of predictive equations; accuracy is maintained because all available data are con-

solidated for the creation of a single model. Also, consideration of multicollinearity increases

the likelihood for acceptable estimation accuracy of the derived model in future water-quality

quantity retrieval applications.

2. Materials and methods

2.1 Study area

The population of City of Austin, Texas, USA has increased dramatically in recent decades,

from 346,000 in 1980 to 968,000 in 2018 [44]. With significant population growth comes an

increase in impervious area, higher runoff and lower water quality in local water bodies. Lady

Bird Lake (formerly Town Lake), situated near the city center, provides an opportunity to

remotely monitor water quality in an urban watershed (Fig 1). The lake, formed by damming

the Colorado River, is maintained at an approximately constant level by the pass-through

Longhorn Dam [45]. The surface area is ~1.74 square kilometers with a capacity of 9,051,000

cubic meters. The mean depth is 6 meters, with a maximum depth over 11.7 meters [46].

The USGS maintains a number of water-quality sampling stations on Lady Bird Lake, but

only four of them, EC, DC, CC and AC (Fig 1), monitor the water-quality constituents of inter-

est in this study within the time frame of available satellite images (i.e., 1983–2015) [3]. Table 2

provides basic information for these four sampling stations, including summary statistics for

these water-quality quantities of interest—total suspended solids (TSS) and total nitrogen

Table 1. Band attributes of Landsat TM and ETM+ and OLI/TIRS sensors [41, 42, 43].

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8

TM Wavelength (μm) 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.90 1.55–1.75 10.40–12.50 2.08–2.35 n/a

Sensor spatial resolution (m) 30 30 30 30 30 60 30 n/a

ETM+ Wavelength (μm) 0.45–0.52 0.52–0.60 0.63–0.69 0.77–0.90 1.55–1.75 10.40–12.50 2.09–2.35 0.52–0.90

Sensor spatial resolution (m) 30 30 30 30 30 60 30 15

OLI/TIRS Wavelength (μm) Band 2 Band 3 Band 4 Band 5 Band 6 Band 10 Band 7 Band 8

0.45–0.51 0.53–0.59 0.64–0.67 0.85–0.88 1.57–1.65 10.60–11.19 2.11–2.29 0.50–0.68

Sensor spatial resolution (m) 30 30 30 30 30 100 30 15

https://doi.org/10.1371/journal.pone.0201255.t001
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(TN)—derived from water-quality samples collected at a depth of 1 m. Secchi disc transpar-

ency, a pseudo-measure of turbidity, was measured in four locations when the samples of

Table 2 were taken (Table 3). Secchi disc depths were much shallower than the average bottom

depth of the lake (6 m); thus, bottom reflection is not observable from above the air-water

interface for these cases. Therefore, contribution of bottom reflectance to the water-leaving

radiance (Eq 1) can be ignored.

Fig 1. Locations of water-quality sampling stations (i.e., Sites AC, CC, DC, and EC) on Lady Bird Lake.

https://doi.org/10.1371/journal.pone.0201255.g001

Table 2. Summary statistics from in situ USGS water-quality stations in Lady Bird Lake, Texas, USA, over the time period 1983–2015.

USGS Water

Quality Stations and Site Codes

Water-Quality Measures and USGS Parameter Code

TSS (mg/L)

00530a
TN (mg/L)

00600a

# of Samples Mean Std. Dev. # of Samples Mean Std. Dev.

EC 301712097470701b 7 4.57 4.24 11 0.58 0.22

DC 301558097452201b 8 5.75 5.39 8 0.71 0.36

CC 301546097445101b 4 9.50 5.26 6 0.53 0.14

AC 301500097424801b 9 8.44 10.35 13 0.71 0.25

All 28 6.86 7.06 38 0.64 0.26

a Water-quality quantity code as assigned by USGS
b USGS station number

https://doi.org/10.1371/journal.pone.0201255.t002
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2.2. Selection of satellite images

Selection of Landsat TM, ETM+, and OLI + TIRS images [47] was based on several criteria.

Images selected were cloud-free and were acquired within seven days of in situ water-quality

measurements in Lady Bird Lake [12, 20]. In order to minimize the effects of spatio-tempo-

rally-close rainfall events, only images that occurred when daily precipitation depths observed

between the dates of the selected images and their associated water-sampling dates were less

than 1.25 cm (0.5 inch) were selected (Table 4). This threshold rainfall depth is chosen based

on the initial abstraction rainfall depth for a watershed with a runoff curve number of 80, since

most of the urbanized area around Lady Bird Lake is residential [48]. Residential districts with

small lot sizes (1/4 to 1/8 acre) have a curve number ranging from 61 to 92, depending on the

soil hydrologic group [49]. Rainfall depth below this threshold is considered to generate insig-

nificant runoff, and thus should have no marked effect on water quality in the lake.

