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Abstract: The technology to derive embryonic and induced pluripotent stem cells from early
embryonic stages and adult somatic cells, respectively, emerged as a powerful resource to enable
the establishment of new in vitro models, which recapitulate early developmental processes and
disease. Additionally, pluripotent stem cells (PSCs) represent an invaluable source of relevant
differentiated cell types with immense potential for regenerative medicine and cell replacement
therapies. Pluripotent stem cells support self-renewal, potency and proliferation for extensive periods
of culture in vitro. However, the core pathways that rule each of these cellular features specific to PSCs
only recently began to be clarified. The Wnt signaling pathway is pivotal during early embryogenesis
and is central for the induction and maintenance of the pluripotency of PSCs. Signaling by the Wnt
family of ligands is conveyed intracellularly by the stabilization of β-catenin in the cytoplasm and
in the nucleus, where it elicits the transcriptional activity of T-cell factor (TCF)/lymphoid enhancer
factor (LEF) family of transcription factors. Interestingly, in PSCs, the Wnt/β-catenin–TCF/LEF axis
has several unrelated and sometimes opposite cellular functions such as self-renewal, stemness,
lineage commitment and cell cycle regulation. In addition, tight control of the Wnt signaling
pathway enhances reprogramming of somatic cells to induced pluripotency. Several recent research
efforts emphasize the pleiotropic functions of the Wnt signaling pathway in the pluripotent state.
Nonetheless, conflicting results and unanswered questions still linger. In this review, we will focus
on the diverse functions of the canonical Wnt signaling pathway on the developmental processes
preceding embryo implantation, as well as on its roles in pluripotent stem cell biology such as
self-renewal and cell cycle regulation and somatic cell reprogramming.

Keywords: Wnt/β-catenin pathway; embryonic stem cells; pre-implantation development; cell cycle;
somatic cell reprogramming

1. Introduction

Stem cells have, by definition, the ability to self-renew, i.e., give rise to at least one identical
daughter cell, as well as to differentiate into the myriad of specialized cell types from early embryonic
stages of development until adult age. These hallmark characteristics of stem cells have sparked a
widespread interest in their biology, which fueled formidable research efforts worldwide.

Stem cells can be classified according to their origin. Their provenance also specifies their
biological competence. As such, stem cells can be derived from embryonic or adult tissues and are
thus termed embryonic stem cells (ESCs) or somatic stem cells (SSCs), respectively. With regard to
biological competence, ESCs can differentiate and contribute to any of the three germ layers (ectoderm,
mesoderm and endoderm) and are therefore pluripotent [1], whereas somatic stem cells are limited to
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differentiating into tissue-specific cell types [2]. Somatic stem cells can be classified as multipotent or
unipotent depending on their differentiation capacity. While multipotent SSCs can give rise to multiple
differentiated tissue-specific cell types, unipotent SSCs have a much more restricted potential and can
only differentiate towards one cell type.

Self-renewing mouse pluripotent ESCs (mESCs) were first derived from the inner cell mass
(ICM) of pre-implantation blastocysts in the early 1980s [1,3]. The establishment of their culture and
maintenance in vitro provided the basis for one of the best available models of mammalian early
embryonic development. Embryonic stem cells enable the study of early cell fate decisions and
the pluripotent state that characterizes them during the short timeframe from fertilization until the
spatially-defined differentiation into multiple cell lineages and tissues that build the organism. For this
reason, ESCs enable us to look at the origin of birth defects and understand how these could be
prevented or perhaps reversed.

The ability to proliferate without limit and to differentiate towards any cell type of the body render
ESCs as a limitless supply of specific cell types for basic research and transplantation therapies for many
conditions, ranging from heart disease to neurodegenerative disorders. Furthermore, ESCs harbor
an important potential not only for basic and translational research, but also for the improvement of
pre-clinical safety and efficacy testing of novel pharmaceutical drugs.

Despite the vast and wondrous application potential of human ESCs (hESCs), their use remains
very controversial due to their embryonic provenance. Moreover, histocompatibility issues are a major
hindrance to the application of hESCs in regenerative medicine and cell transplantation therapies [4].

In 2006, a ground-breaking study by Shinya Yamanaka demonstrated that somatic cells can
be reprogrammed to a pluripotent “ESC-like” state by overexpressing the pluripotency-inducing
transcription factors OCT4, SOX2, c-MYC and KLF4. As a result, induced pluripotent stem cells (iPSCs)
were born [5]. One great advantage of this new pluripotent cell category is that they permit autologous
transplantation since obtaining material for reprogramming is as simple as collecting peripheral blood
from the recipient, circumventing the issue of histocompatibility. Moreover, iPSCs capture the genetic
landscape of the donor and are thus invaluable tools for modeling rare genetic disorders in vitro.

Altogether, the potential and impact of ESCs and iPSCs in basic and translational/clinical research
are considerable. The possibilities for their application have been increasing steadily, indicating their
full potential is yet to be known. Nevertheless, our understanding of the key pathways that rule
self-renewal and differentiation of pluripotent stem cells remains far from complete. The signaling
pathways and transcription factors that control early developmental stages are central in the regulation
of the pluripotent state of ESCs and iPSCs. Therefore, it is not surprising that key features of the
pluripotent state are governed by pathways such as leukemia inhibitory factor (LIF), sonic hedgehog,
fibroblast growth factor (FGF), Nodal/ bone morphogenetic protein (BMP) and Wnt [6]. Indeed, all of
them have been implicated either in the maintenance of self-renewal of pluripotent cells or in their
differentiation capacity.

In this review, we will focus on the biological functions of the canonical Wnt pathway during early
mammalian development, as well as its indispensable function on the regulation of ESC self-renewal,
cell cycle and somatic cell reprogramming.

2. The Wnt Pathway

Wnt signaling is an evolutionarily-conserved pathway, which regulates multiple cellular processes
including proliferation, cell polarity, stem cell self-renewal, differentiation and organogenesis during
both embryogenesis and adult tissue homeostasis [7]. Its deregulation can cause severe developmental
defects and has been linked to multiple pathological processes such as congenital and metabolic
disorders and cancer [8,9]. Wnt signaling also has a key role in somatic cell reprogramming, which we
will further discuss in this review.
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The Wnt pathway was first discovered in Drosophila melanogaster, and it was named Wingless (Wg)
due to its role as an essential morphogen for wing development [10]. Later, the int-1 proto-oncogene
was described to be able to promote mammary tumor formation in mouse [11]. Further research
showed that both belong to the same evolutionarily highly-conserved signaling network, and therefore,
the combination of Wg and int-1 led to the currently-used nomenclature: Wnt (Wingless-related MMTV
integration site) [12].

Wnt signaling has been categorized into two major branches: the canonical and the non-canonical
Wnt signaling pathways. The canonical Wnt pathway, which will be discussed in more detail in this
review, comprises a series of subsequent events that lead to the stabilization and translocation of
β-catenin into the nucleus (see below). Non-canonical Wnt signaling (planar cell polarity and the
Wnt/calcium pathway) does not involve stabilization of β-catenin, but requires Wnt ligands [13].

