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High-resolution isotopic evidence 
for a potential Saharan provenance 
of Greenland glacial dust
Changhee Han1,2, Soon Do Hur2, Yeongcheol Han2, Khanghyun Lee2, Sungmin Hong1, 
Tobias Erhardt   3, Hubertus Fischer   3, Anders M. Svensson   4, Jørgen Peder Steffensen4 & 
Paul Vallelonga   4

Dust concentrations in Greenland ice show pronounced glacial/interglacial variations with almost two 
orders of magnitude increase during the Last Glacial Maximum. Greenland glacial dust was previously 
sourced to two East Asian deserts: the Taklimakan and Gobi deserts. Here we report the first high-
resolution Pb and Sr isotopic evidence for a significant Saharan dust influence in Greenland during 
the last glacial period, back to ~31 kyr ago, from the Greenland NEEM ice core. We find that during 
Greenland Stadials 3–5.1 (~31 to 23 kyr ago), the primary dust provenance was East Asia, as previously 
proposed. Subsequently, the Saharan isotopic signals emerge during Greenland Stadials 2.1a–2.1c 
(~22.6 to 14.7 kyr ago) and from the late Bølling-Allerød to the Younger Dryas periods (~13.6 to 12 kyr 
ago), coincident with increased aridity in the Sahara and efficient northward transport of dust during 
these cold periods. A mixing isotopic model proposes the Sahara as an important source, accounting for 
contribution to Greenland glacial dust of up to 50%, particularly during Greenland Stadial 2.1b and the 
late Bølling-Allerød to the Younger Dryas periods. Our findings provide new insights into climate-related 
dust provenance changes and essential paleoclimatic constraints on dust-climate feedbacks in northern 
high latitudes.

Atmospheric mineral dust (hereafter referred to as dust) is an important component of the Earth’s climate system, 
potentially affecting the radiative balance through reflection and absorption of both the incoming solar radia-
tion and the outgoing infrared radiation1,2. Climate models have attempted to assess the radiative effects of dust 
on climate under present and past climatic conditions with the final goal of future prediction, using in-situ and 
remote observation dust data for the modern era and paleo-dust records in sediments and ice cores for the past3–5.

Recently, a stronger variability of Arctic near-surface air temperatures, an effect known as ‘Arctic amplifica-
tion’, emerged as a key issue in future global climate simulations6,7. The main contributors to Arctic amplification 
are still under debate for the recent amplified warming6,7. As for the past Arctic amplification, recent model sim-
ulation proposed that the surface cooling effect of dust could be of similar strength as the radiative forcing due 
to the reduced CO2 during the Last Glacial Maximum (LGM; 23–19 kyr ago)5. However, radiative forcing varies 
with the spatial and vertical dust concentrations4,5, which depend on transport patterns from the continental dust 
source areas to the Arctic by atmospheric circulation8,9.

The LGM is well characterized by its very dust-laden atmosphere, as reflected by an approximate 20-fold 
increase in Greenland dust deposition compared to the Holocene10 potentially caused by the expansion of source 
areas, enhanced dust mobilization by strong winds, and increased atmospheric residence time11,12. However, the 
discrepancy between the observed and modeled dust fluxes in Greenland for the LGM still exists, possibly due to 
the source area changes in potential contributors to Greenland dust4,13–15. This highlights the importance of better 
understanding dust sources under different climatic conditions for reducing the uncertainty in estimates of the 
dust distribution in the Arctic using dust models.
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Early studies confined the main dust source in the GRIP and GISP2 ice cores, drilled at the Summit in 
Greenland, during the cold climatic periods using mineralogical and isotopic characteristics16–18. They pointed to 
East Asian deserts (the Taklimakan and the Gobi) as the main source of the Greenland dust for all time periods in 
the past. However, the dominant dust source affecting glacial dust flux in Greenland still remains ambiguous. The 
Sahara18,19, a central European source20, or Siberian/Alaskan sources15 have been proposed as additional potential 
contributors to Greenland dust. The uncertainty in discriminating Greenland dust provenance is also large for 
the current climatic condition. Isotopic studies of dust in Greenland snow and ice assigned East Asia and/or the 
Sahara as the dominant sources21–23.