2.3. Atmospheric correction

2.3.1. Image Pre-processing. Surface reflectance values corrected for path radiance were

derived using Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH1)

radiative transfer model [50, 51]. Remote-sensing reflectance from spectrally dark targets such

as Lady Bird Lake is usually much lower than that from the surrounding urban areas [52].

Table 3. Secchi disc transparency measurements for in situ USGS water-quality stations in Lady Bird Lake, Texas,

USA, over the time period 1983–2015.

Site Code # of measurements Mean (m) Std. Dev. (m)

EC 11 2.22 0.86

DC 10 1.68 0.77

CC 8 1.23 0.62

AC 15 1.27 0.60

https://doi.org/10.1371/journal.pone.0201255.t003

Table 4. Dates of Landsat TM and ETM+ satellite images utilized and respective corresponding water-quality

samples.

Sensor Name Image Date Water-Quality Sampling Date

Landsat 4 TM January 9, 1983 January 6, 1983

Landsat 5 TM August 18, 1985 August 20, 1985

Landsat 5 TM January 15, 1988 January 19, 1988

Landsat 5 TM April 20, 1988 April 19, 1988

Landsat 5 TM July 25, 1988 July 27, 1988

Landsat 5 TM March 6, 1989 February 27, 1989

Landsat 5 TM April 7, 1989 April 12, 1989

Landsat 5 TM August 5, 1992 August 10, 1992

Landsat 5 TM July 24, 1999 July 22, 1999

Landsat 5 TM December 20, 2001a December 16, 2001

Landsat 7 ETM+ April 22, 2009 April 18, 2009

Landsat 5 TM June 4, 2010 June 3, 2010

Landsat 7 ETM+ May 14, 2011 May 13, 2011

Landsat 8 (OLI + TIRS) May 14, 2014 May 14, 2014

Landsat 8 (OLI + TIRS) March 14, 2015 March 10, 2015

a Excluded from analysis due to issues with atmospheric correction.

https://doi.org/10.1371/journal.pone.0201255.t004
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With FLAASH, significant errors can occur when strong albedo contrasts exist among the

materials in the scene [51]. To minimize this potential problem, a land mask was created and

applied in order to exclude all surrounding land regions [53], leaving just the aquatic areas

(i.e., Lady Bird Lake) for subsequent atmospheric-correction processing.

2.3.2. Determination of FLAASH parameter values. Two of the parameters required by

FLAASH are visibility and choice of atmospheric model. Visibility obtained from historical

airport records [54] likely caused FLAASH to over-compensate in its correction of atmo-

spheric effects and yield negative reflectance values probably because the highest reported visi-

bility is limited at 6 miles (9.6 km) [55] and visibility higher than that is not discernable from

airport records. Therefore, the 2-band (K-T) aerosol retrieval method [51] with “urban” setting

was used to estimate visibility. Ideally, selection of an atmospheric model is based on one of

the following options, presented in order from most preferred to least preferred: known stan-

dard column water vapor amount, expected surface air temperature, or tabulated seasonal-lati-

tude combinations [51]. Although there are atmospheric water-content products available

[56], they do not cover all dates of interest in this research. Surface temperatures have been

continuously recorded and archived by Camp Mabry Austin City Airport and Austin Berg-

strom International Airport every hour over the past 30 years [54]. Therefore, atmospheric

models were selected based on the surface air temperature at the time when each satellite

image was acquired (Table 5). The initially-selected December 20, 2001 image was excluded

from subsequent processing because it yielded negative reflectance values after FLAASH atmo-

spheric correction.

2.3.3. Atmospheric correction for thermal bands

FLAASH should not be applied to thermal bands [51]; therefore, another atmospheric-correc-

tion method was applied to thermal bands. In particular, the single-band atmospheric-correc-

tion method described by Barsi et al. [57] was used. The methodology calculates atmospheric

transmission and path radiance using MODTRAN [51], based on the atmospheric profiles

generated by National Centers for Environmental Prediction (NCEP). Eq 2 provides the

relationship between top-of-atmosphere radiance (LTOA), the target radiance of kinetic

Table 5. Selection of FLAASH atmospheric model based on measured surface air temperature.

