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Abstract: Influenza A virus (IAV) has developed strategies to utilize host metabolites which,
after identification and isolation, can be used to discover the value of immunometabolism. During this
study, to mimic the metabolic processes of influenza virus infection in human cells, we infect A549
cells with H1N1 (WSN) influenza virus and explore the metabolites with altered levels during the
first cycle of influenza virus infection using ultra-high-pressure liquid chromatography–quadrupole
time-of-flight mass spectrometer (UHPLC–Q-TOF MS) technology. We annotate the metabolites using
MetaboAnalyst and the Kyoto Encyclopedia of Genes and Genomes pathway analyses, which reveal
that IAV regulates the abundance of the metabolic products of host cells during early infection to
provide the energy and metabolites required to efficiently complete its own life cycle. These metabolites
are correlated with the tricarboxylic acid (TCA) cycle and mainly are involved in purine, lipid, and
glutathione metabolisms. Concurrently, the metabolites interact with signal receptors in A549 cells to
participate in cellular energy metabolism signaling pathways. Metabonomic analyses have revealed
that, in the first cycle, the virus not only hijacks cell metabolism for its own replication, but also affects
innate immunity, indicating a need for further study of the complex relationship between IAV and
host cells.

Keywords: influenza virus; metabolomics analysis; TCA cycle; human cells; first infectious cycle

1. Introduction

Influenza A virus (IAV), a member of the Orthomyxoviridae family, is a negative-sense,
single-stranded, enveloped, segmented RNA virus [1,2]. IAV usually infects epithelial cells of
the upper and lower respiratory tracts, including the nasal mucosa, trachea, and lungs, with no
evident symptoms during the early phase of infection [3,4]. Once an influenza virus invasion
occurs, innate immunity is activated, and interferons are secreted by host cells to limit the early viral
proliferation [3]. Then, adaptive immunity is activated by other cytokines produced during viral
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infection. However, in some cases, highly pathogenic influenza viruses induce cytokine storms, a
consequence of excessive production of cytokines and interferon, resulting in infections and even
death [5].

To facilitate virus replication in the host cells, IAV has evolved strategies to block the innate
and adaptive immune responses of the host cells and seize organelles from host cells to synthesize a
large number of metabolites required for viral reproduction, as well as energy for the packaging of
the virus [6,7]. Enveloped, non-enveloped, DNA and RNA viruses share lipid metabolites in their
replication cycles to induce the formation of new cytoplasmic membrane structures, which contribute
to the replication and packaging of the viral genome [8–10]. Lipid metabolism also can block the innate
immune response of host cells to ensure the large-scale replication of the virus. Therefore, IAV infection
is linked closely to metabolism, and the proliferation of the virus also is inseparable from the host
metabolism. This changing trend in small molecule metabolites may serve as a characterization of
host–pathogen interactions to monitor immune status.

Although significant progress has been made toward an anti-influenza virus drug discovery,
including M2 ion channel blockers, neuraminidase inhibitors, and polymerase inhibitors [11],
challenges posed by drug toxicity and viruses with genetic resistance remain a serious problem [12–15].
Previous research demonstrated the metabolic effects of influenza virus infection in Madin–Darby
canine kidney (MDCK) cells, displaying the intra- and extra-cellular metabolite profiling upon IAV
infection [16,17]. Little is known, however, about the systemic metabolic dynamics during the early
stage of virus infection. During our study, we analyze changes in metabolism upon influenza virus
infection in human cells during the first infectious cycle via metabolomics. Early metabolite analysis
will throw new light on the activation of the innate immune metabolism. We believe that the results of
this work will elucidate the activation of innate immunity to viral infection from the perspective of the
host and provide new control strategies for the development of novel drugs and the treatment and
prevention of influenza virus infection.

2. Materials and Methods

2.1. Cell Culture and Viral Preparation

Human lung carcinoma epithelial cells (A549), MDCK cells and mouse lung epithelium (MLE-12)
cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with 10%
fetal bovine serum (FBS, Gibco) in 5% CO2 at 37 ◦C. The IAV A/WSN/33 (H1N1) was propagated at
37 ◦C for 72 h in allantoic cavity-specific pathogen-free embryonated eggs at 10 days of age. Virus titers
were determined by a plaque assay. Virus stocks were stored at −80 ◦C until use.

2.2. Plaque Assay

MDCK cells were seeded in 12-well plates, infected with serial dilutions of the virus in
serum-free DMEM supplemented with 4 µg/mL of l-1-tosylamido-2-phenyethyl chloromethyl ketone
(TPCK)-treated trypsin for 2 h, and then washed with phosphate-buffered saline (PBS). The cells
were covered with Modified Eagle’s Medium containing 1% agarose (AMRESCO) and 2 µg/mL of
TPCK-treated trypsin. The plates were allowed to solidify at 4 ◦C for 5 min and incubated upside-down
at 37 ◦C. Following 72 h, viral titers were determined by counting the visible plaques.