Temporal variability of concentrations and isotopes of Pb and Sr
Here we report the first high-resolution Pb and Sr isotopic records evidencing Saharan dust inputs to Greenland 
during certain periods of the late last glacial age (LLGA). The isotopic data were obtained in 67 sections from 
the 2,540-m-long North Greenland Eemian Ice Drilling (NEEM) ice core (77.45° N, 51.06° W, altitude 2,450 m 
above sea level (asl))24 with ages ranging from ~8,260 to ~30,800 years before present (referred to as BP, where 
‘present’ is defined as 1950) (see Supplementary Table S1 and Methods). This time interval covers dramatic mil-
lennial climate changes (Fig. 1): the early Holocene (EH), the Younger Dryas cooling event (YD) corresponding 

Figure 1.  Changes in Pb, Sr and Ba concentrations, and Pb and Sr isotopic compositions from the NEEM ice 
core over the past ~31 kyr. (a) NEEM δ18O (Greenland temperature proxy) isotopic profile24 and Greenland 
climatic events25 (shown by the vertical dashed lines and shaded grey; see text) on the age scale. (b) Pb (blue 
filled circles), Sr (red filled squares) and Ba (green filled triangles) concentrations in ice of the samples (shown 
in a logarithmic scale). Also shown is the Greenland dust (insoluble particles) concentration record from the 
NGRIP ice core34, drilled in central Greenland (shown in a logarithmic scale). (c,d) Pb/Ba and Sr/Ba ratios 
in each sample. Solid and dotted lines represent the mean Pb/Ba and Sr/Ba ratios in the upper (UC), lower 
(LC) and bulk (BC) continental crust28 and soils29, respectively. (e,f) The observed record of 206Pb/207Pb and 
208Pb/207Pb ratios. (g) The observed record of 87Sr/86Sr ratios in aluminosilicate fraction (see Methods and 
Supplementary Fig. S4).
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to Greenland Stadial-1 (GS-1), the Bølling-Allerød (B/A) warming event, Greenland Interstadial-1 (GI-1), and 
GS-2 to GS-5.1, including the LGM of the LLGA (Fig. 1) (GS and GI numbering is according to ref.25). In contrast 
to earlier isotopic tracer studies, particularly those using Nd isotopes for which large samples (>0.5 kg) were 
required for high precision analysis in Greenland ice16,17, our Pb and Sr isotopes were determined using a sample 
weight of ~10 g, allowing for a much higher time resolution in isotopic records related to Greenland dust prove-
nance changes in response to climatic conditions26 (see Methods).

The Pb and Sr concentrations show a high covariance between the changes in the concentrations and the 
climatic conditions (δ18O, proxy of Greenland temperature) with the lowest levels (averages of 5.2 and 62 pg g–1, 
respectively) during the EH and much higher levels (averages of 155 and 2,618 pg g–1) during the cold stages (GS-2 
to GS-5.1) (Fig. 1a,b). Concentrations vary in association with Ba (a conservative crustal reference element) and 
the dust profile (Fig. 1a,b), as previously found for the dust-derived trace elements in Greenland ice18,27. Pb/Ba 
and Sr/Ba ratios are within the elemental compositions of the upper/lower continental crusts28 or soils29 during 
the LLGA (Fig. 1c,d), indicating that most fractions of Pb and Sr in ice originated from mineral dust. These ratios 
also vary significantly, notably for Pb, with some enhanced values above the crustal ratios during the B/A and EH. 
These variations may be the consequence of changes in the crustal mineralogy due to changes in the geographical 
locations of dust sources27 and/or non-crustal contribution, particularly from volcanoes18.