Wnt ligands are secreted glycoproteins produced by different cell types, which are thought
to act in a mostly paracrine fashion [14,15]. In mammals, the Wnt family of ligands consists of
19 different members, which are cysteine-rich proteins containing one N-terminal signal peptide for
secretion. Porcupine is an endoplasmic reticulum O-acyltransferase, which adds one palmitoyl group
to Wnt proteins. This lipid-modifying step is critical for the extracellular secretion of Wnt ligands
and their biological function [16,17]. Another important element in the Wnt secretory mechanism
is the transmembrane protein Wntless, which facilitates the shuttling of Wnt ligands to the plasma
membrane for secretion [18].

At the recipient cell, Wnt ligands bind to the seven-pass transmembrane receptor called Frizzled
(FZ or FZD) and the co-receptors low-density lipoprotein receptor-related protein (LRP) 5 and 6, which
are essential for signal transmission [19]. The interaction of Wnt ligands with the receptor complex can
be modulated by secreted factors such as members of the Dickkopf (DKK) family, which prevent Wnt
binding to the LRP receptors [20,21].

In the absence of Wnt (Figure 1A), cytoplasmic β-catenin, the central molecule of the Wnt signaling
pathway, is constantly degraded by the action of the destruction complex. This complex is composed of
the scaffolding protein AXIN, the tumor suppressor adenomatous polyposis coli gene product (APC),
casein kinase 1 (CK1) and glycogen synthase kinase 3 (GSK3β). While bound to AXIN, β-catenin is
constitutively and sequentially phosphorylated in its amino-terminal region by CKand GSK3β [22].
When phosphorylated, β-catenin can be recognized by β-TrCP and the E3 ubiquitin ligase subunit
and therefore targeted for ubiquitination and subsequent degradation. The continuous degradation of
cytoplasmic β-catenin prevents its translocation to the nucleus.

When Wnt ligands bind to the receptor complex and initiate intracellular propagation of their
signal (Figure 1B), GSK3β is inhibited, and β-catenin is stabilized. Consequently, the latter accumulates
in the cytoplasm and translocates to the nucleus, where it activates the transcription regulation activity
of T-cell (TCF)/lymphoid enhancer factor (LEF), driving the expression of many important genes for
different cellular functions. The TCF/LEF proteins belong to a family of transcription factors, which
include TCF1 (gene name Tcf7), LEF1, TCF3 (Tcf7l1) and TCF4 (Tcf7l2). TCF1, LEF1 and TCF4 can bind
β-catenin and activate transcription of target genes as a result of Wnt signaling. In contrast, when the
Wnt pathway is not active, all the TCF/LEF factors can recruit repressive complexes and function as
repressors of transcription of many target genes [23].

Wnt targets include genes responsible for regulating cell proliferation, stem cell homeostasis and
important developmental processes. A list of the many target genes of the Wnt pathway can be found
on the web page “The Wnt Homepage” of the Nusse Laboratory [24].
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Figure 1. Molecular overview of the Wnt/β-catenin pathway. (A) In absence of Wnt ligands (Wnt OFF 
conditions), the β-catenin destruction complex phosphorylates β-catenin, which is ubiquitinated by β-
TrCP and sent to the proteasome, where it is degraded. Thus, absence of nuclear β-catenin enables 
repression of Wnt target genes through the T-cell factor (TCF)/lymphoid enhancer factor (LEF) 
transcription factors. (B) When Wnt ligands bind to the receptor complex, the destruction complex is 
disassembled allowing the stabilization of β-catenin, which is then able to translocate to the nucleus. 
Nuclear β-catenin is then able to elicit gene expression changes through the TCF/LEF family of 
transcription factors. APC: adenomatous polyposis coli; CK1: casein kinase 1; DVL: dishevelled; FZD: 
frizzled; GSK3β: glycogen synthase kinase 3 beta; LRP5/6: lipoprotein receptor-related protein 5/6; Ub: 
ubiquitin. 

3. Activity and Role of the Wnt/β-Catenin Pathway during Mammalian Pre-Implantation 
Development 

Mammalian embryogenesis is regulated by a crosstalk of several key signaling pathways that 
govern the correct development of the embryo. Murine models provided numerous important 
insights in this field. In addition, during the last 30 years, mouse ESCs have been an invaluable in 
vitro tool to probe the function of genes involved in early embryogenesis and to study the signaling 
networks and gene expression landscape governing these first stages of development. 

Among these pathways, Wnt/β-catenin has been described to play an important role in different 
stages of embryogenesis. For instance, during gastrulation, Wnt signaling is the force that drives the 
acquisition of the primitive streak cell fate, establishing the anterior–posterior axis of the  
mammalian embryo [25,26].  

The role of the Wnt signaling pathway in the earliest stages of mammalian development remains 
largely unknown and somewhat controversial. In this section, we will attempt to summarize what is 
currently known regarding the role of key components of the canonical Wnt signaling pathway from 
the very beginning of embryogenesis until the implantation blastocyst stage (Figure 2). 

Figure 1. Molecular overview of the Wnt/β-catenin pathway. (A) In absence of Wnt ligands (Wnt
OFF conditions), the β-catenin destruction complex phosphorylates β-catenin, which is ubiquitinated
by β-TrCP and sent to the proteasome, where it is degraded. Thus, absence of nuclear β-catenin
enables repression of Wnt target genes through the T-cell factor (TCF)/lymphoid enhancer factor
(LEF) transcription factors. (B) When Wnt ligands bind to the receptor complex, the destruction
complex is disassembled allowing the stabilization of β-catenin, which is then able to translocate to the
nucleus. Nuclear β-catenin is then able to elicit gene expression changes through the TCF/LEF family
of transcription factors. APC: adenomatous polyposis coli; CK1: casein kinase 1; DVL: dishevelled;
FZD: frizzled; GSK3β: glycogen synthase kinase 3 beta; LRP5/6: lipoprotein receptor-related protein
5/6; Ub: ubiquitin.

3. Activity and Role of the Wnt/β-Catenin Pathway during Mammalian
Pre-Implantation Development

Mammalian embryogenesis is regulated by a crosstalk of several key signaling pathways that
govern the correct development of the embryo. Murine models provided numerous important insights
in this field. In addition, during the last 30 years, mouse ESCs have been an invaluable in vitro tool to
probe the function of genes involved in early embryogenesis and to study the signaling networks and
gene expression landscape governing these first stages of development.

Among these pathways, Wnt/β-catenin has been described to play an important role in different
stages of embryogenesis. For instance, during gastrulation, Wnt signaling is the force that drives the
acquisition of the primitive streak cell fate, establishing the anterior–posterior axis of the mammalian
embryo [25,26].

The role of the Wnt signaling pathway in the earliest stages of mammalian development remains
largely unknown and somewhat controversial. In this section, we will attempt to summarize what is
currently known regarding the role of key components of the canonical Wnt signaling pathway from
the very beginning of embryogenesis until the implantation blastocyst stage (Figure 2).
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As mentioned above, Mus musculus has long been the most important tool for the study of
mammalian embryonic development, and this review will focus on this model, drawing parallels with
embryonic development of humans whenever possible.