2.3. Virus Infection In Vitro and In Vivo

When the A549 cells reached high confluence (>95%), they then were cultured for 4 h in serum-free
DMEM, compared with controls under identical culture conditions, and infected with WSN at a
multiplicity of infection (MOI) of 0.1, 1, and 5. The virus inoculums were removed by washing with
PBS and incubation in DMEM for the indicated times in 5% CO2 at 37 ◦C. The infected cells were
collected at 0 h, 8 h, and 16 h and stored at −80 ◦C.
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The A/WSN/33 (H1N1) virus titer was determined by plaque assays. Groups of six 6–8-week-old
female BALB/c mice were intranasally inoculated with 50 µL of 5000 p.f.u of virus diluted in
phosphate-buffered saline (PBS). Mock-infected control animals were inoculated intranasally with
50 µL PBS. Animals that showed signs of severe disease and weight loss >30% of their initial body
weight were considered moribund and were sacrificed humanely according to animal ethics guidelines.
Five mice from each group were euthanized at 0 h, 12 h, 24 h, and 48 h and necropsies were performed.
The lung tissue samples were homogenized in PBS with antibiotics in a homogenizer and used to
determine the viral titers using the plaque assay. The lung tissue and serum were divided into three
portions, used for an enzyme-linked immunosorbent assay (ELISA) and a metabolite concentration
test, respectively.

2.4. Immunofluorescence Assay

Cells were cultured overnight in 24-well plates. Prior to the assays, cells were cultured for 4 h in
a serum-free medium and then infected with WSN at a MOI of 0.1. Cells (500 µL) were collected at
0 h, 2 h, 5 h, and 8 h, washed with PBST, fixed in 4% paraformaldehyde, and stored at 4 ◦C overnight.
Samples then were blocked with 4% bovine serum albumin (BSA) and stained with anti-influenza A virus
nucleoprotein (NP) antibody (1:500). The secondary antibody (1:200) was fluorescein isothiocyanate
(FITC) -conjugated goat anti-rabbit IgG, followed by 4′,6-diamidino-2-phenylindole (DAPI) staining
for 15 min. Samples then were observed using a model Leica SP8 confocal laser scanning fluorescence
microscope (Olympus). A549 cells and MDCK cells also were collected at 0 h, 12 h, 16 h, and 24 h,
and infected with WSN at a 0.1, 1, and 5 MOI (Figure S1).

2.5. Sample Preparation, ELISA, and Metabolomics Analysis

The cells were washed twice with pre-cooled PBS and then lysed with 1 mL of
methanol/acetonitrile/water (2:2:1, v/v) by vortexing twice for 30 min at 4 ◦C. The lysates then
were incubated for 1 h at −20 ◦C, followed by centrifugation at 13,000× g/min for 15 min at 4 ◦C.
The supernatants were collected and stored at –80 ◦C for further analysis. Metabolic concentration was
determined by an ELISA assay according to the manufacturer’s instruction.

2.6. Data Acquisition through LC-MS Analysis

Samples were separated on an Agilent 1290 Infinity ultra-high-pressure liquid
chromatography–quadrupole time-of-flight mass spectrometer (UHPLC-Q-TOF MS), with a column
temperature of 25 ◦C, flow rate of 0.3 mL/min, and injection volume of 2 µL.

The mobile phase contained A (water, 25 mM ammonium acetate, and 25 mM ammonia) and
B (acetonitrile). The gradient elution procedure was as follows: 0 min–1 min, 95% B; 1 min–14 min,
decreased linearly from 95–65%; 14 min–16 min, B was decreased linearly from 65–40%; 16 min–18 min,
B was maintained at 40%; 18 min–18.1 min, B was increased linearly from 40–95%; 18.1 min–23 min,
B was maintained at 95%. Samples were placed in a 4 ◦C autosampler throughout the process. To avoid
the effects of instrument detection signal fluctuations, continuous analysis of samples was performed
in random order. QC samples were inserted into the sample queue to monitor and evaluate the stability
of the system and the reliability of the experimental data.