Image Date Surface Air

Temperature (˚C)

Chosen Atmospheric Model Suggested Temperature for Model (˚C) [51]

January 9, 1983 11 Sub-Arctic Summer 14

August 18, 1985 33 Tropical 27

January 15, 1988 10 Sub-Arctic Summer 14

April 20, 1988 23 Mid-Latitude Summer 21

July 25, 1988 31 Tropical 27

March 6, 1989 2 Mid-Latitude Winter -1

April 7, 1989 25 Tropical 27

August 5, 1992 30 Tropical 27

July 24, 1999 32 Tropical 27

December 20, 2001 11 Sub-Arctic Summer 14

April 22, 2009 31 Tropical 27

June 4, 2010 31 Tropical 27

May 14, 2011 23 Mid-Latitude Summer 21

May 14, 2014 21 Mid-Latitude Summer 21

March 14, 2015 22 Mid-Latitude Summer 21

https://doi.org/10.1371/journal.pone.0201255.t005
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temperature T (LT), the path (upwelling) radiance (La), and the sky (downwelling) radiance

(Ld):

LTOA ¼ tεLT þ La þ tð1 � εÞLd ð2Þ

In Eq 2, atmospheric transmission τ, path radiance La, and sky radiance Ld were obtained

from the on-line calculator based on the atmospheric correction method of Barsi et al. [57].

Since water is a near-perfect blackbody, emissivity (ε) was set as 1 in this study according to

Haydon [58]. Emissivity and transmission are unitless, whereas radiance values are in units of

W/m2�sr�μm.

The atmospheric profiles are only available after January 2000. For satellite images acquired

prior to that, atmospheric profiles from “surrogate dates” in 2000 were used in this study. The

surrogate date has nearly identical daily precipitation, temperature, and wind speed as the sat-

ellite image date. By choosing a surrogate date in such a manner, the atmospheric condition of

the actual satellite image date and the surrogate date are expected to be similar. If more than

two surrogate dates were found based on the above criteria for one satellite image, the one that

is temporally closest to the date in the year in which a given the satellite image was acquired

was chosen. Table 6 provides the list of the satellite image dates, the corresponding surrogate

dates, and daily meteorological parameters for both of them.

2.3.4. Determining surface temperature from landsat thermal bands. Target tempera-

ture (i.e., water surface temperature) was derived after atmospheric correction according to

equations provided in the Landsat Data User Manual [43]. For Landsat ETM+, the low-gain

channel was used because it has a wider dynamic range and is not easily saturated [59]. For

Landsat TIRS, only band 10 was used because data from band 11 have been contaminated by a

stray-light effect, and a remedy has not yet been found [60]. Bands 10 and 11 here are band

numbering from Landsat TIRS.

2.3.5. Post-processing for atmospherically-corrected surface reflectance. Surface reflec-

tance values at the water-quality stations were extracted from the FLAASH-corrected satellite

images. Pixels located at the exact coordinates of the respective water-quality sampling stations

are not necessarily the ideal pixels for which reflectance values should be extracted for analysis.

The USGS water-quality stations are all positioned very close to the shore or land-related

objects (such as bridges); thus, the pixel located at the exact coordinates of a given water-qual-

ity sampling station may contain land and/or land-related objects.

Table 6. Comparison between image and surrogate dates in atmospheric profile determinations.

Image date weather parameters Surrogate date weather parameters

Satellite

Date

Daily rainfall

(mm)

Daily Mean Temp

(oC)

Daily mean wind speed

(m/s)

Surrogate

Date

Daily rainfall

(mm)

Daily Mean Temp

(oC)

Daily mean wind speed

(m/s)

Jan 9, 1983 0 11 3.1 Dec 20, 2000 0 11 3.1

Aug 18,

1985

0 31 3.6 Aug 28, 2000 0 32 3.6

Jan 15, 1988 0 9 2.8 Nov 13, 2000 0 9 3.6

Apr 20,

1988

0 21 3.6 Apr 22, 2000 0 20 3.4

Jul 25, 1988 0 30 3.1 Jul 26, 2000 0 31 3.2

Mar 6, 1989 0 3 5.8 Dec 27, 2000 0 3 4.1

Apr 7, 1989 0 22 2.8 May 14, 2000 0 23 2.8

Aug 5, 1992 0 29 3.1 Aug 20, 2000 0 30 3

Jul 24, 1999 0 29 1.7 Jul 24, 2000 0 29 1.6

https://doi.org/10.1371/journal.pone.0201255.t006
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To minimize potential deleterious effects of such mixed pixels, the search range was

expanded to 90 m (i.e., a search neighborhood comprised of 3 × 3 image pixels, centered on

the pixel located at the station coordinates). The pixel within this zone with the lowest value in

band 5 was chosen as the representative pixel, as it is the pixel to most likely contain only

water [61]. If two pixels had the same band 5 values, the pixel closest to the coordinates of

water-quality sampling location was selected.

3. Multiple regression analysis

Multiple regression equations were derived to predict constituent concentrations (TSS and

TN, i.e. the dependent variables) from the predictor variables, such as band reflectance. The

procedure for selection of predictor variables is delineated below.

The spectral bands and associated band ratios were all chosen as candidates for indepen-

dent variables. Band ratios were included as independent variables in the regression analysis

[12] because they are less apt to be influenced by lighting conditions [62].