The isotopic compositions of Pb and Sr exhibit a significant variability over the time period back to ~31 kyr BP, 
with the ratios distributed in a relatively narrow range during cold climatic conditions (Fig. 1e–g). During the LLGA, 
the Pb isotopic composition shows a substantial level of variability (ranges, 1.1878–1.2084 for 206Pb/207Pb and 2.4664–
2.4993 for 208Pb/207Pb) with more radiogenic values during GS-2 compared to GS-4 to GS-5.1, while the 87Sr/86Sr 
ratios vary within smaller range of values between 0.7173 and 0.7209 (see inset of Fig. 1g). The Pb and Sr isotopic 
variations during the LLGA are believed to be related to changes in dust sources, because the Pb/Ba and Sr/Ba ratios 
are within the ratios of the continental crust or soils. The Pb and Sr isotopes vary with changing climatic conditions 
during the B/A and YD events. They are highly variable during the EH, with ranges of 1.1713–1.2145, 2.4517–2.4905, 
and 0.7093–0.7345 for 206Pb/207Pb, 208Pb/207Pb, and 87Sr/86Sr, respectively. A large variability in the isotopic compo-
sition and elemental ratios of Pb, Sr and Ba during this period has been attributed to changes in dust sources and/or 
possible volcanic inputs18,27. However, the variability could be partly due to the relatively shorter time span (less than 1 
year) integrated by each sample (see Supplementary Table S1), inducing seasonal differences in the strength of multi-
ple sources between the high-dust (spring) and the low-dust (autumn/winter) concentration seasons21,22.

Transition from East Asian to Saharan isotopic source signatures.  Pb isotopic compositions 
(206Pb/207Pb versus 208Pb/207Pb) in the samples are distributed along a mixing area between different potential 
source areas (PSAs) of dust (Supplementary Fig. S1), generally being more radiogenic during cold periods than 
during the EH (Fig. 2). In detail, most of the samples during GS-3 to GS-5.1, including GI-3 and GI-4, are within 
the range between the Taklimakan and the Gobi deserts, confirming previous findings that East Asian deserts are 
the main source of Greenland glacial dust16–18 (see Supplementary Fig. S3e). Interestingly, a different situation 
emerges for the Pb isotopic composition during GS-2.1a to GS-2.1c. The data tend to distribute on the edge of the 
Taklimakan field or within the Saharan field, having more radiogenic values (Supplementary Fig. S3c). A shift is 
observed in the ratios corresponding to GS-2.1b, displaying more thorogenic ratios (208Pb/207Pb: 2.4856–2.4970) 

Figure 2.  Lead isotopic compositions in the NEEM ice core. The shading and dashed areas represent the 
literature derived PSAs isotopic compositions defined for the potential desert sources and volcanic sources, 
respectively (see Supplementary Fig. S1 for details).
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(Supplementary Fig. S3c). Compared to the data during GS-3 to GS-5.1, the higher 206Pb/207Pb and 208Pb/207Pb 
ratios observed in GS-2.1a to GS-2.1c suggest that the Sahara could be a potential significant dust source in 
Greenland during these climatic periods. Subsequently, the Pb isotopic ratios in the ice are lower and move 
towards the Taklimakan signature during the warmer period of the B/A event, but during the late B/A and YD 
periods they rise again to very radiogenic values, typical for Saharan dust (Fig. 2 and Supplementary Fig. S3a).