The electrospray ionization (ESI) positive and negative ion modes were used for mass spectrometer
(MS) detection. The samples were separated by ultra-high-pressure liquid chromatography (UHPLC)
and subjected to MS using a Triple TOF 5600 mass spectrometer (ABSCIEX). The ESI source conditions
were as follows: Ion Source Gas1 (Gas1): 60, Ion Source Gas2 (Gas2): 60, Curtain gas (CUR): 30,
source temperature: 600 ◦C, IonSapary Voltage Floating (ISVF) range −5500 V to 5500 V; TOF MS scan
m/z range: 60 Da–1000 Da, production scan m/z range: 25 Da–1000 Da, TOF MS scan accumulation time
0.2 s/spectra, production scan accumulation time 0.05 s/spectra; Information Dependent Acquisition
(IDA) was obtained and adopted high sensitivity mode, Declustering potential (DP) range −60 V to
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60 V; Collision Energy range 20 eV to 50 eV; IDA was set to exclude isotopes with 4 Da, candidate ions
to monitor per cycle 6.

2.7. Statistical Analysis

XCMS software (https://xcmsonline.scripps.edu/index.php) was used to analyze the raw data for
peak alignment, calibration, and retention time peak area extraction. Metabolite structure identification
used a method of accurate mass matching (<25 ppm). Ion peaks with missing values >50% in
the data group were deleted. SIMCA-P 14.1 (Umetrics, Umea, Sweden) was used to establish a
statistical model [18]. The data were preprocessed by Pareto-scaling for multidimensional statistical
analysis, including unsupervised principal component analysis (PCA) [19,20], supervised partial least
squares discriminant analysis (PLS-DA) [21], and orthogonal partial least squares discriminant analysis
(OPLS-DA) [22]. Single-dimensional statistical analysis included Student’s t-test and variation multiple
analyses, and the PCA maps, volcano maps, and cluster maps were generated with the R program.

2.8. Differential Metabolite Analysis and Functional Pathway Analysis

Via the Variable Importance for the Projection (VIP), the characteristics of metabolite expression
patterns were used to mine the differential metabolites with biological significance. During our study,
VIP >1 was selected as the screening standard, and the differences between the groups initially were
screened. Univariate statistical analysis was used to confirm significant differences in metabolites.
Differential metabolites were identified by adjustments of the p-value for multiple testing at both VIP
>1 and univariate statistical analysis p < 0.05.

To identify the altered metabolic pathways involved during influenza virus infection, the differential
metabolites were subjected to the statistical tool MetaboAnalyst 4.0 (www.metaboanalyst.ca), which is
a web-based service that provides online visual statistical analysis [23]. Data were uploaded to KEGG
(www.kegg.jp) and HMDB 4.0 (www.hmdb.ca) for more information to identify significantly altered
pathways [24–27]. All these programs support a variety of complex statistical calculations and
high-quality graphic rendering capabilities that require copious computing resources.

3. Results

3.1. Rapid Replication of IAV in the Early Stages of Infection in Human Cells

To confirm virus replication in A549 cells, the cells were infected with A/WSN virus at a MOI of
0.1, and virus replication was analyzed. The ratio of infected cells also was identified by measuring
viral intracellular NP using immunofluorescence microscopy analysis. We found that the number of
infected cells at 8 h was greater than that of cells infected at 2 h and 5 h (Figure 1A), and that virus titers
in the A549 cell progressively increased until reaching a peak at 24 h post-infection, indicating more
efficient virus replication within 24 h post-infection (Figure 1B). Consistent results were observed in
A549 cells infected with A/WSN/1933 and analyzed at different time points, and the virus production
was comparable in a single-cycle infection, while infected cells at a MOI of 1 or 5 displayed a higher
cell death (Figure S1).

https://xcmsonline.scripps.edu/index.php
www.metaboanalyst.ca
www.kegg.jp
www.hmdb.ca
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Figure 1. A549 cells were infected with A/WSN/1933 at different time points. (A) Immunofluorescence 
staining of A549 cells post-infection with A/WSN/1933. Infected cells were distributed in four wells 

Figure 1. A549 cells were infected with A/WSN/1933 at different time points. (A) Immunofluorescence
staining of A549 cells post-infection with A/WSN/1933. Infected cells were distributed in four wells of
a 24-well plate at a MOI of 0.1. The influenza virus NP protein was analyzed with FITC-conjugated
antibody (left), and the nuclei were examined using DAPI staining (middle). Uninfected control is
shown on the right. Scale bar, 100 µm. (B) Growth curve of IAVs in A549 cells. The cells were infected
with A/WSN/1933 virus (MOI of 0.1). The supernatants were collected at the indicated time points,
and viral titers were determined by plaque-forming units.