Radiance data from the thermal bands (band 6 of Landsat TM and ETM+, and band 10 of

Landsat TIRS) were converted to water surface temperature. As discussed earlier, water tem-

perature has been found to be related to phytoplankton concentration [23, 24], and thus,

related to water quality [63]. However, in this study, most of the satellite image dates differ by

several days compared with the closest corresponding actual water-quality sampling date; thus,

the water surface temperature derived from the satellite images does not represent the actual

water temperature at the time of water sampling.

Eq 3 considers the net energy fluxes between a waterbody and the atmosphere [64]:

NET ¼ SWRnet � ðLWRnet þ LHF þ SHFÞ ð3Þ

where NET is the net energy flux, SWRnet indicates the net short-wave radiation energy flux

(Eq 4), LWRnet indicates the net long-wave radiation flux (Eqs 5 and 6), LHF is the latent heat

flux (Eq 7), and SHF is the sensible heat flux (Eq 8). These terms are calculated by the following

equations [64]:

SWRnet ¼ ð1 � aÞSWRdown ð4Þ

LWRnet � εsTs
4 0:39 � 0:05ea

1
2

� �
1 � 0:51C2ð Þ þ 4εsTs

3 Ts � Tað Þ ð5Þ

C � 1:61 1 �
SWRdown

SWRcs
þ 0:0019n

� �

ð6Þ

LHF ¼ rLeCeUðQs � QaÞ ð7Þ

SHF ¼ rCpChUðTs � TaÞ ð8Þ

where a is the surface albedo (usually very low for water so SWRnet� SWRdown), ε is the sur-

face emissivity, σ is the Stefan-Bolzman constant, Ts is the water surface temperature, Ta is the

air temperature, ea is the surface vapor pressure, C is the cloud cover index (Eq 6), SWRcs is

the clear-sky short wave radiation, n is the noon solar altitude, ρ is the density of air, Le is the

latent heat of evaporation, Ce is the turbulent exchange coefficient for latent heat, U is the

wind speed, Qs and Qa are saturation specific humidity at the surface and at near-surface

atmosphere, respectively, and Ch is the turbulent exchange coefficient for sensible heat.
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Some of the variables in Eqs 4 to 8 are known or can be reasonably assumed as constants (a,

ε, σ, ρ, Le, Ce, and Ch [65]). The surface vapor pressure, ea, is dependent on water surface tem-

perature [66]. Qs and Qa are both dependent on temperature as well [67]. The air temperature

and noon solar altitude (Ta, and n respectively) can be obtained from the historical observation

record. The water surface temperature Ts is obtained from thermal band data. That leaves only

one variable unknown, which is the clear-sky short wave radiation SWRcs. Calculating SWRcs

involves a complex procedure [68] so it is difficult to associate it with distinct environmental

factor(s); thus, we did not consider it in evaluating heat flux in this study.

Assuming that the temperature change between the image date and the water-sampling

date directly corresponds with the cumulative heat flux between the dates, the following vari-

ables are needed in order to account for the temperature change between the image-acquisi-

tion date and the water-sampling date [54]:

1. Time offset (in days) between the image date and the water-quality sampling date (positive

offset means that the image date is later than the sampling date);

2. Water surface temperature (in K) derived from the thermal band;

3. Air temperature (in K): both instantaneous temperature at the time of satellite image acqui-

sition, and daily mean air temperature between the image date and the water-quality sam-

pling date are considered;

4. Wind speed (in m/s): both instantaneous wind speed at the time of satellite image acquisi-

tion and the daily mean wind speed between the image date and the water-quality sampling

date are considered; and

5. Noon solar altitude (in degrees): the mean noon solar altitude between the image date and

the water-quality sampling date.

Instantaneous temperature and wind speed were interpolated from the hourly historical

data [54]. And further considering Eqs 4 to 8, the full list of variables considered in the multi-

ple regression process is provided in Table 7. A look-up table between variable abbreviations

and variable descriptions is provided as Table 8. As described above, in this study, the band

number is based on band-numbering scheme for TM and ETM+.

Even though SWRcs and associated LWRnet are not considered in selection of variables,

LHF (latent heat flux) and SHF (sensible heat flux) already sum to 2/3 of the upwelling energy

budget [69]. Further considering that a few environmental factors (e.g. Ts − Ta) also play a role

in long-wave radiation LWRnet, the portion of the upwelling energy flux explained by the envi-

ronmental factors should be higher than 2/3.

Selection of predictor variables is based on a hybrid forward selection that considers the

variation inflation factor (VIF). In conventional forward selection, variables are added to the

regression one at a time, starting with no predictor variables being selected. The p-value

threshold includes a predictor in the regression equation if its p-value is below a “probability

to enter,” and includes a predictor that will most improve the fit first (i.e., “forward”). A default

value of 0.25 in JMP [70] was used for “probability to enter”.