The plot of 87Sr/86Sr versus 206Pb/207Pb ratios in the samples provides additional constraints on the potential 
inputs of Saharan dust to Greenland (Fig. 3). The older samples (GS-3 to GS-5.1) lie on a mixture of sources from the 
Taklimakan, the Gobi, and northern China, except for the two samples shifting towards more radiogenic 206Pb/207Pb 
values in the Saharan field (sample nos. 58 (~26 kyr BP) and 59 (~26.6 kyr BP) in Supplementary Fig. S3f). The Pb 
isotopes for these two samples, however, plot within the Taklimakan and the Gobi Pb isotopic areas (Supplementary 
Fig. S3e), excluding the possibility of the Saharan dust contribution during GS-3. Comparatively, previous GISP2 
data16 from 23.2 to 26.2 kyr BP reflect a mixing between Asian deserts and the Sahara (Fig. 3). However, the Sr iso-
topic composition of the GRIP samples exhibits much lower values (Fig. 3), due to no pretreatment of the samples 
to remove carbonate fraction in these samples (lowering 87Sr/86Sr ratios)18. During GS-2.1a to 2.1c, the samples are 
divided into three groups. First, the samples with lower radiogenic Pb isotopic ratios (the Taklimakan-dominant) are 
placed on a mixed field of the provenance of Asian dusts, notably between the Taklimakan and the Gobi (group A in 
Supplementary Fig. S3c,d). Second, the samples on the lower edge of the Saharan Pb isotopic area (mixing with the 
Taklimakan and the Sahara) have compositions that plot directly on a mixing area among the Taklimakan, the Gobi, 
and the Sahara (group B in Supplementary Fig. S3c,d), suggesting an increase in the Saharan contribution. Finally, 
the samples showing more radiogenic Pb isotope values (Sahara-dominated), particularly during GS-2.1b, display a 
systematically more Sahara-like 87Sr/86Sr versus 206Pb/207Pb signature compared to the two different groups (group 
C in Supplementary Fig. S3c,d). This is thought to be a consequence of the additional increase in the Saharan contri-
bution. Interestingly, the distinct isotopic signatures for Saharan dust also emerge in the 87Sr/86Sr versus 206Pb/207Pb 
plot for the samples corresponding to the late B/A and YD periods (Supplementary Fig. S3b), providing insights into 
climatic conditions favoring dust transport out of the Sahara to Greenland. European loess deposits were previously 
proposed as potential candidates for Greenland glacial dust20,30. However, significant differences in the Pb-Sr iso-
topic compositions between European loess deposits and the other PSAs during cold periods rule out this hypothesis 
(Figs 2, 3 and Supplementary Fig. S3a–f).

The “grain-size effect” on isotope fractionation hints at further support for Saharan dust in Greenland glacial 
ice: the 87Sr/86Sr ratios in Chinese deserts are very high (more than 0.7260) in the fine grain-size (<2 μm) alumi-
nosilicates due to the enrichment of clay minerals with a high content of radiogenic strontium31. Previous studies 
for Greenland glacial dust provenance compared the Sr isotopic signatures in a <5 μm size fraction of PSAs16,17. 
However, the mass mean grain size of dust in Greenland ice is within 2 μm in diameter32. Assuming that the 
Taklimakan desert is a major source area for Greenland dust as previously reported16,17, the Sr isotopic compo-
sition in our samples should be more radiogenic than the values we found. Thus, we argue that coupling the Sr 
isotopic composition in aluminosilicates with the systematic Pb isotope ratios supports a potential contribution 
of the Sahara to Greenland dust input during GS-2.1a to GS-2.1c and the late B/A to YD periods.

Figure 3.  A plot of the 87Sr/86Sr vs 206Pb/207Pb in the NEEM ice core. Also included are data previously 
reported from the GISP216 and GRIP18 ice cores. The shading and dashed areas represent the literature derived 
PSAs isotopic compositions defined for the potential desert sources and volcanic sources, respectively (see 
Supplementary Fig. S2 for details).
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Compared to the isotopic compositions during cold periods, the Sr and Pb isotopic ratios in general shifted 
towards lower radiogenic values (Sahara-depleted) during the EH (Fig. 3). The isotopic compositions, mostly 
plotted within a mixed field between the Taklimakan, the Gobi, and northern China, imply that these PSAs are 
the most likely dust sources. A few isotopic excursions raise the possibility of sporadic dust inputs from proglacial 
floodplain in Greenland (sample nos 1 and 3 in Supplementary Fig. S3b) and a volcanic contribution with lower 
radiogenic 87Sr/86Sr isotopic ratios (sample nos 17 to 20 in Supplementary Fig. S3b).