3.2. Characteristic Metabolites in Response to Virus Infection

Metabolite isolates were prepared individually from both WSN virus- and mock-infected A549
cells. To identify the functions of the characteristic metabolites during viral infection, univariate analysis
was performed to analyze the total metabolite profiles in uninfected or WSN-infected A549 cells.
Volcano plots in Figure S2 show all differentially expressed metabolites were identified. The variations
in metabolites were correlated with different time points, and changes in up-regulated metabolites were
more abundant at 2 h post-infection, while the down-regulation of metabolites was more significant at
8 h post-infection (Figure 2A).

To compare metabolite expression profiles at 2 h, 5 h, and 8 h post-infection, we filtered metabolites
with fold analysis, calculating the 50 differentially expressed metabolites (Table 1). Shown in the heat
map diagrams in Figure 2B–D, we depict the upregulated and downregulated metabolites in A549 cells
responding to WSN virus infection induced at different time points, indicating the various metabolic
influences induced by virus infection.
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Figure 2. Identification and characterization of altered metabolites after IAV infection. (A), Bar graph
showing a large number of metabolite changes. The X-axis represents the time point, and the negative
log10 of the p-value on the y-axis. The metabolites with log2 fold changes >1 or <−1 and −log10 p > 1.3
were significantly different. Red (positive ion modes) and yellow (negative ion modes) indicate
up-regulated, while dark blue (positive ion modes) and light blue (negative ion modes) indicate
down-regulated. (B–D), A549 cells were infected with A/WSN/1933 viruses at a MOI of 0.1 for 2 h (B),
5 h (C), and 8 h (D). Total metabolites were extracted and used for metabolomic analysis. The expression
values shown in shades of green and red indicate gene levels below and above the median expression
value across all the samples (log2, from −2 to +2), respectively. Each row is a differential metabolite,
and each column represents a replicate of a group.
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Table 1. Summary of differentially expressed metabolites data.

No. Time (h) Metabolites Formula M/Z Mr HMDB PubChem KEGG

1 2 1-Methylnicotinamide C7H9N2O 137.07 137.1 HMDB0000699 457 C02918
2 2 Pantothenate C9H17NO5 218.1035 219.2 HMDB0000210 988 C00864
3 2 Sorbitol C6H14O6 181.0722 182.1 HMDB0000247 5780 C00794
4 2 L-Glutamine C5H10N2O3 147.0754 146.1 HMDB0000641 5961 C00064
5 2 S-Methyl-5’-thioadenosine C11H15N5O3S 298.0959 297.3 HMDB0001173 439176 C00170
6 Oxidized glutathione C20H32N6O12S2 613.1575 612.6 HMDB0003337 975 C00127
7 2 LysoPC (18:1(9Z)) C26H52NO7P 522.3537 521.7 HMDB0002815 16081932 C04230
8 2 Taurine C2H7NO3S 126.0208 125.1 HMDB0000251 1123 C00245
9 2 Phosphorylcholine C5H15NO4P 184.0724 184.2 HMDB0001565 1014 C00588
10 2 Uridine diphosphate-N-acetylglucosamine C17H27N3O17P2 608.087 607.4 HMDB0000290 445675 C00043
11 2 LysoPC (16:0) C24H50NO7P 496.3379 495.6 HMDB0010382 460602 C04230
12 2 L-Glutamic acid C5H9NO4 148.0596 147.1 HMDB0000148 33032 C00025
13 2 Pyroglutamic acid C5H7NO3 130.0488 129.1 HMDB0000267 7405 C01879
14 2 Niacinamide (Niacinamide) C6H6N2O 123.0541 122.1 HMDB0001406 936 C00153
15 2 Adenosine monophosphate (AMP) C10H14N5O7P 348.0695 347.2 HMDB0000045 6083 C00020
16 2 Inosine C10H12N4O5 269.0871 268.2 HMDB0000195 6021 C00294
17 2 Hypoxanthine C5H4N4O 137.0446 136.1 HMDB0000157 790 C00262
18 2 Adenine C5H5N5 136.0609 135.1 HMDB0000034 190 C00147
19 2 Erucamide C18H19NO4 338.3408 313.3 HMDB0029365 5280537 C02717
20 2 Prostaglandin H2 C20H32O5 351.2177 352.5 HMDB0001381 445049 C00427
21 2 Oxoadipic acid C6H8O5 141.0171 160.1 HMDB0000225 71 C00322
22 2 D-Mannose C6H12O6 179.0562 180.1 HMDB0000169 18950 C00159
23 2 PG (16:0/18:1(9Z)) C40H77O10P 747.5194 749.0 HMDB0010574 52941750 /
24 2 Pentadecanoic acid C15H30O2 241.2175 242.4 HMDB0000826 13849 C16537
25 5 Uridine C9H12N2O6 245.0758 244.2 HMDB0000296 6029 C00299
26 5 L-Carnitine C7H15NO3 162.1115 161.2 HMDB0000062 2724480 C00318
27 5 Deoxyadenosine C10H13N5O3 252.1082 251.2 HMDB0000101 13730 C00559
28 5 PC (16:0/16:0) C40H80NO8P 778.536 734.0 HMDB0000564 452110 C00157
29 5 2-Hydroxyadenine C5H5N5O 152.0557 151.1 HMDB0000403 76900 /
30 5 Uracil C4H4N2O2 111.0198 112.1 HMDB0000300 1174 C00106
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Table 1. Cont.