Table 7. Reflectance bands (i.e., band (B1), band 2 (B2), etc.) and ratios used in the variable-selection process.

Water

constituent

# of valid

observations

Initial predictor variables before p-threshold test

TSS 28 B1, B2, B3, B4, B2/B1, B3/B1, B4/B1, B3/B2, B4/B2, B4/B3, Doff, Ts, Ta,

Tmean, Ts-Ta, Ts-Tmean, W, Wmean, Alt, Alt2

TN 38

https://doi.org/10.1371/journal.pone.0201255.t007
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In addition to p-value, the variation inflation factor (VIF) was used to minimize multicolli-

nearity of the model. Multicollinearity occurs when a predictor variable is a linear combination

of other predictor variables in the model. The direct consequence of multicollinearity is that

the error variance is inflated, which may result in low prediction power if the overfitted model

is used with a new set of data. VIF is calculated as:

VIFj ¼ 1=ð1 � R2

j Þ ð9Þ

where R2
j is the multiple coefficient of determination between the j-th predictor variable of

interest and the rest of the predictor variables. The rule of thumb to avoid serious multicolli-

nearity is that all chosen predictor variables should have VIF less than 10 [71]. Unlike other

criteria such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),

and Mallow’s Cp, VIF is generated for each predictor variable. Also, VIF has a suggested abso-

lute criterion, whereas other criteria (AIC, BIC, Cp, etc.) provide only relative comparison

between models.

We use an approach that treats the p-value and VIF equally while adding variables in for-

ward selection. When a variable is added according to the p-value (i.e. conventional rules of

forward selection), VIFs of all included variables (including the one that is just added) are also

checked. If VIFs are all below the threshold of 10 (or any user-defined value), the newly-added

variable is allowed, and the next variable is chosen according to the rule of forward selection.

However, if any VIF is found to be larger than the threshold for any of the variables, the most

recently-added variable is deleted and the selection procedure stops. Coefficients of variables,

p-values, and VIF are dynamically recalculated when any variable is deleted from the model.

The procedure is illustrated in Fig 2.

The derived multiple linear equations were then validated by splitting all data into the cali-

bration and validation groups. 80% of the data were used for calibration and the remaining

20% were used for validation because the minimum number of observation samples used in

calibration should be approximately twenty [5]. The calibration and validation processes were

repeated fifteen times for each of the water-quality constituent using randomly selected cali-

bration and validation data groups. In each of the fifteen runs, the same calibration and valida-

tion data groups were used by both the hybrid and conventional forward-selection processes,

so their performance can be correctly compared.

4. Results

The statistics of coefficients of determination from all fifteen calibration and validation runs

were provided in Tables 9 and 10. The results showed good prediction accuracy for future TSS

data, but less than satisfactory validation accuracy for TN [72]. Compared to conventional

Table 8. Look-up table for variable abbreviation and description of variables.

Variable abbreviations Variable description

B1, B2, B3, B4 Reflectance value for Band 1, Band 2, Band 3, and Band 4, respectively.

Doff Date offset between the image date and the water-quality sampling date

Ts Water surface temperature derived from the remote-sensor thermal band

Ta Instantaneous air temperature at time of satellite image acquisition

Tmean Daily mean air temperature between the image date and the water quality sampling date

W Instantaneous wind speed at the time of satellite image acquisition

Wmean Daily mean wind speed between the image date and the water quality sampling date

Alt Mean noon solar altitude between the image date and the water-quality sampling date

https://doi.org/10.1371/journal.pone.0201255.t008

Hybrid forward-selection method-based water-quality estimation with ancillary environmental data

PLOS ONE | https://doi.org/10.1371/journal.pone.0201255 July 30, 2018 12 / 23

https://doi.org/10.1371/journal.pone.0201255.t008
https://doi.org/10.1371/journal.pone.0201255


forward selection, validation runs have higher accuracy for both TSS and TN with the utiliza-

tion of the hybrid forward-selection process. More discussions based on Tables 9 and 10 will

be provided later in this paper.

After showing the proposed procedure can provide adequate calibration accuracy and

improved validation accuracy compared to the conventional approach, a set of “best” predic-

tive equations using all available data was created and provided in Table 11 for use in the sub-

sequent discussions and field applications. The results in Table 11 include the predictor

variables, importance of the predictor variable, associated regression coefficients and standard

error, 95% confidence intervals for the regression coefficients, p-values, and VIF values for

each of the response variables (TSS and TN). The importance values (“Imp. of Var.”) are calcu-

lated by dividing the change in R2 (coefficient of determination) when the variable of interest

Fig 2. Flow chart of the hybrid forward-selection process for selecting predictor variables in multiple regression

analysis.

https://doi.org/10.1371/journal.pone.0201255.g002

Table 9. Calibration and validation results for TSS.