A model estimate of the Saharan contribution.  We made a rough estimate of the magnitude of dust con-
tribution from the Taklimakan, the Gobi and the Sahara using a mixing isotopic model (see Methods and Fig. 4a). 
Our modeling approach shows on average a 85% (69–94%) contribution from the Taklimakan and the Gobi prior to 
GS-2.1, during which dust concentrations were relatively higher (Fig. 4a,b and Supplementary Table S2). This contri-
bution remains still high at an average of 71% (55–83%) during GS-2.1c. Subsequently, the Sahara becomes a more 
important contributor during GS-2.1b, in line with the significant reduction of dust concentrations, accounting for 
an average of 49% (16–70%) of Greenland glacial dust (Fig. 4a,b). During GS-2.1a, the Saharan contribution accounts 
for 36% (11–61%) and shows a continuous decline to 18% (0–62%) in the warmer climatic conditions of the early B/A 
period. Conversely, significantly enhanced Saharan contributions with an average of 49% (12–73%) are observed from 
the late B/A to the YD periods when the climate becomes colder (Fig. 4a and Supplementary Table S2).

Figure 4.  Changes in the relative contributions of the Taklimakan, the Gobi and the Sahara to the Greenland 
dust deposition from the YD to the GS-5.1 together with paleoclimate proxy records. (a) The relative 
source strength (in fraction) of the three PSAs calculated using a mixing isotopic model (see Methods and 
Supplementary Table S2). Also shown are Greenland climatic events25. (b) The NGRIP Greenland ice core dust 
concentration record34. (c) Time intervals of Saharan aridity and humidity39–42 (see text). AHP indicates the 
African Humid Period. (d,e) Dust flux records from the northwest African margin site GC68 (19.36° N, 17.28° 
W)42 and the Mid-Atlantic site GGC3 (26.14° N, 44.80° W)41, respectively. (f,g) Lake Qinghai (36.32°–37.15° N, 
99.36°–100.47° E), situated on the northeastern Tibetan Plateau, Westerlies climate index (WI, flux of >25 μm 
fraction) and Asian summer monsoon index (SMI)35, respectively. The non-dimensional Lake Qinghai SMI was 
quantified by normalizing and averaging two Asian summer monsoon (ASM) proxies (CaCO3 and total organic 
carbon flux) in the lake sediments, representing larger SMI values as the stronger ASM35.
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Our model simulation underscores the importance of the Sahara as a dust contributor to Greenland glacial 
dust during certain glacial stages, possibly due to intensification of the Saharan aridity coupled with atmospheric 
circulation changes in the North Atlantic (see the next section). Given the importance of the Saharan contribu-
tion over the study period, our results suggest that the dust cycle in northern high latitudes is sensitive to climate 
and climate-related environmental changes eventually affecting emissions and long-range transport of dust from 
different sources12,33. Finally, our findings potentially provide opportunities for improved resolution of paleocli-
mate modeling to simulate the dust effects on direct and indirect radiative forcing linked to the abrupt changes 
observed during glacial epochs.

Potential climate-induced causes for the enhanced Saharan dust inputs.  To infer first-order 
insights into the potential causes enhancing Saharan dust deposition, we compare our model simulation to pale-
oclimate proxy records from the tropical North Atlantic sediments and Chinese lake sediments (Fig. 4). However, 
this approach may have limited applicability, because the proxy-based records have a lower time resolution and 
may reflect site-specific characteristics.

Dominant dust supply from East Asian sources appears during GS-3 to GS-5.1, characterized by the pro-
nounced increase of Greenland dust concentrations34 (Fig. 4a,b). The flux of the >25 μm fraction as a Westerlies 
climate index (WI) in Lake Qinghai sediments exhibits relatively higher values during the corresponding peri-
ods35 (Fig. 4f). High WI values indicate strengthened Westerlies influence and intensified aridification over inland 
East Asia35, and thus the WI sequence suggest a remarkable increase of wind intensity and dustiness in East Asia 
during GS-3 to GS-5.135–38. Conversely, a wetter phase, relative to the present day, occurred between >40 and 
25 kyr BP in the Sahara, probably due to more frequent southerly-shifted North Atlantic winter cyclones and/
or a northern advance of the African summer monsoon during cold periods39,40. Thus, we infer that the stronger 
westerly winds and source intensification in the East Asian source areas might have caused a dominant East Asian 
contribution during periods prior to GS-2.1, when Saharan dust sources were relatively inactive.