No. Time (h) Metabolites Formula M/Z Mr HMDB PubChem KEGG

31 5 MG (0:0/16:0/0:0) C19H38O4 331.2837 330.5 HMDB0011533 123409 /
32 5 Adenosine C10H13N5O4 268.1033 267.2 HMDB0000050 60961 C00212
33 5 D-Proline C5H9NO2 116.0694 115.1 HMDB0003411 8988 C00763
34 5 Nicotinate (Nicotinic acid) C6H5NO2 124.0383 123.1 HMDB0001488 938 C00253
35 5 PC (18:0/18:1(9Z)) (SOPC) C44H86NO8P 832.582 788.1 HMDB0008038 24778825 C00157
36 5 L-Acetylcarnitine C9H17NO4 204.1221 203.2 HMDB0000201 1 C02571
37 5 Cytidine C9H13N3O5 244.0919 243.2 HMDB0000089 6175 C00475
38 5 Cytosine C4H5N3O 112.0494 111.1 HMDB0000630 597 C00380
39 5 Guanosine C10H13N5O5 284.098 283.2 HMDB0000133 6802 C00387
40 5 Betaine C5H11NO2 118.0852 117.1 HMDB0000043 247 C00719
41 8 Acetylcholine C7H16NO2 146.1164 146.2 HMDB0000895 187 C01996
42 8 2-Ethoxyethanol C4H10O2 151.0955 90.1 HMDB0031213 8076 C14687
43 8 Palmitoleic acid C16H30O2 253.2176 254.4 HMDB0003229 445638 C08362
44 8 Oleic acid C18H34O2 281.2488 282.5 HMDB0000207 445639 C00712
45 8 Arachidonic acid C20H32O2 303.2332 304.5 HMDB0001043 444899 C00219
46 8 Myristic acid C14H28O2 227.2022 228.4 HMDB0000806 11005 C06424
47 8 Heptadecanoic acid C17H34O2 269.2486 270.5 HMDB0002259 10465 /
48 8 Nervonic acid C24H46O2 365.3424 366.6 HMDB0002368 5281120 C08323
49 8 Palmitic acid C16H32O2 255.2333 256.4 HMDB0000220 985 C00249
50 8 Acamprosate C5H11NO4S 180.0335 181.2 HMDB0014797 71158 /



Viruses 2019, 11, 1007 9 of 17

3.3. KEGG Pathway Enrichment Analyses Based on Metabolites

To identify the biological interactions of metabolites and determine important functional networks
upon WSN infection in human cells, we analyzed the statistically enriched metabolites, listing the top
20-fold changes by the absolute value of the log2 scale obtained from the A549 cell lines (Figure 3A);
we mapped the metabolites with altered expression into their KEGG pathways. We present the results
of the top 30 pathways activated by the WSN virus in A549 cells in Table 2. Upon WSN virus infection,
the most significantly activated cellular metabolite process was purine metabolization.
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relative to glutathione metabolization and purine metabolization in A549 cells, we found the most 
enriched biological processes to be related mainly to the TCA cycle, arachidonic acid metabolization, 
and the hexosamine pathway (Figure 4), with purine metabolization and fatty acid biosynthesis as 
the most significant molecular functions. 

Figure 3. Top 15 enriched pathways based on characteristic metabolites in A/WSN/1933-infected cells.
Pathway analysis allowed the construction of a scatter plot of KEGG pathway enrichment statistics
for characteristic metabolites following A/WSN/1933 infection of A549 cells. (A) Global metabolic
disorders of the most relevant pathways induced by A/WSN/1933 were revealed using MetaboAnalyst
4.0. “Pathway Impact” means that the selected metabolites conducted topological analysis of the
metabolic pathway according to their different positions in the metabolic pathway. The corresponding
score is shown on the X-axis, and the p-value (Y-axis) of the metabolic pathway enrichment analysis
is selected as the most valuable metabolic pathway, (B–D). Rich factor is the ratio of the number of
differentially expressed genes noted in the pathway terms to all metabolite numbers found in this
pathway term. We selected the top 15 of the KEGG enrichment results as a reference. “Compound
number” is the compounds here referring to the ones in Table 1. A greater Rich Factor indicates higher
intensity. To control the false discovery rate (FDR), we used q = 0.05 to correct the p-value of the
metabolites, ranging from 0 to 1. A lower q-value indicates higher intensity.
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Table 2. Top pathways activated by H1N1-WSN virus in A549.