Hybrid Forward Selection Conventional Forward Selection

Calibration Validation Calibration Validation

Mean R2 0.73 0.70 0.76 0.63

Standard deviation of R2 0.06 0.11 0.06 0.21

https://doi.org/10.1371/journal.pone.0201255.t009
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is dropped from the model by the overall R2 when the variable of interest is included [73]. The

sum of importance values of all variables does not equal to 1 since the importance is relative.

The resulting best multiple regression-based models are provided in Eqs 10 and 11:

TSS¼ ð� 0:67þ 1:67�
B3

B1
þ 0:21�W þ 0:038� ðTs � TmeanÞÞ

2
ð10Þ

TN ¼ ð4:357 � 0:0533�Wmean � 0:0124� Ts þ 4:497� B1 � 0:0493�
B4

B1
� 0:0126� Doff

þ 0:106�
B2

B1
Þ

2
ð11Þ

Plots of the observed versus predicted concentrations for the best predictive equations

(based on all available data) of TSS and TN calculated from Eqs 10 and 11 are plotted in Figs 3

and 4 respectively. The residual error (defined as the predicted value minus the observed

value) and 1:1 line is added to both figures.

5. Discussion

The multiple linear equations derived from the regression analysis indicate that weather-

related variables play an important role in predicting water-quality measures. In fact, many

weather variables bear more importance than the multispectral variables do. The relative

importance of each variable is provided in Table 11. If all the weather variables are removed

from Table 11, the predictive variables related to Landsat bands alone provide only coefficients

of determination, R2, of 0.53 and 0.26 for TSS and TN respectively.

Given the statistics of the fifteen calibration and validation runs, prediction of TSS concen-

tration is accurate, with the hybrid process providing improved accuracy. Even though the

Table 10. Calibration and validation results for TN.

Hybrid Forward Selection Conventional Forward Selection

Calibration Validation Calibration Validation

Mean R2 0.64 0.37 0.76 0.33

Standard deviation of R2 0.07 0.21 0.10 0.21

https://doi.org/10.1371/journal.pone.0201255.t010

Table 11. Best fitting multiple regression models for TSS and TN using the hybrid forward selection considering VIF.

Coefficient of predictor Confidence Interval for

coefficient

ResponseVariable R2 Num. of Obs. Pred. Variable Imp. of Var. Value Std. Error Lower 95% Upper 95% p VIF
ffiffiffiffiffiffiffiffi
TSS2
p

0.68 28 (intercept) - -0.67 0.50 -1.69 0.36 0.19 -

B3/B1 0.93 1.67 0.24 1.16 2.17 <0.0001 1.21

W 0.21 0.21 0.065 0.077 0.34 0.0034 1.08

Ts-Tmean 0.04 0.038 0.027 -0.018 0.093 0.18 1.16
ffiffiffiffiffiffiffi
TN2
p

0.62 38 (intercept) - 4.357 0.91 2.50 6.21 <0.0001 -

Wmean 0.39 -0.0533 0.012 -0.078 -0.029 <0.0001 1.26

Ts 0.32 -0.0124 0.0031 -0.019 -0.0062 0.0003 1.31

B1 0.18 4.497 1.50 1.44 7.55 0.0053 2.35

B4/B1 0.11 -0.0493 0.020 -0.090 -0.0089 0.018 2.73

Doff 0.11 -0.0126 0.0051 -0.023 -0.0021 0.020 1.18

B2/B1 0.05 0.106 0.067 -0.030 0.24 0.12 4.50

https://doi.org/10.1371/journal.pone.0201255.t011
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calibration accuracy for TN is satisfactory, the validation accuracy is not, and the standard

deviation of validation R2 is relatively high. However, we observed that the derived equations

can still predict the relative magnitude of TN concentrations. Therefore, we suggest using the

TN equation to evaluate the trend of change in water quality only.

The VIF-based hybrid forward-selection process showed better performance than that of

the conventional forward selection process. In some of the runs, the hybrid process and the

conventional process arrived at the same equations, but the hybrid process successfully pre-

vented overfitting in other runs, thus resulting in higher validation accuracy. Due to overfit-

ting, calibration accuracy from the conventional process is higher than that of the hybrid

process, with the cost of lower validation accuracy.

Kloiber et al. [12] found that both B1 and the ratio B3/B1 can be used to predict the Secchi

disk transparency, which is closely related to TSS. From Kloiber et al. [12], the regression

model containing B3/B1 and B1 predicted Secchi disk transparency with R2 of 0.75. We also

found B3/B1 as the dominant important variable in determining TSS concentrations, but did

not find B1 as one of the significant prediction variables. Kloiber et al. [12] accrued a slightly

higher R2 than our study possibly because Kloiber et al. limited their in situ data collection to

±1 day from the corresponding satellite image acquisitions. In the current study, the predictive

equation that includes B3/B1 alone has a R2 of 0.53 for TSS because our available data only

allows in situ samples to be ±7 days from satellite image acquisitions. Considering weather var-

iables successfully boosted R2 to 0.68, such that it was comparable with that of Kloiber et al.