After HS-2, the Saharan contribution became significant during GS-2.1, particularly GS-2.1b (Fig. 4a). During 
these periods, the Lake Qinghai WI exhibits lower values (Fig. 4f), albeit with fluctuations, which reflect weak-
ened Westerlies35. Comparatively, the Lake Qinghai Summer Monsoon Index (SMI) shows slightly increased 
values during GS-2.1b (Fig. 4g), and this enhancement represents slight strengthening of the Asian summer 
monsoon (ASM)35. These patterns of the Lake Qinghai WI and SMI are generally consistent with mode-based 
estimates of the magnitude of Saharan dust contribution changes associated with GS-2.1 (Fig. 4). Accordingly, 
the weakening of the Westerlies, coupled with the strengthened ASM, may have led to decreased dust storminess 
in East Asian deserts and a resultant reduction of the East Asian contribution to Greenland dust deposition. 
The slightly lowered dust concentration level compared to GS-2.1c and HS-1 supports this hypothesis (Fig. 4b). 
By comparison, the sediment record from the tropical North Atlantic (Fig. 4e), reflecting major fluctuations in 
Saharan dust deposition41,42, displays a steady increase in dust fluxes over the GS-2.1. This substantial change in 
Saharan dust deposition is coincident with a known increase in the Saharan aridity, reaching its maximum at 
~20–15 kyr BP39–41 (Fig. 4c).

Finally, the Saharan contribution exhibits a decline during the B/A warm period and subsequent enhance-
ment from the late B/A to the YD cold period (Fig. 4a). This feature matches well with changes in Greenland dust 
concentrations and Saharan dust deposition in the tropical North Atlantic that are synchronous with the humid 
phase of the Sahara, initially commenced at ~15 kyr BP, and the following aridity punctuated by the YD40, and 
then the African Humid Period around ~12.3–5.5 kyr BP40–42 (Fig. 4b–e). Such synchronous changes strengthen 
our hypothesis that the intensified aridity in the Sahara is the best candidate as the major influence on enhanced 
Saharan dust supply to Greenland glacial dust deposition.

Saharan dust inputs to Greenland may have increased by means of the more effective glacial atmospheric dynam-
ics favoring a potential transport through a northward advection. A possible transport route may have passed over 
the subpolar North Atlantic, moving directly into Greenland, as identified by air mass back trajectory analysis for the 
Saharan dust events reaching the aerosol sampling campaign sites over central Greenland43,44. These events, accom-
panying a westward motion of Saharan dust plumes by trade winds and subsequent turn northward by the westerly 
flow, are caused by the propagating low pressure systems over the North Atlantic45. During the LGM, the stronger 
than present southwesterly winds prevailed over the subpolar North Atlantic in association with a southward shift of 
the generally deeper Icelandic low46. Such LGM circulation changes may have important effects on facilitating more 
frequent Saharan dust transport to Greenland through the subpolar North Atlantic33.

To summarize, our results represent the first distinct evidence for a potential Saharan contribution to 
Greenland dust during the cold stages over the last ~31 kyr. We suggest that changes in the relative source 
strength between East Asian deserts and the Sahara are likely associated with combined aspects of the climatic 
conditions in different source areas and transport efficiency closely tied to atmospheric circulation changes dur-
ing the LLGA. Further studies, extending back to the full glacial period (~100 kyr BP), will provide new insights 
into climate-related changes in dust provenance, transport mechanisms and vertical dust distribution patterns 
in northern high latitudes, and the resultant climate feedback processes, particularly linked to the past Arctic 
amplification over the full glacial age.