No. Name of Pathway Total Expected Hits −log10 p-Value

1 Purine metabolism 92 1.6053 8 8.9037
2 Pyrimidine metabolism 60 1.0469 5 5.6818
3 Nitrogen metabolism 39 0.68052 4 5.4648
4 Glycerophospholipid metabolism 39 0.68052 4 5.4648
5 Fatty acid biosynthesis 49 0.85501 4 4.6447

6 D-Glutamine and D-glutamate
metabolism 11 0.19194 2 4.2132

7 Glutathione metabolism 38 0.66307 3 3.6014
8 Nicotinate and nicotinamide metabolism 44 0.76776 3 3.2223

9 Alanine, aspartate and glutamate
metabolism 24 0.41878 2 2.7426

10 Pantothenate and CoA biosynthesis 27 0.47113 2 2.5348
11 beta-Alanine metabolism 28 0.48857 2 2.4715
12 Arachidonic acid metabolism 62 1.0818 3 2.387
13 Arginine and proline metabolism 77 1.3436 3 1.9036
14 Galactose metabolism 41 0.71541 2 1.8366
15 Fructose and mannose metabolism 48 0.83756 2 1.5918
16 Taurine and hypotaurine metabolism 20 0.34898 1 1.2115
17 Aminoacyl-tRNA biosynthesis 75 1.3087 2 0.97063
18 Fatty acid elongation in mitochondria 27 0.47113 1 0.96782
19 alpha-Linolenic acid metabolism 29 0.50602 1 0.91228
20 Lysine biosynthesis 32 0.55837 1 0.83755

21 Amino sugar and nucleotide sugar
metabolism 88 1.5355 2 0.77921

22 Butanoate metabolism 40 0.69796 1 0.67663
23 Histidine metabolism 44 0.76776 1 0.61188
24 Primary bile acid biosynthesis 47 0.82011 1 0.56861
25 Lysine degradation 47 0.82011 1 0.56861
26 Glycine, serine and threonine metabolism 48 0.83756 1 0.55507
27 Fatty acid metabolism 50 0.87246 1 0.52922
28 Cysteine and methionine metabolism 56 0.97715 1 0.46024
29 Tryptophan metabolism 79 1.3785 1 0.27865
30 Porphyrin and chlorophyll metabolism 104 1.8147 1 0.16712

We also mapped metabolites identified at individual time points into the KEGG pathway database
to further explain the individual function analysis. The top 15 enriched pathways in WSN-infected
A549 cells are summarized in Figure 3. Two hours post-infection, ABC transporters and the FoxO
signaling pathway, which are in the biological process category, were regulated most significantly
by WSN infection (Q < 0.05 and p <0.01) (Figure 3B). During the next 6 h, choline metabolization in
cancer and taurine, and hypotaurine metabolization were associated highly with the responses to WSN
infection in A549 cells (Figure 3B,C).

3.4. Metabolite Correlation Network Diagram Analysis

We also used MetaboAnalyst 4.0 analyses to reveal the possible functions of the identified unique
metabolites in cell samples. Examining the differential unique metabolites in the WSN group relative
to glutathione metabolization and purine metabolization in A549 cells, we found the most enriched
biological processes to be related mainly to the TCA cycle, arachidonic acid metabolization, and the
hexosamine pathway (Figure 4), with purine metabolization and fatty acid biosynthesis as the most
significant molecular functions.
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Figure 4. Schematic of metabolic pathways influenced by IAV infection. The pathways depicted
here are indicative of numerous cellular metabolic pathways. Glycerophospholipid metabolism,
glutathione metabolism, fatty acid biosynthesis, the hexosamine pathway, glycolysis, and purine
metabolism pathways are highlighted. The metabolites with red (upregulated) and green
(downregulated) labels are significantly altered metabolites in A/WSN/1933.

3.5. Trends in Key Metabolites by Box Plots of Different Times by Infection

By assembling box plots of selected metabolites across our experimental time, the differential
expression profiles of the metabolites were validated. Although minor differences were observed in
the different times due to their intrinsic differences, the results of these analyses demonstrated the key
relative regulation of metabolites (Figures S3–S5).

