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ABSTRACT  CRISPR-Cas represents a prokaryotic defense mechanism against 
invading genetic elements. Although there is a diversity of CRISPR-Cas sys-
tems, they all share similar, essential traits. In general, a CRISPR-Cas system 
consists of one or more groups of DNA repeats named CRISPR (Clustered Reg-
ularly Interspaced Short Palindromic Repeats), regularly separated by unique 
sequences referred to as spacers, and a set of functionally associated cas 
(CRISPR associated) genes typically located next to one of the repeat arrays. 
The origin of spacers is in many cases unknown but, when ascertained, they 
usually match foreign genetic molecules. The proteins encoded by some of 
the cas genes are in charge of the incorporation of new spacers upon entry of 
a genetic element. Other Cas proteins participate in generating CRISPR-spacer 
RNAs and perform the task of destroying nucleic acid molecules carrying se-
quences similar to the spacer. In this way, CRISPR-Cas provides protection 
against genetic intruders that could substantially affect the cell viability, thus 
acting as an adaptive immune system. However, this defensive action also 
hampers the acquisition of potentially beneficial, horizontally transferred 
genes, undermining evolution. Here we cover how the model bacterium 
Escherichia coli deals with CRISPR-Cas to tackle this major dilemma, evolution 
versus survival. 
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INTRODUCTION 
The prokaryotic world has been historically the main 
source of tools for genetic engineering and molecular biol-
ogy in general. CRISPR-Cas is a recent example of how the 
study of prokaryotes has revolutionized life sciences. Be-
sides becoming the most important tool for genomic edit-
ing to date [1], the discovery of this immune system has 
marked an important milestone in the history of Microbi-
ology.  

Cas proteins, CRISPR loci and CRISPR RNAs are the core 
functional parts of an adaptive and heritable resistance 
system against foreign DNA. They enable the cell to keep 
memory of infections by exogenous elements and fight 
against the invader. There is a significant diversity of genes 
associated with CRISPR, presumably reflecting the selective 
pressure viruses exert on the evolution of the system. Clas-
sification of CRISPR-Cas systems has been proven a chal-

lenging task [2–4], and new variants are emerging as se-
quencing data increases and functional studies on these 
systems are performed. Distinct CRISPR-Cas systems can 
coexist in a genome [4–8]. Moreover, the number of 
CRISPR loci pertaining to the same type varies among or-
ganisms, and both the identity and number of spacers 
within each array greatly changes even among genomes of 
closely related strains [9].  

In this paper, we present an overview of the CRISPR-
Cas systems outlining their discovery, classification and 
functional role, and we discuss about the evolutionary im-
portance of these systems in the model organism Esche-
richia coli. The chromosome of E. coli strains may harbor 
up to two CRISPR-Cas systems involving as much as two 
repeat arrays each [6]. Equivalent arrays show a consider-
able intraspecific polymorphism in terms of spacer number 
and sequence. Fundamental knowledge about the CRISPR-
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Cas mechanism has been generated from the analysis of 
these two systems in E. coli [10–13] and related Enterobac-
teriaceae [14].  

 

DISCOVERY OF CRISPR LOCI AS DNA-MEMORY STORES 
The serendipitous finding by Nakata and collaborators in 
1987 [15] of five direct repeats next to the iap gene in 
E. coli was the first report of a CRISPR locus. Subsequently, 
in 1989 [16] the Nakata’s team documented another array 
of repeats at approximately 20 kb from the first one. Soon 
after, Hermans et al. [17] found direct repeats in the unre-
lated, Gram-positive Mycobacterium tuberculosis complex, 
launching the use of the repeat loci for strain typing based 
on their particular spacer content [18]. Archaea first CRIS-
PRs were discovered in 1993 [19], and the earliest func-
tional studies on these sequences were performed in 1995 
[20]. By the end of the 1990’s, similar direct repeats were 
found in other prokaryotes and denominations given to 
these sequences started to multiply: DR, direct repeats 
[17]; TREPs, tandem repeats [20]; SRSR, short regularly 
spaced repeats [21]; DVR, direct variant repeats [22]; LCTR, 
large clusters of tandem repeats [23]; SPIDR, spacers inter-
spersed direct repeats [24]. To avoid confusion, an agree-
ment was made on naming the repeated sequences as 
CRISPR [25]. This acronym appeared published for the first 
time in 2002 [26]. By then, the biological relevance of these 
sequences was recognized, since they were distributed 
among many different, distantly related prokaryotes, rep-
resenting a widespread family of repeats [21]. However, 
even though protein coding genes commonly associated to 
CRISPR arrays were discovered [26], unraveling their func-
tion was still pending. These Cas proteins, some of them 
related to helicases or nucleases, could play a role on DNA 
metabolism or expression[26].  