Methods
Ice core samples.  We selected 67 samples from the 2,540 m NEEM ice core drilled at the northwest site, 
Greenland24. The depth of these samples ranged from 1232.0 to 1671.65 m, which corresponds to the age of ~8,260 
to ~30,800 years BP, respectively. This time interval is well characterized by a series of abrupt climate changes 
known as Dansgaard-Oeschger (D/O) events and Heinrich events10,11,24. Twenty-two samples were selected for 
the early Holocene (~8,260 to 11,540 years BP), 3 for the Younger Dryas cooling period (~11,930 to ~12,700 
years BP) corresponding to Greenland Stadial-1 (GS-1), 8 for the Bølling-Allerød (~12,950 to 14,550 years BP) 
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warming period, Greenland Interstadial-1 (GI-1), and 34 for GS-2 to GS-5.1 (~14,740 to ~30,790 years BP), 
including the LGM (~19,000 to 23,000 years BP) of the LLGA. In our study, the climatic event stratigraphy was 
defined by the sequence of GS and GI, reflecting the characteristic sequence of Greenland climate changes based 
on robust correlation between different proxy climate records from the NGRIP, GRIP, and GISP2 Greenland ice 
cores25. Each core section (20 cm in length) with a cross section of 4 × 4 cm2 was mechanically decontaminated 
using an ultraclean decontamination method that we have developed for isotopic analysis of small volumes of the 
NEEM ice (see details in ref.26). It involves the chiseling of successive veneers of ice from the outside of the core 
toward the center to obtain the uncontaminated inner part of the core section, using ultraclean stainless steel 
chisels or ceramic knives, inside a Class 100 vertical laminar flow clean bench installed inside a cold room at the 
Korea Polar Research Institute (KOPRI), Korea. This ultraclean decontamination method allowed the determi-
nation of Pb and Sr isotopes even in the NEEM ice core sections, which contain only a few tens of picograms of 
Pb and Sr in a sample weight of ~10 g26. The inner core samples were divided into two pieces, each 10 cm long (a 
sample volume of ~80 mL), and the upper piece was analyzed for this study. Each subsample provides a span time 
ranging from ~0.5 year (1232.0 m) to ~2 years (1671.65 m) of snow accumulation. Thus, it enabled us to obtain 
sufficiently high-resolution time records of Pb and Sr isotopes compared to previous methods for isotopic meas-
urements of Nd, Sr and Pb in a few Greenland glacial samples with sample weights ranging from ~0.5 to 8 kg16–19.

Isotopic measurements by thermal ionization mass spectrometry.  All sample handling and ultr-
aclean analytical procedures for determining elemental concentrations and isotopic analysis were performed 
under a Class 10 vertical laminar flow clean bench or booth in clean laboratories (Class 1000) at KOPRI, as 
described in detail in ref.26. The Pb and Ba concentrations and Pb isotopic composition were simultaneously 
analyzed using a thermal ionization mass spectrometry (TIMS; TRITON, Thermo Scientific) fitted with a 23 cm 
radius, 90° magnetic sector containing a 21-sample carousel. The samples (~10 g) were first evaporated to dryness 
with a mixture of 10 μL of 65% HNO3 (Fisher “Optima” ultrapure grade), 20 μL of 48% HF (Merck “Ultrapur” 
grade), and 4 μL of dilute H3PO4 (Merck “Suprapur” grade; ~5% by weight), together with 10 μL of a mixed tracer 
solution containing accurately known amounts of the enriched isotopes 204Pb and 137Ba, on a Teflon-coated hot 
plate at ~80 °C. A droplet of PL-7 silica-gel activator was then dropped into the evaporated residue and a mixture 
of the sample residue and silica-gel was transferred to a degassed (4 A, 30 min), zone-refined rhenium filament 
(99.999% Re, 0.7 mm wide, 0.04 mm thick, H. Cross Company). The addition of the 204Pb and 137Ba spikes to the 
sample enabled both the Pb and Ba concentrations, using isotope dilution mass spectrometry, and the Pb isotopic 
composition to be determined in a single measurement. The final isotopic ratios were obtained after correction 
for the blanks. The accuracy for the concentrations was better than 10% (95% confidence interval) and the preci-
sion was ~0.28% for Pb isotope ratios on a small sample size (tens of picograms of Pb)26.