The common regulative metabolites (PGH, O-acetylcholine, and hypoxanthine) induced by WSN
infections are linked to elevated morbidity and mortality in humans [28]. Figure 5A shows the expression
of the most regulative metabolites differed in infected A549 cells between 2 h post-infection and the next
6 h. However, the levels of PGH and O-acetylcholine, as well as hypoxanthine, were decreased markedly
in WSN-infected A549 cells at 5 h post-infection. These findings suggest a remarkable initiation of the
response of the host metabolic levels and capacity in WSN-infected A549 cells. To further confirm
these results in vivo mice were intranasally inoculated with 50 µL of 5000 p.f.u of virus or PBS as a
negative control. The lung tissue homogenates and serum samples were detected using an ELISA
assay. Consistent results were observed in PGH2 and hypoxanthine expression. According to the
metabolomic analysis data, acetylcholine displayed similar expression in the lung tissue, while the
expression in serum was not changed significantly (Figure 5A). Additionally, we observed similar
results in mouse lung epithelium (MLE-12) cells (Figure S6). The viral lung titers of the mice infected
with WSN also are displayed in Figure S7.
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Figure 5. Key metabolites by box plots of different times by infection. Metabolite concentration changes
in (A) PGH2, (B) acetylcholine, (C) hypoxanthine, extracted from human cells, serum, and lung tissue
post-infection were determined by using each peak intensity ratio. Each p-value is filled on the box plot
with the metabolite name, and the maximum/minimum value and dispersion of the data are illustrated
in GC/MS chromatograms.

4. Discussion

Influenza virus infection is linked inextricably to metabolism, and the proliferation of the virus
is inseparable from the host metabolism. The mouse-adapted WSN virus, which is recognized as
a neurovirulent strain, also can cause severe lung hypoxemia and pulmonary edema in mice [29].
Previous research demonstrated that blunting the cytokine storm significantly alleviated the syndrome
of animals infected with WSN virus [5,30]. Though the prospect of blunting over-abundant innate
immune response is enticing, little is known about the activation of an innate immune metabolism
during early virus infection and the potential metabolites modulating immune response and virus
replication. During our study, we identified >50 differential metabolites by exploring the metabolism
and metabolic characteristics of early viral infection, established through the integration of statistical
analyses and metabolic networks. Host metabolic changes upon influenza virus infection play a key
role in regulating virus replication.

Influenza viruses can utilize the host’s energy metabolism for their own replication. Our study
found no significant changes in intermediate metabolites in the TCA cycle during the first replication
cycle (prior to 8 h). We conclude that the enzyme in the TCA cycle is still active. We observed the
same phenomenon in the TCA cycle in the PR8-infected MDCK cell model over the first 10 h [16].
The IAV usually leads to apoptosis, which is caused by damage to the mitochondrial membrane after
infection [31]. Apoptosis leads to more severe metabolic disorders, destroying cellular respiration.
Apoptosis-related gene transcription levels were downregulated within 8 h prior to WSN infection [32].
Therefore, we believe that mitochondria remain intact in morphology and function during the first
replication cycle of an influenza virus, and no apoptosis occurs. Concurrently, an increase in glutamate
content was observed in glutathione metabolization, a strategy in which cells maintain high levels
of oxidized coenzymes under high pressure to maintain an energy metabolism balance. During the
first replication cycle, the mitochondrial energy supply is maintained by up-regulating the glutamate
content to maintain TCA cycle stability to complete viral replication.

Theoretically, even if all a metabolite were disappeared in infected cells, expression of the
metabolite would become 80–90% in this MOI 0.1 condition. However, our data shows that many
metabolites were down-regulated several times, while our speculation was related to the regulation



Viruses 2019, 11, 1007 13 of 17

of uninfected cells by infected cells. Previous studies have found that virus infection between cells
is a spatial process, depending on where the virus is at the infection time point. Infected cells
gradually activate the antiviral immunity of surrounding uninfected cells through cytokines such as
interferon [33–35]. Our study concentrated on the first cycle of virus replication, there was no progeny
virus production. Therefore, we speculated that the infected cells, centered on the infected cells,
communicated with the surrounding signals and produced the same metabolic changes, instructing
the uninfected cells to enter the antiviral state, thus leading to such changes in metabolites.

We also found the negative regulatory effect of influenza virus on the metabolic pathway for fatty
acids. According to our data, the relative abundance of myristic acid, palmitic acid, palmitoleic acid,
and oleic acid was decreased. Fatty acids have been known to play a dual role in an influenza virus
metabolism [36–40]. Previous research demonstrated the virulence of an influenza virus is enhanced
by palmitoylation of the cysteine residues in the M2 protein in vivo, although this palmitoylation
process is not necessary in the formation of IAV in vitro [41]. Additionally, other research suggests that
palmitoyl-oleoyl-phosphatidylglycerol (POPG) [42], a minor component of pulmonary surfactants,
effectively regulates the innate immune system. The presence of POPG significantly attenuates influenza
virus-induced IL-8 production and apoptosis in human bronchial epithelial cells. During early infection,
this POPG thus serves to activate the innate immune system to inhibit influenza virus replication.