Components of the Wnt signaling pathway can be detected at RNA level during the first stages
of embryonic development, suggesting it may have a functional role during the earliest meanders of
embryogenesis. Nonetheless, whether Wnt signaling is essential is still a controversial topic. Therefore,
intensive research has been performed during recent years in order to validate the functions and
importance of the Wnt pathway during embryogenesis and embryonic development at protein and
functional levels (Figure 2A–C).
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Figure 2. Tracing Wnt activity across early mouse embryogenesis. (A) A schematic overview of the
mouse pre-implantation and post-implantation developmental stages, from zygote formation (E0.5)
until the pre-gastrulation stage (E6.5). After fertilization, the zygote undergoes a series of mitotic
divisions together with progressive cell fate acquisition. At the end of the morula stage, the first
segregation event occurs giving rise to the trophectoderm and the inner cell mass (ICM). At E4.5–E5.0,
after the ICM segregates into the epiblast and primitive endoderm, the blastocyst implants in the uterus.
Around E6.5, the egg cylinder is formed, and anterior–posterior axis patterning is established, along
with the first mesendodermal progenitors at the primitive streak. (B) This chart provides information
about the main molecular changes in the Wnt/β-catenin signaling pathway. The bimodal Wnt target
gene expression is represented in grey stripes and is (at transcript level) already detected at the two-
and four-cell stages [27]. In red, active nuclear β-catenin expression [28]. In blue, the Axin2:LacZ
reporter is found only at the blastocyst stage [29]. In green, detection of the TCF/Lef:Histone 2B-green
fluorescent protein (H2B-GFP) reporter occurs only after implantation stages [30]. (C) Longitudinal
and transversal sections of a pre-gastrulating mouse embryo (E6.5) showing in yellow the distribution
of the TCF/Lef:β-galactosidase reporter activity in the posterior region [30].
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3.1. From Zygote to Late Morula Stage (E0.5–E2.75)

Upon fertilization, the mouse zygote (one-cell stage) undergoes a succession of cleavages (cell
division without cell-growth), giving rise to a mass of cells named the morula. At this point, the zygote
is transcriptionally silent and inactive, and maternal mRNAs and proteins are tasked with initiating
and controlling the first stages of embryonic development [31]. Different Wnt ligands, receptors and
related regulators have been detected at transcript level at this stage [31]. Finally, the mouse embryo
exits this period of transcriptional silence at the two-cell stage, when embryonic genome activation
(EGA) occurs.

Embryonic genome activation is a potential source of transcriptome asymmetry in each of the
blastomeres, both at the two and four-cell stages. It has been theorized that the manifest bimodal gene
expression of Wnt receptors and Wnt-related transcription factors in one of the blastomeres, but not in
the other, is governing this process during mouse embryogenesis [27].

Wnt ligands (Wnt3a, Wnt5a, Wnt7a) [32] and most of the canonical Wnt receptors (Lrp5–6 and
Fzd1–9) [31] have been detected at the transcript level as early as during the transition between the
zygote and two-cell stage of mouse embryogenesis. Additionally, RNA-sequencing has recently
enabled the detection of different Wnt component transcripts (Axin2, Lef1 and Lrp5–6) during the
four to eight-cell stage (E1.5). These are highly expressed when compared with the ensuing stages of
embryonic development [33].

Active nuclear β-catenin can be detected as early as from the zygote until the late morula [28]
highlighting a possible role of canonical Wnt signaling during the first stages of embryonic
development. This same study also reports that inactivating Wnt signaling from the two-cell stage
onwards by overexpressing the canonical antagonist DKK1 ultimately renders the blastocyst incapable
of implanting in the uterus [28].

Nevertheless, several laboratories have reported that β-catenin null mutant mouse embryos
develop normally until the blastocyst stage. Moreover, both Wnt3a null and double Tcf1/Lef1 null
embryos develop properly until gastrulation (E6.5–E7.0), at which point they fail to build the paraxial
mesoderm [34]. In line with these results, β-catenin (Ctnnb1) null embryos implant normally
only showing developmental problems also at the gastrulation stage, where abnormalities in the
establishment of the anterior–posterior axis and mesoderm specification occur [35,36]. However,
in these experiments, it is not possible to rule out that maternally derived β-catenin could have a
rescuing effect, thereby allowing embryos to develop until the E6.5 stage. To rule out this possibility,
De Vries et al. depleted both maternal and zygotic β-catenin in oocytes, observing that the embryos
can develop ex vivo, reaching the blastocyst stage even though the number of pups born from females
harboring a partial deletion of β-catenin was much lower compared to control females [37].

The absence of a clear phenotype in early β-catenin null embryos is surprising since the
components and target genes of the pathway are already expressed in the zygote and at the morula
stage. This could be explained by the presence of other proteins, which may have redundant functions
with β-catenin, thus rescuing the outcomes of its absence in null embryos. In fact, other members of
the catenin family have shown a certain level of redundancy with β-catenin. Plakoglobin (γ-catenin)
has been demonstrated to rescue the cell-adhesion functions of β-catenin in mESCs lacking expression
of the latter [38]. Importantly, plakoglobin is expressed from the eight-cell stage onwards in the mouse
embryo [39], raising the possibility of the existence of a compensatory mechanism in place to suppress
the outcomes of β-catenin depletion during embryogenesis.

Whether other signaling pathways could compensate the disruption of Wnt/β-catenin signaling
during mouse embryonic development needs to be further explored before concise conclusions can
be drawn. Nonetheless, other signaling pathways seem to appear in the same conflicting pattern
as β-catenin during early embryonic development, namely the leukemia inhibitor factor/signal
transducer and activator of transcription (LIF/STAT3) pathway.

Similarly to Wnt, LIF signaling plays a crucial role in maintaining pluripotency both in vivo (in the
ICM) and in vitro (in mESCs) [40]. From the four-cell stage until the blastocyst, STAT3 transcriptional
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activity is dependent on the LIF growth factor. Much like in β-catenin null embryos, depletion of
STAT3 does not impair the correct development of the morula, but proves to have a critically negative
impact on the ability of the blastocyst to survive and implant [41]. The critical role of LIF and Wnt in
the maintenance of pluripotency, but the absence of developmental defects when one or the other is
perturbed suggest a possible reciprocal rescue capacity of one pathway upon the other during early
embryonic development.

3.2. From Late Morula to Blastocyst Implantation Stage (E2.75–E4.5)

Successive cell divisions at the late morula stage lead to compaction of the embryo and the rise of
the first cell lineages in the blastocyst: (i) the trophoblast, which will go on to make up the placenta,
and (ii) the ICM, which will later segregate into the epiblast and the primitive endoderm [42].

Implantation of the mouse blastocyst occurs during E4.5–E5.0 (Figure 2), constituting a critical
step of embryonic development and requiring a fine-tuned synchronization of blastocyst activation and
uterine receptivity [43]. Critically calibrated modulation of the Wnt signaling pathway is fundamental
during this process. In fact, forced activation of canonical Wnt signaling in ex vivo pre-implantation
embryos prevents progression towards the implantation stage and hinders the correct hatching of both
mouse [44] and bovine embryos [45]. This suggests that calibrated modulation of the Wnt pathway is
crucial for the final development of the blastocyst. Components of the Wnt signaling pathway follow a
specific expression pattern in the embryo and in the uterus, both during pre-implantation development
and at the implantation stage. For instance, transcripts of canonical Wnt ligands Wnt3a, Wnt6, Wnt7b,
Wnt10b and Wnt1 is clearly detected in blastocysts [46,47]. Moreover, canonical members of the Fzd
and Lrp receptor families are also expressed during this developmental stage.