Nevertheless, the definitive hint for the biological func-
tion of CRISPR-Cas came from the spacers rather than from 
the Cas or CRISPR units. In 2005, three independent studies 
found that some spacers matched sequences from trans-
missible genetic elements [27–29]. Notably, a comprehen-
sive survey of the literature published on viruses and plas-
mids carrying spacer homologs, pointed to a relationship 
between immunity to these carriers and the presence of 
the cognate spacer in a potential host [27]. Therefore, it 
was suggested that the spacers represent a memory of 
past infections, and this information might be used to 
guide a defense mechanism. This fundamental break-
through in the understanding of the CRISPR role in nature 
came hand in hand with the advent of increasing amounts 
of sequence data generated from viral, plasmid and com-
plete genome sequences of prokaryotic strains which al-
lowed researchers to cross-compare them. The existence 
of an adaptive, immunity-like system in Bacteria and Ar-
chaea was such an innovative idea that the three research 
groups undergone difficulties in publishing their results 
[30]. Historical perspectives of the initial moments of this 
discovery have been published elsewhere [25, 30–34] 
showing interesting insights into the way modern science 
works and how scientific discoveries are made.  

In 2007, the function of CRISPR-Cas as a specific im-
mune system was experimentally proven in Streptococcus 
thermophilus [35]: phage resistance was endowed after 
the incorporation of small fragments of the foreign genetic 
material as spacers into the CRISPR loci of the bacterium. 
Moreover, Cas proteins were shown to be involved in this 
immunity. One year later it was demonstrated that tran-
scripts derived from CRISPR arrays in E. coli were processed 
by Cas proteins and that the resulting small RNAs (crRNAs) 
are necessary to achieve immunity [12]. 

 

CRISPR-CAS MECHANISM 
Despite the diversification of CRISPR-Cas systems and their 
wide distribution in distantly related bacteria and archaea 
[4], the fundamental mechanism of this immune system is 
quite conserved, following three basic steps: adaptation, 
expression and interference. 

Adaptation, or spacer acquisition, requires the integra-
tion of fragments of nucleic acids from invader molecules 
[36–38]. In addition to Cas, non-Cas proteins are involved 
in this stage [39]. Fragments of foreign nucleic acids select-
ed for integration, named proto-spacers [40], are usually 
flanked by short conserved sequences, the proto-spacer 
adjacent motif (PAM) [41]. New spacers are preferentially 
integrated in a polarized manner [29], next to the terminal 
CRISPR unit downstream to an AT-rich region called leader 
[12, 26, 42]. The PAM sequence is needed for most, but 
not all systems to recognize foreign targets, and its ab-
sence in the own CRISPR array avoids self-targeting [43]. 
Most CRISPR-Cas systems acquire spacers directly from 
DNA donors but a few systems are able to gain new spac-
ers derived from RNA precursors after retrotranscription 
[44]. 