[12] (i.e., 0.75).

Fig 3. Observed versus predicted values for total suspended solids (TSS) (R2 = 0.68).

https://doi.org/10.1371/journal.pone.0201255.g003
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For TSS, we found the instantaneous wind speed, W, to be an important prediction vari-

able. Since the instantaneous wind speed is chosen, instead of the daily mean wind speed

between the image date and the water-quality sampling date (Wmean), it indicates that the

instantaneous effect of wind (such as the surface ripple effect) is more important to TSS deter-

mination than the long-term heat-exchange effect. Even though the difference between the

water surface temperature and the daily mean air temperature between the image date and the

water-quality sampling date is selected as one of the prediction variables, it is of little impor-

tance in the model. It was chosen because the default forward-selection method has a lenient

inclusion criterion (p = 0.25).

Dewidar and Khedr [11] determined that the band ratio B2/B1 is important in determining

the TN concentration in brackish lagoons. However, the correlation between B2/B1 and TN

was low in Dewindar and Khedr [11], with a correlation coefficient of 0.298. B2/B1 was also

chosen by this study as one of the predictor variables, but B2/B1 still bears little predictive

power as shown in Table 11. In contrast, the daily mean wind speed between the image date

and the water-quality sampling date (Wmean) and water surface temperature (Ts) were deter-

mined to be the two most important predictor variables for TN prediction.

The high importance of water surface temperature Ts fortifies the hypothesis that water

temperature is related to the growth of microorganisms. The high importance of the daily

mean wind speed between the image date and the water-quality sampling date (Wmean) and

date difference (Doff) indicate that temperature change due to accumulated heat flux between

Fig 4. Observed versus predicted values for total nitrogen (TN) (R2 = 0.62).

https://doi.org/10.1371/journal.pone.0201255.g004
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the image date and sampling date is important. Referring to Eqs 7 and 8, the mechanism

involved should be the latent heat flux because latent heat flux (Eq 7) and sensible heat flux (Eq

8) are the only two components in the heat flux budget that involve wind speed. Latent heat

flux is a main component of heat exchange between water and the atmosphere, and sensible

heat plays a much lesser role [74]. Even though the circumstantial evidence based on Eqs 7 and

8 points to the conclusion noted above, this still needs to be validated by direct evidence from

future field experiments.

6. Field application

To demonstrate the utility of water-quality monitoring by satellites via our proposed method,

water-quality measures from Lady Bird Lake on May 14, 2014 were estimated using Eqs 10

and 11, respectively. This date was chosen because storms occurred on the day previous to and

in the morning of the satellite overpass (prior to the overpass) with a cumulative rainfall depth

of 27 mm, likely making it easier to discern the effect of urban stormwater runoff to the lake.

Figs 5 and 6 give the respective predicted spatial distribution of TSS and TN concentrations.

The water quality in the northwestern part of the lake is generally better than that in the

southeastern area, which is expected as a result of urban runoff. Lady Bird Lake has three

major tributaries in the metropolitan Austin area: Barton Creek, Shoal Creek, and Waller

Creek. The confluence points of the three streams are indicated in Figs 5 and 6. Barton Creek

includes an extensive green belt around its riparian zone, and strict development regulations

are in force because it is located within the Edwards Aquifer recharge zone [75]. As a result,

there is no marked change in TSS and TN at the confluence point of Barton Creek, relative to

proximal areas of the lake. However, the confluence points of Shoal Creek and Waller Creek

show significant increase in TSS and TN. This illustrates the effect of conservation efforts

spent on each watershed on water quality. The influence of Shoal Creek is more visible in Figs

5 and 6 than that of Waller Creek because Shoal Creek has a larger drainage area [76]. Such

details in spatial distribution can only be achieved via satellite-derived water-quality predic-

tions and can serve as the precursor examination for more detailed water-quality

Fig 5. TSS concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014.

https://doi.org/10.1371/journal.pone.0201255.g005
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examinations. This field application also showed that the equation to predict TN concentration

can estimate the trend of change in TN concentration with sufficient confidence, even though

the predicted absolute concentration values might not be accurate.