Even though activity of the β-catenin activated transgene-β-galactosidase (BAT:gal) or the
TCF/Lef:histone2B-green fluorescent protein (TCF/Lef:H2B-GFP) reporters have not been detected
in mouse embryos during both the pre-implantation and implantation stages [30,48], expression of
the specific Wnt target Axin2 has been confirmed in the ICM during early and late blastocyst stages,
using an Axin2:LacZ reporter [29]. Moreover, elevated levels of active β-catenin [48] can be detected in
murine embryos during the implantation stage.

Altogether, these data suggest an important role of the Wnt pathway in the ICM during the
pre-implantation and implantation stages, which is in accordance with its role in maintaining the
pluripotency of ESCs (see below).

However, Xie et al. have reported that expression of WNT3A and the presence of active nuclear
β-catenin are maintained in the trophectoderm, but not in the ICM during the peri-implantation stage
(E4.5–E5.0) [28]. A possible interaction between the Wnt and Hippo signaling pathways could underlie
this phenomenon. The latter is known to be involved in the specification of the trophectoderm vs.
ICM fates. In summary, when the Hippo pathway is inactive, Yes-associated protein/transcriptional
coactivator with PDZ-binding motif YAP/TAZ becomes stabilized and accumulates in the nucleus
where it binds Tead4 to drive expression of genes involved in trophectoderm induction, such as
Cdx2 [49]. Interestingly, one study in Drosophila melanogaster describes that when YAP/TAZ is absent
in the cytoplasm, Dishevelled (DVL) is easily phosphorylated, ultimately driving the disruption of the
β-catenin destruction complex and in turn switching on the Wnt pathway [50]. As such, this potential
crosstalk between the Wnt and Hippo pathways could explain the presence of both WNT3A and
nuclear β-catenin in the trophectoderm. Therefore, a more detailed study of the interception points
of different signaling pathways involved in embryogenesis and development is required in order to
establish a definitive causality of early cell fate decisions.

In human blastocysts, WNT3 and membrane-associated β-catenin specifically accumulate in
the trophectoderm cell layer at the blastocyst stage [51]. Furthermore, degradation of β-catenin
impairs the formation of the trophectoderm underlining the importance of the Wnt/β-catenin pathway
in the regulation, albeit not transcriptionally, of the first cell fate decision in human embryonic
development [51].
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The timely shutdown of Wnt/β-catenin signals is just as important as the stimulation of the
pathway in the context of embryonic development. One such case seems to be the specification of
the primitive endoderm (PrEn) in mouse embryos. Boroviak et al. sequenced the transcriptome of
single embryos to demonstrate that the antagonist of the canonical Wnt pathway Dkk1 is specifically
expressed in the cells that segregate from the ICM to give rise to the PrEn at E4.5 [33]. Moreover, to this
day and the best extent of our knowledge, no signs of activation of the Wnt pathway in the primitive
endoderm have been detected at this stage of development.

Although several studies in mice pinpoint the importance of the FGF/Extracellular-signal-
regulated-kinase (ERK) pathway in the determination of the epiblast vs. primitive endoderm cell fate
decision [52,53], this function is not conserved in human embryos [54]. Therefore, further research is
required to understand which other signal pathways (among them, Wnt) might be regulating PrEn
specification in the human model.

In conclusion, Wnt/β-catenin signaling fluctuates during the first developmental stages, and it is
difficult to assess and determine its activity. In mice, although its nuclear transcriptional activity is
dispensable for the development until blastocyst stage, its absence impairs blastocyst competency and
implantation in the uterus. Expanding the knowledge of the crosstalks and interactions of different
pathways involved in the earliest stages of development should be given attention in future research
efforts. For instance, it would be important to understand whether depletion of STAT3 and β-catenin
influences the process of morula compaction or whether one pathway could compensate the absence
of the other to support correct embryonic development.

4. The Role of the Wnt/β-Catenin Pathway in the Regulation of Naive and Primed Pluripotency
of Mouse and Human Embryonic Stem Cells

Embryonic stem cells boast two remarkable characteristics: pluripotency and self-renewal.
Pluripotency is a dynamic cell state that occurs naturally during a very limited and narrow window
of time of embryonic development. During pre- and early post-implantation of the blastocyst, cells
of the ICM of the developing embryo have the ability to commit to any of the three germ layers
(ectoderm, endoderm and mesoderm), which will eventually give rise to all the specialized cell types
that constitute the adult organism [6]. In addition, ESCs are able to self-renew, giving rise to at least
one pluripotent stem cell with each division.

Depending on the developmental stage of the embryo from which ESCs are derived, we can
distinguish two types of pluripotency: naive and primed pluripotency. Naive mouse ESCs are
derived from the epiblast of pre-implantation blastocysts and preserve ICM-like molecular features
in vitro. On the other hand, primed ESCs are isolated from the epiblast of post-implantation embryos,
displaying a completely distinct epigenetic and transcriptional landscape when compared to naive
ESCs [6,55].

Naive mESCs were the first pluripotent cells to be established in culture [1,3]. These cells are the
gold-standard in vitro tool to study the molecular mechanisms regulating mammalian pluripotency
and differentiation. Growth conditions are crucial to maintain pluripotency, which ultimately relies on
the artificial in vitro self-renewal state generated by supplementing ESCs with appropriate cytokines
and growth factors. Initially, ESCs were co-cultured with mitotically inactivated fibroblasts (MEFs)
in fetal bovine serum (FBS)-enriched conditions [1]. However, both growth factor secretion by MEFs
(the “ingredients” of pluripotency), the presence of serum (FBS) and consequent batch-to-batch
variability introduce inconsistency in culture conditions. Providentially, LIF, an activator of the Janus
kinase (JAK)/STAT pathway, was recognized to vastly improve culture conditions by enabling the
propagation of ESCs without the necessity of MEFs in the presence of serum [56,57].

Before these achievements, Wnt signaling had not yet been considered as a possible regulator
of pluripotency and self-renewal of mESCs. In 2004, Sato et al. demonstrated for the first time that
activation of Wnt signaling through inhibition of GSK3β, a component of the β-catenin destruction
complex, was able to maintain mouse pluripotency in absence of LIF [58]. In agreement, the addition
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of repressors of Wnt-secretion to FBS/LIF medium induces loss of pluripotency and differentiation
towards a primed epiblast stem cell state [29] (Figure 3). The presence of Axin2:LacZ reporter activity
in the ICM (E3.5) [29], the developmental stage from which mESCs are derived, backs a potential role
of canonical Wnt signaling in the maintenance naive pluripotency.

All these culture conditions generate an intraculture heterogeneity in pluripotency due to the
presence of serum. A key step towards the establishment of a homogenous pluripotent state free from
extrinsic stimuli was the achievement of the naive ground state of pluripotency through the use of the
defined 2 inhibitors (2i) small molecule combination, which consists of MEK inhibition together with
Wnt stimulation (through GSK3β inhibition) [59]. Furthermore, GSK3 and MEK inhibitors together
with LIF (2iLIF) enhance the expansion and growth of mESCs.

Over the years, it has been shown that mESCs maintained in 2iLIF conditions (or ground state)
express homogenous transcript levels of components of the pluripotent transcriptional network and
are less prone to differentiate. Moreover, mESCs in the ground state contribute more efficiently to
chimera formation in comparison to cells grown in serum [60,61]. The 2i culture setting homogenizes
the transcriptional and epigenetic landscape of mESCs, allowing a robust and replicable starting point
for many differentiation protocols. Notwithstanding this, homogenization buries interesting aspects
and cell types, which arise in serum-grown cells, namely primed mESCs [62], PrEn progenitors [63]
and totipotent cells (capable of generating both embryonic and extraembryonic tissues) [64].