For Sr isotopes, dust particles in the sample (10 mL) were separated by centrifugation at 4,000 RPM for 10 min 
and the top solution of 6 mL was then removed by using a pipette and 6 mL of ultrapure Millipore Milli-Q water 
(MQW) was added. These two steps were repeated 5 times. Because carbonate minerals (mainly calcite) have 
higher Sr contents and significantly less radiogenic Sr isotopic ratios relative to aluminosilicates17, samples of 
the dust fraction were dissolved for 8 hours at room temperature using 2 mL of 0.5 M buffered ultrapure acetic 
acid to remove insoluble carbonate minerals in the dust fraction. The resulting aluminosilicate fraction was then 
separated by centrifugation with multiple washings in MQW. The aluminosilicates were dissolved in a HNO3/HF 
mixture and then evaporated to dryness on a hotplate at ~80 °C. The residue was re-dissolved in ~500 μL of 3.5 M 
HNO3 and Sr was isolated on an ion-exchange column with Sr-Spec resin (Eichrom Industries, IL, USA)17. The 
samples were added to the column and washed with 3.5 N HNO3. Sr was then eluted with sub-boiling distilled 
ultrapure water by a sub-boiling distillation system with two high-purity quartz distillation units (Milestone, 
DuoPUR) using the MQW, which renders more than 90% of Sr recovered with negligible Rb interference17. 
Finally, 2 μL of 4% H3PO4 was added to the Sr eluants before evaporation to easily identify the sample in the 
beaker. They were loaded onto degassed Re filaments with Ta2O5 activator solution. The Sr isotopic composition 
was determined using a TRITON TIMS for both the insoluble dust (no pretreatment by buffered acetic acid) and 
the carbonate-free dust (aluminosilicates) in the same samples. Our analytical procedures ensured a precision of 
~0.05% for the 87Sr/86Sr ratios at the lowest Sr concentration.

The Sr concentrations in the sample were directly determined by inductively coupled plasma sector field mass 
spectrometer (ICP-SFMS; Element2, Thermo Scientific), coupled with an APEX micro-nebulization desolvation 
system (APEX IR, HF, ESA, USA).

Mixing isotopic model for calculating the relative source strength.  The relative contribution of 
each dust source to the dust deposition on Greenland was estimated using a mixing isotopic model between dusts 
exported from the Sahara, the Taklimakan and the Gobi deserts, assuming that they are the three major PSAs 
dominating Greenland glacial dust. The isotopic contribution of each PSA in the samples can be estimated by the 
following mixing equations:
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where m indicates the measured isotopic value, S, T and G are the isotopic ratio of end-member of the Sahara, 
the Taklimakan and the Gobi, respectively, and F represents the fractional contribution of each end-member for 
Pb (FPb) and Sr (FSr) with FS + FT + FG = 1. Proportions of the relative contribution of the individual PSAs were 
addressed for the 45 samples from the YD to GS-5.1 by means of a Monte Carlo inversion approach consisting of 
two steps. First, the isotopic composition of each end-member was randomly selected within the ranges depicted 
in Figs 2 and 3. Then, the Genetic Algorithm embedded in the Matlab Optimization Toolbox is used to seek 
the best F values resulting in minimum errors in the above equations. Uncertainties of 0.01, 0.02, and 0.001 for 
206Pb/207Pb, 208Pb/207Pb and 87Sr/86Sr, respectively, were allowed in the measured isotopic values and weighted in 
the total error calculation. These two steps were repeated more than 100,000 times. To render the simultaneous 
equations solvable, the Pb/Sr ratios of each end-member are assumed to be identical (FPb = FSr). The resulting 
model approach yields a temporal record of the relative importance of the Sahara, the Taklimakan and the Gobi 
deserts as sources to the Greenland glacial dust. Considering a wider range of end-member values away from the 
sample values for the Taklimakan Sr-Pb isotopic compositions relative to those for the Gobi, our model simula-
tion would potentially overestimate the magnitude of dust contribution from the Gobi.
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