Host nucleotides and their derivatives, consumed upon influenza virus replication, are important
small molecules in cells involved in signal transduction [43–46], energy cycling [9,47] and the synthesis
of genetic material [48]. Li et al., demonstrated that UDP-N-acetylglucosamine was used as a substrate
for the hexosamine biosynthetic pathway (HBP) to glycosylate MAVs, an important signaling adaptor
protein in the innate immune signaling pathway [49]. Thus, HBP plays an important role in the antiviral
effect of innate immunity by targeting MAVs protein. Our results confirmed that the relative amount
of UDP-N-acetylglucosamine increased during the first replication cycle of the virus, which may
increase the glycosylation of MAVS, helping it to form prion-like aggregates to activate an antiviral
response in innate immunity after viral infection. We also observed that purine metabolization changed
significantly during the first cycle. Purine plays an important role in the biological processes of
cells [50,51], Chandler et al., reported lung tissue was taken for metabolomics analysis at 10 days
by IAV infection to obtain a decrease in AMP content; our data further enhances previous research
that AMP content increased within 2 h by the first cycle of viral replication [52]. This may indicate
that AMP plays an irreplaceable role as a core component in the metabolism of purine [53]. A sharp
increase in AMP may increase the ratio of ATP/AMP, thereby activating the AMPK pathway [54–57],
followed by beta-oxidation of fatty acids and glycolysis, providing more energy to the cell. The basic
carbon skeleton is required for the synthesis of viruses. Here we demonstrate that influenza viruses
widely use nucleotides and derivatives thereof as synthetic substrates during replication and, therefore,
nucleotide starvation effectively can modulate immune responses, thereby reducing the efficiency of
viral replication [58].

Furthermore, prostaglandins are reported to be used by IAV to achieve immune escape.
Prostaglandin H2 was upregulated in our study. PGH2 is the first intermediate in the biosynthesis
of all prostaglandins, which can be converted into PGE2 and PGD2 with biological activity [59,60].
PGE2 is expressed in macrophages during influenza infection, and inhibiting PGE2 can promote the
aggregation of macrophages into the lungs and produce interferon [59]. However, to expand the
infection of the influenza virus, DC cell migration is inhibited by PGD2 [60]. Thus, the blocking of
prostaglandin synthesis during early infection leads to the accelerated activation of immune cells in
the lungs to suppress infection.

Taken together, the metabolic activity of the virus in the early stage of infection plays a critical role
in evading the host’s innate immunity and preparing a large number of substrates for its replication
and proliferation. Therefore, virus infection can be targeted in the early stages of virus reproduction
based on its characteristics. Accompanying the analysis of metabolomic studies, broad-spectrum
antiviral drugs against post-infection lipid metabolization have been developed [8,13]. This affirms
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that metabolomics can serve as a mature research method to regulate influenza virus infection and
contribute to the prevention and treatment of influenza [55].

5. Conclusions

To identify host cell responses to influenza-infected host cells, we used metabolomic analysis to
identify differentially expressed metabolites between uninfected controls and IAV-infected A549 cells.
We found that, compared to the control group, the IAV-infected group displayed a large amount of
altered metabolic activity, with significant differences found in 50 discrete metabolites. These were
distributed mainly in purine metabolization, lipid metabolization, and glutathione metabolization,
which accelerate the replication speed of the virus for the first replication cycle of the influenza virus,
but also causes innate immunity to monitor metabolic changes. To summarize, our research suggests
novel approaches for the future development of immune metabolism studies and provides evidence
for further confirmation of the complex regulatory mechanisms between IAV and host cells.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/11/1007/s1,
Figure S1. Immunofluorescence staining of A549 cells post-infection with A/WSN/1933 at MOI of 0.1, 1, or 5.
Figure S2. Volcano plots of metabolic changes of virus infection at different time points. Figure S3. Box plots
of the 2 h metabolic changes of virus infection in A549 cells. Figure S4. Box plots of the 5 h metabolic changes
of virus infection in A549 cells. Figure S5. Box plots of the 8 h metabolic changes of virus infection in A549
cells. Figure S6. The concentration of metabolites in mouse lung epithelial cells (MLE-12). (A) Metabolic changes
in PGH2, (B) changes in acetylcholine metabolism, and (C) changes in hypoxanthine metabolism. Figure S7.
The viral lung titers of the mice infected with WSN.
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