Surprisingly, upon withdrawal of LIF, the stabilization of β-catenin and inhibition of ERK
can bypass the otherwise statutory LIF/STAT3 signaling to maintain self-renewal and naive
pluripotency [59]. In fact, the combination of only two out of these three pathways (Wnt activation,
LIF activation or ERK inhibition) sustains pluripotency and self-renewal, alluding to a potentially
redundant and/or compensatory effect between them. In fact, mESCs maintained in the presence
of FBS and Wnt3a conditioned media or GSK3β inhibitors are able to preserve self-renewal and the
core pluripotency network without requiring LIF [58]. Indeed, it has previously been demonstrated
that activation of Wnt/β-catenin upregulates the expression of STAT3, aiding to the maintenance
of pluripotent mESCs and demonstrating a synergistic effect between the LIF pathway and Wnt
pathways [65]. Recent research points to a synergy of both pathways to stabilize pluripotency through
the Sp5 gene in mESCs [66]. Therefore, we can conclude that pluripotency is not regulated by a discrete
signaling pathway. Instead, there is a combination of distinct pathways that perform redundant
functions towards its maintenance. Among them, the Wnt canonical pathway and specifically β-catenin
stabilization have emerged as some of the major characters in this process.

Herein, we will expose the molecular evidence underlying the role of Wnt/β-catenin in self-renewal
and pluripotency maintenance, as well as the controversy regarding whether it is or not indeed an
absolute requirement.

In mESCs, depletion of both GSK3 isoforms (GSK3α/GSK3β) or mutation of the two Apc alleles,
both components of the β-catenin destruction complex, results in an increase of β-catenin stabilization
and hinders the differentiation of mESCs in teratomas or embryoid body assays [67,68]. Concretely,
double GSK3 depletion results in aberrant TCF/LEF activity and constitutive expression of Wnt targets
(Axin2, Sp5, Cdx-1) in mESCs maintained in Wnt depleted medium, confirming that GSK3β inhibition
stabilizes pluripotency through Wnt/β-catenin, and not by off-target effects [68]. Furthermore,
the overexpression of a stabilized isoform of active β-catenin was able to induce self-renewal,
abrogating differentiation in mESCs maintained in the absence of LIF [69,70]. Moreover, Wnt ligands
have been shown to induce polarization and asymmetric division of mESCs. Specifically, when exposed
to immobilized Wnt ligands, mESCs give rise to daughter cells with distinct fates, wherein the cell
lying proximal to the ligand retains self-renewal and pluripotency, but not its sister, distal to the Wnt
ligand, which exits pluripotency and differentiates [71].
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Figure 3. Wnt/β-catenin modulation correlates with different pluripotency and cell cycle stages.
In mouse embryonic stem cells (mESCs), activation of the Wnt signaling pathway maintains naive
pluripotency. Naive pluripotent conditions with Wnt induction or ERK inhibition correlate with
a slow-down in cell cycle progression. Once the naive state is maintained without these inhibitors
(i.e., serum + Leukemia Inhibitor Factor (LIF) conditions), mESCs start to proliferate faster. The inhibition
of Wnt induces the cells to differentiate towards a primed pluripotency state (epiblast stem cells
(EpiSCs)). For further differentiation commitment, activation is crucial to induce mesendoderm cell
fate, while an acute repression of the pathway will generate neuroectoderm cells. In addition, cells
differentiating show a classic slow cell cycle.

However, similar to the observations of early development studies, the importance of the Wnt
pathway in maintaining and establishing pluripotency faces another important paradox: despite
creating instability in the adhesion and growth capacities of mESCs, the complete ablation of β-catenin
does not impair self-renewal. Furthermore, these cells retain expression of pluripotency markers both
in FBS/LIF [38] or 2iLIF culture conditions [72]. This could be explained by possible compensating
roles of LIF and the Wnt pathway on pluripotency maintenance. In fact, Smith and colleagues reported
that depletion of β-catenin inhibited self-renewal in 2i conditions, but not in 2iLIF, highlighting the
fact that GSK3β inhibition and LIF have complementary roles and that β-catenin protein stabilization
is important, albeit not essential, for pluripotent self-renewal [72].

Recent studies have emphasized the importance of the TCF/LEF family of transcription factors.
Mouse ESCs express all four TCF/LEF members, although the single or quadruple knock-out does
not impair pluripotency, supporting the idea that its transcriptional regulation is independent of
Wnt signaling, even in the absence of LIF [73]. However, it has been shown that β-catenin does
not exclusively elicit regulation of gene expression through TCF/LEF mediation. In fact, it can
reinforce pluripotency, even in the absence of LIF, by interacting with the transcription factor
OCT4 [74]. Thus, a TCF/LEF independent role of β-catenin may support an alternative pluripotency
maintenance mechanism.

Among all the TCF/LEF factors, TCF7L1 (also known as TCF3) is the most expressed in mESCs.
Its genetic ablation mimics Wnt signaling induction, since Tcf3 null mESCs maintain self-renewal [75].
Moreover, Tcf3 deletion delays differentiation of mESCs when propagated as embryoid bodies (EBs)
(3D culture) [72,75,76].
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Chromatin immunoprecipitation and sequencing analysis (ChIP-seq) of TCF3 had a considerable
impact on our understanding of its functions [77]. These experiments demonstrated that the DNA
binding sites of TCF3 overlap more than 70% with those of the pluripotent factors OCT4, NANOG and
SOX2, and therefore, TCF3 regulates transcription of the same genes. Surprisingly, while knockdown
of Nanog and Oct4 in mESCs disrupts pluripotency, Tcf3 null mESCs maintain or even increase
it [78]. Moreover, knockdown of Nanog in Tcf3 null mESCs does not impair pluripotency, suggesting
an independent role of TCF3 in the core pluripotency network [75]. Different ChIP-seq studies
confirmed that TCF3 binds to the enhancer regions of these two pluripotent transcription factors and
together with experiments making use of the TOPGFP reporter (which contains seven Wnt response
elements to drive the expression of green fluorescent protein) suggested that TCF3 directly or indirectly
executes a repressor activity on the maintenance of pluripotency and self-renewal [76,79]. Furthermore,
TCF3 overexpression corroborated that it indeed represses the stem cell pluripotency program [80].
In addition, a peculiar and vital target of TCF3 repression is the Esrrb gene. ESRRB expression in mESCs
is sufficient to mediate the pluripotency-inducing effects of GSK3β inhibitors [81]. In 2i conditions,
removal of GSK3β inhibitors does not impair pluripotency when Esrrb is ectopically expressed [81].
Altogether, TCF3 exerts a suppressive function on self-renewal of mESCs and is part of the core
pluripotency network.