7. Conclusions

Multiple regression-derived equations using reflectance bands, band ratios, and environmental

factors as predictor variables for concentrations of TSS and TN respectively, were derived

using a hybrid forward-selection method that considers both VIF and p-value in the forward-

selection process. Landsat TM, ETM+, and OLI/TIRS (Landsat 8) images were all used to

derive the single set of equations. The coefficients of determination of the best-fitting resultant

equations are 0.68 for TSS and 0.62 for TN based on all available observation data. Through

repeated data splitting into the calibration and validation groups, the hybrid method delivered

a calibration accuracy (in R2) of 0.73 and 0.64 for TSS and TN, respectively, and validation

accuracy of 0.70 and 0.37 for TSS and TN, respectively. The hybrid forward-selection process

consistently showed better validation accuracy compared to that of the conventional forward-

selection process. Validation results show good accuracy for TSS prediction. However, the

mean and standard deviation for coefficients of determination of TN validations tends to be

unsatisfactory. Therefore, the predictive equation for TN is recommended for trend evaluation

only, as indicated by the field application.

Among all chosen predictor variables, B3/B1 has the strongest influence on the predictive

power for TSS retrieval. The band ratio of B3/B1 was also selected by Kloiber et al. [12] in pre-

dicting Secchi disc transparency, indicating a correlation between Secchi disc transparency

and TSS. Other reflectance bands and band ratios, such as B1, B2/B1, and B4/B1 are also influ-

ential in estimating TN concentrations, but they are not dominant factors.

Environmental factors, such as wind speed and water surface temperature, were crucial in

determination of water quality in this study. Inclusion of environmental factors allows usage

of a single set of predictive equations across the seasons, as such predictive equations are

Fig 6. TN concentrations for Lady Bird Lake, Austin, Texas, USA, May 14, 2014.

https://doi.org/10.1371/journal.pone.0201255.g006
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innately adapted to the environmental changes for different seasons. The predictive equation

will also likely to be more accurate because the pooling of all observation data.

The instantaneous wind speed, W, bears considerable importance in TSS determination,

which is explained by wind-generated surface ripple effects. Water surface temperature Ts

(derived from satellite remote-sensor thermal band image data) is important in determination

of TN concentrations, as the growth of microorganisms in water is correlated with water nutri-

ent concentrations.

The time offset between the satellite image-acquisition date and water-sampling date must

be accounted for in water nutrient concentration (i.e., TN) retrieval. The heat flux budget

between air and the water surface was considered, and components in the budget equations

were included in the forward-selection procedure. In additional to the predictor variables

identified above, the daily mean wind speed between the image-acquisition date and water-

sampling date (Wmean) was identified as the most important predictor variables for TN deter-

minations. The time difference (in days) between the image-acquisition date and water-sam-

pling date (Doff) was also chosen for TN determination. According to the heat flux budget

equations, the inclusion of Wmean, Ts, and Doff indicates the dominance of latent heat flux in

the determination of TN.

The results showed that:

1. Environmental factors can constitute important ancillary variables in water quality estima-

tion based on satellite remote-sensor images;

2. By including environmental factors, it is feasible to pool all observation data to create a sin-

gle set of predictive equations, and use it to estimate water quality for all seasons;

3. A single set of predictive equations can be determined to retrieve year-round water-quality

quantities (e.g., TSS and TN) with satisfactory accuracy from Landsat TM, ETM+, and

OLI/TIRS imagery on the same lacustrine water body;

4. Population change does not drastically change the applicability (i.e. the relationship

between spectral bands and water-quality constituents) of regression-derived equations for

water quality prediction. The derived predictive equations are applicable for data across 30

+ years (1983 to 2015) even though population in the metropolitan area almost tripled

(from 374,000 in 1983 to 901,000 in 2015) over the same period of time [44];

5. Including VIF as part of the forward-selection process comprises a simple yet reliable meth-

odology for choosing predictor variables for TSS concentrations;

6. Prediction of water nutrient concentrations (e.g., TN) yields low accuracy using the meth-

odology depicted in this study, but the predictive equations are still valuable in evaluating

the trends of spatial and temporal changes of nutrient concentrations; and

7. The methodology depicted in this study, including the utilization of a hybrid forward-selec-

tion process and consideration of environmental factors, showed marked improvements

compared to the conventional methods, and it is simple enough to be followed by govern-

ment agencies by addressing the issues of cost, product accuracy, data continuity, and pro-

grammatic support.

In the future, the hybrid forward-selection method can be further refined to require a stric-

ter criterion for the inclusion of predictor variables. The default p = 0.25 may have allowed

inclusion of a few predictor variables that were not significant in the final selection of

variables.
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In addition, inclusion of ancillary environmental factors involving long-term averaging,

such as average wind speed (Wmean), into the regression models demonstrated that it is possi-

ble to satisfactorily estimate water-quality quantities, even when a large temporal offset

between satellite image-acquisition and in situ water sampling exists. Currently, the recom-

mended longest temporal window between remote-sensor image-acquisition and water-sam-

pling date is approximately seven days [20]. Since these environmental factors are part of the

heat flux equations, including environmental factors in predictive equations means an active

compensation in estimation error due to the temporal offset in collecting image and water-

sample data. This hypothesis needs further testing as part of future research efforts.
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