The Pro-Differentiating Role of the Wnt Pathway in the Primed Pluripotent State

Aggregated mESCs can generate early embryo-like structures named EBs, which follow a roadmap
of embryonic lineage specification similar to that of embryonic development. As such, embryoid bodies
are extremely useful tools to study lineage commitment and tissue formation. It has been observed
that Wnt signaling is able to polarize EBs giving rise to a primitive streak-like region that co-expresses
mesendodermal markers, advocating a pro-differentiation role of Wnt pathway [82]. In addition,
primed mouse pluripotent cells (epiblast stem cells (EpiSCs)) undergo mesendoderm differentiation
upon Wnt stimulation, escaping from the pluripotent state [83]. Therefore, Wnt signaling has opposite
cellular functions depending on the pluripotent cell state: while its activation promotes maintenance
of pluripotency in the naive state [58], it drives differentiation of primed pluripotent cells [83].

Human embryonic stem cells were first isolated from pre-implantation blastocysts [84] in 1998
and much like mESCs have the ability to differentiate towards the three embryonic lineages and
self-renewal capacity. However, the currently available conditions for in vitro culture of hESCs,
which include the modulation of FGF2 and transforming growth factor-β1 (TGFβ1)/Activin A [85],
render a transcriptional and epigenetic signature, which resembles more closely that of mouse
EpiSCs. In other words, hESCs are closer to post-implantation epiblast and retain a large number
of features from primed pluripotency. These include low levels of expression of naive pluripotency
markers (such as DPPA3, KLF2 and ESRRB), deposition of H3K27me3 over developmental genes,
absence of global DNA hypomethylation, lack of activity of the OCT4 distant enhancer, absence
of a pre-X-chromosome inactivation state in most female hESC cell lines and very low chimeric
potential [86]. Moreover, in accordance with what happens in primed mESCs, activation of the Wnt
pathway induces mesendodermal differentiation in hESCs [87–89].

Naive and primed metastable potency states can be attributed to determined cell signals present
in in vitro culture conditions as shown by the possibility to convert mouse PSCs into primed or naive
pluripotent states by modifying culture conditions (see above). However, in contrast with mESCs,
2i/LIF culture conditions are not sufficient to maintain naive human ES cells or iPSCs. Nonetheless,
during the last five years, several groups have attempted to achieve the in vitro naive pluripotent
state in hESCs [90–94]. The strategies followed differ between groups, but are mainly based on the
use of small molecules and growth factors to modulate important signal pathways, which balance
pluripotency and differentiation, such as Wnt, ERK1/2, LIF, BMP, JNK, p38 or protein kinase C
(PKC). In addition, overexpression of transcription factors such as KLF2 and NANOG, combined with
some of the aforementioned molecules induces the naive human pluripotent state [91]. In all cases,
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in agreement with the role of the Wnt pathway on the maintenance of mouse naive pluripotency, a
GSK3β inhibitor has been used to promote the human naive state.

Human ESCs generated in all these conditions show higher levels of expression of naive
pluripotency markers (such as DPPA3, KLF2 and ESRRB), release of histone methylation marks
such as H3K27me3 over developmental genes, presence of global DNA hypomethylation as seen
in ICM cells, OCT4 proximal enhancer activity and a pre-X-chromosome inactivation state in most
female hPSC lines [86]. Furthermore, Yang and colleagues have recently demonstrated that their
naive pluripotent state conditions allowed human PSCs to contribute both towards embryonic and
extraembryonic tissues (extra-embryonic endoderm and placenta) with a high grade of inter-species
chimerism [94].

5. Regulation of Pluripotent Stem Cell Cycle and Proliferation by the Wnt Pathway

The tumorigenic potential of stem cells is one of the main issues holding back their widespread
application in regenerative therapies. Stem cells have virtually infinite proliferation capacity and a
uniquely fast cell cycle. Obtaining control of its intricacies is of great importance and would potentially
increase the safety of the use of stem cells in the treatment of many important medical conditions of
our time. Accordingly, interest in the subject has been increasing, and with every research effort, novel
insight into the unique properties of the pluripotent cell cycle brings us closer to understanding the
critical aspects of its regulation.

The pluripotent cell cycle differs from that of somatic cells. It stands at the center of two key
and indivisible processes of stem cell biology: proliferation and self-renewal. As such, the cell
cycle is widely considered to play a key role in the maintenance of balance between stemness and
differentiation signals (Figure 3).

When cultured in traditional serum LIF conditions, mouse embryonic stem cells have an unusually
short cell cycle characterized by very short G1 and G2 phases, coupled with a longer than usual S
phase resulting in a doubling time of 12–14 h [95]. This can be attributed to the lack of expression of
cell cycle regulator proteins cyclin-dependent kinase inhibitors (CDKIs) belonging to the Cip/Kip
and Ink/Arf families and the presence of constant CyclinE/CDK2 activity regardless of the cell
cycle stage [96]. Constitutive CyclinE/CDK2 induces a bypass of the early G1 phase by omitting
retinoblastoma(RB)-mediated control of early G1 to late G1 transition [95]. Moreover, embryonic stem
cells in the naive state lack competent DNA damage-induced p53/p21 cell cycle control [97] and
present dynamic transcription of E2f target gene [98].

The G1 phase of the pluripotent cell cycle is regarded as pivotal in the regulation of cell fate
decisions, being frequently described as the moment during which stem cells are most prone to
differentiation cues. By fluorescence-activated cell sorting (FACS) sorting mESCs in different cell
cycle stages using the fluorescence ubiquitination cell cycle indicator (FUCCI), Coronado et al.
demonstrated that stem cells in the G1 phase are more susceptible to differentiation cues. Moreover,
Coronado demonstrated that transition from the naive pluripotent state towards the less potent
epiblast-resembling primed state is accompanied by a lengthening of the G1 phase (Figure 3) [99].

As such, the short G1 phase has been thought to serve as a pluripotency protective mechanism,
which narrows the time window during which ES cells can be coerced to differentiate. Additionally,
a significant lengthening of the cell cycle accompanies differentiation. Specifically, the G1 phase
becomes enlarged as the once pluripotent cells come under regulation of the p53 and Rb-dependent
cell cycle checkpoints.

Recently, it has been demonstrated that stem cells show a certain level of specificity as to which
differentiation cues are permitted in the early or late G1 phase. Specifically, human ESCs seem to only
commit to neuroectoderm differentiation while in the late G1 phase, whereas commitment towards the
endoderm cell fate is permitted during the early G1 phase [100]. This differential capacity to perceive
differentiation signals at specific cell cycle stages is controlled by the activity of cell cycle regulators.
Regarding neuroectoderm specification, its chronological restriction to the late G1 phase is due to
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Cyclin D/CDK4-6-mediated inhibition of Activin/Nodal signaling. Endoderm differentiation, on the
other hand, requires active Activin/Nodal signaling [100]. These findings highlight the tight control of
the cell cycle over cell fate decision and bring to the spotlight the role of cell cycle regulators beyond
the cell cycle itself.

Several recent studies have shown that in certain conditions, a lengthening of the cell cycle does not
necessarily correlate with a loss of potency. Deletion of c-Myc in mouse embryonic stem cells maintained
in 2i conditions has been shown to induce a phenotype resembling the naturally-occurring embryonic
diapause, which can occur during development of several invertebrate and mammalian species,
including mice, as a strategy to improve reproductive fitness. Importantly, c-MYC depletion-induced
arrest can be rescued without loss of pluripotency by re-expression of exogenous c-MYC or by
withdrawal of pharmacological inhibition of the transcription factor [101].

Interestingly, a very recent study from Huurne et al. may have induced a tectonic shift in our
understanding of the regulation of the pluripotent cell cycle by challenging the notion that mESC
lack typical G1 regulation, making use of bromodeoxyuridine and propidium iodide stainings and
flow cytometric analysis to determine cell cycle distribution of mESC maintained in 2i and serum
conditions. Their flow cytometry results point out important differences in the cell cycle profile of both
culture conditions: in serum mESCs, the number of cells found in S phase is considerably higher than
that of 2i mESCs, while the number of G1 phase cells is increased in 2i mESCs. Additionally, making
use of the FUCCI reporter, Huurne et al. determined the G1 phase of 2i cells to be “markedly longer”
than serum mESCs, along with a shorter S and G2 phase [102].

A short G1 phase may not be an inherent feature of stem cell biology, but rather a characteristic
that arises from culture conditions and their similarity with different stages of embryonic development.
Huurne further contributed to understanding the mechanisms of differential regulation of the cell
cycle in 2i and serum conditions by demonstrating that ERK pathway activity induces a decrease in
hypo-phosphorylated RB and loss of the G1 restriction point culminating in a condensation of the
G1 phase.

The Wnt signaling pathway is known to support maintenance of pluripotency and to be
importantly involved in controlling somatic cell reprogramming [58,103]. It is a pro-mitotic pathway,
and its deregulation is associated with the onset of many neoplastic disorders, but until recently,
it was unclear whether it had a role in the pluripotent cell cycle. Recently, it was demonstrated that
activation of the Wnt pathway has a double role in mESCs: it promotes expression of negative cell
cycle regulators repressing cell cycle progression and proliferation while also reducing the expression
of differentiation genes without disturbing pluripotency. Moreover, these effects are driven specifically
through TCF1-dependent transcriptional regulation. In fact, a novel palindromic DNA binding motif
through which TCF1, but not TCF3, regulates transcription of the Ink4/Arf tumor suppressor locus to
drive expression of p16Ink4a and p19Arf has been described in the same study. Moreover, Wnt activity
in mESCs was shown to result in increased nuclear p53 and depressed c-MYC expression [104]. These
results are rather surprising considering Wnt’s “fame” as a proliferation-supporting pathway and its
indispensable role in supporting proliferation of many somatic cell types by inducing expression of
c-MYC. Moreover, this study highlights the cell type specificity of the outcomes of Wnt activation.
In addition, they are in line with previous reports that agonists of the Wnt pathway severely hinder
proliferation of the pluripotent cells of bovine blastocyst ICM [45].

Much is yet to be known about the pluripotent cell cycle and its functions. It is, however, clear
that it is a highly dynamic cellular function, which, like an octopus, reaches far and wide to exert
some level of control over each and every aspect of the pluripotent cell’s life. Wnt signaling seems to
also have a dynamic role, and the outcomes of its activation may depend not only on the strength of
its signal (self-renewal vs. dormancy), but also on the developmental/pluripotency state of the cell
(differentiation vs. self-renewal) (Figure 3). Regardless of the outcome, Wnt signaling and the cell
cycle seem to go hand-in-hand, and both have a first and last word on the pluripotent cell fate.
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6. Wnt and Somatic Cell Reprogramming

The technology to induce murine and human somatic cells to revert to a pluripotent state
(iPSCs) by way of transduction of several transcription factors (OCT3/4, SOX2, c-MYC, KLF4,
NANOG and LIN28) has created the possibility of generating individualized pluripotent cells for
patient-specific therapy or drug screening [5,105]. Reprogramming can also be accomplished by fusion
of embryonic stem cells with somatic cells, thereby forming tetraploid cells in which the somatic
genome induces the expression of pluripotent-associated genes and silences those associated with the
somatic phenotype [106,107].

The current reprogramming methods remain very inefficient and yield a high number of cells
that fail to undergo complete reprogramming [108,109]. Thus, several events that at present are
not completely understood need to occur to correctly achieve somatic cell reprogramming to the
pluripotent state. Understanding the mechanisms involved in self-renewal and reprogramming
could lead to more efficient reprogramming strategies. In turn, this would ultimately enable
large-scale production of fully-reprogrammed cells and the generation of patient-specific iPSCs for
clinical application.

Growth factors and signaling pathways are the main external players in maintaining self-renewal
and potency of pluripotent cells in vitro [6]. As described above, activation of the Wnt pathway is
necessary and sufficient for the self-renewal of naive ESCs [29,58]. This could suggest an important
role of canonical Wnt signaling in somatic cell reprogramming. In fact, in the original iPSC studies,
β-catenin was found to promote reprogramming. However, it was discarded from the final cocktail of
reprogramming factors (OCT4, SOX2, c-MYC, KLF4) [5], indicating that Wnt pathway activation is not
a quintessential requirement for direct induction of somatic cell reprogramming.

Nevertheless, several recent studies have focused their attention on the central importance of
the Wnt/β-catenin pathway as both an essential element to achieve reprogramming and on how its
modulation affects the efficiency of the reprogramming process itself. Indeed, canonical Wnt signaling
has been shown to be an important player in both fusion-mediated and factor-induced reprogramming
in mouse and human somatic cells [103,110] (Figure 4). The use of either Wnt ligands (such as WNT3A),
GSK3 inhibitors (CHIR99021 or 6-bromoindirubin-3’-oxime, BIO) or viral transduction to overexpress a
stabilized form of β-catenin has beneficial effects on somatic cell reprogramming efficiency. In contrast,
inhibition of Wnt signaling in cells undergoing reprogramming by small molecules, such as inhibitors
of Wnt production (IWP2), significantly reduces the efficiency of somatic cell reprogramming [111,112].
In agreement, deletion or silencing of endogenous β-catenin diminishes the number of reprogrammed
colonies [111,113]. Importantly, Ross et al. have shown that human fibroblasts from focal dermal
hypoplasia (FDH) patients, carrying mutations in the PORCN gene and therefore defective in Wnt
secretion, fail to reprogram to an induced pluripotent state. Defects in reprogramming of FDH
fibroblasts can be rescued by ectopic activation of Wnt signaling or by overexpression of PORCN [114].

In order to investigate which specific Wnt ligand may be directly implicated during somatic
reprogramming, Kimura et al. performed a population expression profile of cells enriched for
undergoing reprogramming [115]. Their results proved that WNT2 is upregulated prominently
during reprogramming simultaneously with increased nuclear β-catenin levels. Surprisingly, WNT2 is
mainly expressed by cells that do not undergo reprogramming. This suggests that non-reprogrammed
cells secrete positive signals, which support cells’ undergoing somatic reprogramming.

Wnt pathway activation is one of the main factors implicated in maintaining mouse and human
naive ESC pluripotency and therefore in the expression of the transcriptional pluripotent network.
However, it has been shown that a reverse crosstalk from the pluripotency network towards the Wnt
pathway exists, as well. NANOG, one of the main components of the ESC transcriptional core [116]
and whose overexpression induces cell-fusion-mediated reprogramming [117], has a direct role in
regulating the Wnt pathway [118]. NANOG binds to the Dkk1 promoter and reduces its expression,
which generates an increase in the levels of β-catenin and activation of its target genes. The crosstalk
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between NANOG and the Wnt pathway is essential for reprogramming since inhibition of the Wnt
pathway in NANOG-overexpressing cells impairs the generation of reprogrammed cells [118].Genes 2018, 9, x FOR PEER REVIEW  15 of 23 
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Figure 4. Temporal perturbation of the Wnt signaling pathway modulates somatic cell reprogramming
efficiency. The levels of Wnt pathway activation during somatic cell reprogramming need to be precisely
modulated in order to reach complete reprogramming. Somatic cells showing low Wnt activity (Wnt
OFF state) at early stages of reprogramming and activation of the Wnt pathway (Wnt ON state) at late
reprogramming stages, respectively, will result in completely reprogrammed induced pluripotent stem
cells (iPSCs). In contrast, somatic cells with Wnt ON at early reprogramming stages or Wnt OFF at late
stages produce partial or non-reprogrammed cells. It has also been demonstrated that high or aberrant
levels of activation of the Wnt pathway have an inhibitory effect on somatic cell reprogramming.

In addition to Wnt proteins, timing and levels of Wnt activation during mouse somatic cell
reprogramming influence the appropriate induction of the pluripotent state. Two independent
reports have shown that, in order to achieve reprogramming, Wnt signaling must be repressed
during the earliest stages of the process, while its activation is a requirement during the late steps
of reprogramming [111,112]. Interestingly, sorting cells at early steps of the reprogramming process
with no activation of the Wnt pathway significantly enriches the number of reprogrammed cells,
underlining Wnt Off as an early reprogramming marker [111]. Furthermore, the threshold of β-catenin
stabilization is very important for reprogramming efficiency. While complete absence of β-catenin
stabilization inhibits somatic cell reprogramming, high or aberrant levels of β-catenin also have a
negative effect on cell fusion-mediated reprogramming [103].

The central effect of β-catenin stabilization on rescuing the repressive influence of TCF3 on the
self-renewal capacity of mouse ESC has stimulated the interest in studying the role of TCF/LEF
factors in somatic reprogramming. Consequently, it has been demonstrated that in pluripotent stem
cells, TCF1 and LEF1 act mainly as Wnt transcriptional activators, while TCF3 and TCF4 act as
transcriptional repressors [23]. In accordance with the biphasic role of the Wnt pathway during
reprogramming (Wnt Off at early events, Wnt-On during late events), silencing of TCF1 and LEF1
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during the initial reprogramming steps and silencing of TCF3 or TCF4 in the later stages increases
the efficiency of pluripotency induction [111,112]. In fact, absence of TCF3 expression, the main
transcriptional repressor endogenously expressed in ESCs, has become a powerful tactic to increase
cell fusion-mediated or factor-induced reprogramming even in the absence of overexpression of some
Yamanaka factors as c-MYC and SOX2 [103,112].

However, the mechanism or the identity of the downstream reprogrammer(s) that is (are)
activated by β-catenin/TCF signaling is still not entirely known. Increased levels of β-catenin by
addition of CHIR99021 during induction of pluripotent stem cells or by overexpression of β-catenin in
cell-fusion-induced reprogramming reduce cell proliferation, ruling out a pro-proliferative function
of the Wnt pathway during somatic cell reprogramming [113,119]. Activation of the Wnt pathway
increases the number of surviving cells undergoing cell fusion-induced reprogramming [119]. However,
whether this is the main mechanism implicated in factor-induced reprogramming has not been yet
investigated. A direct transcriptional target of the Wnt/β-catenin pathway, c-Myc, is one of the four
Yamanaka factors capable of inducing reprogramming [120]. However, when activated in iPSCs or
somatic cells undergoing reprogramming, the Wnt pathway either reduces or has no effect altogether
on c-Myc expression [104,110,119], precluding a positive transcriptional effect on increased levels of
c-Myc along reprogramming events.

TCF3 has been shown to repress the expression of several pluripotency-related genes. The absence
of TCF3 opens the chromatin by increasing the levels of acetylated H3 and Histone 3 Lysine 4
trimethylation in both pluripotent cells and somatic cells undergoing reprogramming [121,122].
Furthermore, ablation of TCF3 increases the expression of pluripotency-related genes Nanog, Esrrb,
Dppa3 and Zpf42, among others [75,81,112]. Altogether, these results indicate that the positive role of
the Wnt pathway and TCF transcription factors on somatic reprogramming is not based on regulating
the expression of one or a few reprogrammers, but rather by establishing a chromatin state that allows
the expression of several pluripotency genes needed to reach complete reprogramming.

In conclusion, several reports have already shown that even though Wnt/β-catenin pathway
activation itself does not induce reprogramming to pluripotency; its endogenous autocrine–paracrine
activity in somatic cells is necessary and enough to sustain cell fusion-dependent or direct
reprogramming. External abolishment of somatic Wnt activity abrogates cellular reprogramming, and
vice versa, activation of Wnt pathway increases reprogramming efficiency.

7. Conclusions and Future Directions

The canonical Wnt pathway plays major and critical roles during embryonic development of
vertebrate organisms. An intricate control over its activity is required for the correct unfolding of the
events that encompass the very beginning of life. One such role is governing the correct specification
of the different cellular lineages, which will give rise to the different tissues and organs of the adult
organism. Specifically, its activation drives differentiation and commitment to the meso-endodermal
lineage during the post-implantation blastocyst stage. However, whether the Wnt signaling pathway
also regulates the specification of extraembryonic tissues remains to be further studied. The importance
of the Wnt pathway during the earliest stages of embryonic development remains unclear. Although
the presence of β-catenin in the nucleus and expression of the Wnt target gene Axin2 can be detected
in the morula or pre-implantation blastocyst, transcriptional activity of the Wnt pathway seems to
be dispensable for development until the blastocyst stage. This is demonstrated by the absence of
developmental defects in β-catenin knockout (KO) pre-implantation blastocysts. To solve this paradox,
further investigations should ensue, making use of embryonic stem cells.

Wnt signaling is essential for the maintenance of the homogeneous pluripotent naive state
in ESCs. However, β-catenin KO ESCs maintain naive pluripotency in vitro as long as they are
cultured in the presence of LIF. However, when deprived of this factor, β-catenin null cells rapidly
exit naive pluripotency. On the other hand, inducing Wnt signaling in the absence of LIF supports
the maintenance of the naive pluripotent state. As such, the Wnt and LIF pathways seem apparently
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redundant in the maintenance of naive pluripotency, and further studies should be performed in
order to understand whether other pathways could be involved in the maintenance of in vitro naive
pluripotency and early embryonic development in β-catenin KO mouse models.

Due to their ability to replicate indefinitely and their capacity to differentiate towards all
embryonic lineages, iPSCs and ESCs hold a valuable potential for application in regenerative medicine.
However, among other reasons, their use in regenerative therapies is not possible at the moment due
to unamenable concerns regarding the tumor initiating capacity of pluripotent stem cells. The Wnt
pathway has been recently shown to regulate both pluripotency and proliferation in mESCs. These
cellular functions are seemingly regulated by different TCF/LEF Wnt-dependent transcription factors
that govern discrete gene programs. This non-redundant nature of TCF/LEF transcription factors could
potentially be exploited in order to achieve the modulation of particular beneficial Wnt-dependent
cellular outcomes without concomitant modulation of undesired functions, i.e. maintaining iPSC/ESC
self-renewal without oncogenic potential. As such, further investigation into the roles of Wnt signaling
in the pluripotent cell cycle needs to be performed in the hopes of obtaining safer pluripotent stem
cells, finally unlocking the grail of regenerative medicine.
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