The transcription of a CRISPR array from the leader 
generates a multi-spacer RNA (pre-crRNA) which is pro-
cessed to single-spacer crRNAs with the participation of 
Cas proteins [12] and, in some systems, of non-Cas ribonu-
cleases as well as a trans-activating crRNA (tracrRNA) that 
partially hybridizes with the pre-crRNA [45]. After pro-
cessing, each mature crRNA (or crRNA/tracrRNA duplex) 
remains assembled with Cas proteins in a CRISPR ribonu-
cleoprotein (crRNP) complex [46, 47]. This completes the 
second step of the CRISPR mechanism. 

During the interference stage, the crRNP complex rec-
ognizes and directs cleavage of spacer-complementary 
sequences resulting in the elimination of molecules that 
carry potential targets [48]. Specific PAMs are crucial for 
efficient interference by many CRISPR-Cas systems [48–50]. 
In this case, upon PAM recognition by a protein of the 
crRNP complex, double-strand pairing is disrupted at the 
target DNA, leading to a R-loop conformation through pro-
gressive hybridization (starting from the PAM) with the 
spacer sequence in the crRNA [46]. The R-loop is the sub-
strate for cleavage by Cas endonucleases [51]. Some 
CRISPR-Cas systems target RNA instead of, or in addition to, 
DNA [52–54]. 
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CRISPR-Cas SYSTEMS CLASSIFICATION 
Cas proteins are categorized in three functional modules 
[55]. The suite of proteins for the acquisition module is 
quite uniform. Regular members are Cas1 and Cas2 [36, 
56], which have nuclease activities and form a multi-
protein complex [57]. The Cas1-Cas2 adaptation complex 
appears to be assisted by Cas4 when present, and might be 
included in this module [58, 59]. In contrast to the acquisi-
tion proteins, the effector module (that is, proteins in-
volved in pre-crRNA processing, target recognition and 
cleavage) is highly variable [3, 4, 60]. There is a third mod-
ule of ancillary Cas proteins, involved in regulatory and 
other unknown roles [3, 60]. 

Due to the fast evolution and wide diversification of the 
CRISPR-Cas systems, a multiple criteria approach has been 
used for classification: signature cas genes specific for 
some types, sequence similarity between common Cas 
proteins, the phylogeny of Cas1 (the most conserved Cas 
protein) and gene configuration in the loci [3, 4]. The appli-
cation of these criteria resulted in the current classification 
principle of two classes (1 and 2) and six types (from I to VI) 
[3]. Several subtypes (designated by letters, from 'A' for-
ward) have been proposed based on signature genes and 
characteristic genomic arrangements [3, 4]. Moreover, at 
least in the case of E. coli, subtype variants showing sub-
stantial differences in cas sequence and PAM preference 
have been recognized within the species [61, 62]. This clas-
sification system also involves a systematic naming for Cas 
proteins that, in some cases, has changed over time to 
adapt to new discoveries [2–4]. 

Class 1 systems rely on multi-protein effector complex-
es [3]. They include Type I and Type III systems (distin-
guishable by the presence of Cas3 and Cas10, respectively) 
as well as the uncommon Type IV, devoid of an adaptation 
module. Class 2 is defined by the presence of a single-
protein effector, namely Cas9, Cas12 or Cas13, depending 
on the particular type of system (Type II, Type V and Type 
VI, respectively) [3, 63]. In spite of the need for tracrRNAs 
by Type II systems [45], not being involved in Class 1 sys-
tems [3], most applications of CRISPR technology in heter-
ologous hosts are based on Type II components. This is 
mainly because, in contrast to Class 1, a single protein is 
required for interference and the target is cleaved just 
once at precise sites [31]. 
 

HOW PROKARYOTES BYPASS THE GENETIC BARRIER 
DICTATED BY CRISPR: THE CASE OF Escherichia coli 
Once the biological function of CRISPR-Cas was revealed, 
the potential drawbacks that fully efficient CRISPR-
mediated interference could pose to prokaryotic evolution 
became evident [64]. Horizontal Gene Transfer (HGT) is 
one of the main forces driving genetic change in Bacteria 
and Archaea [65, 66]. However, the uptake of foreign nu-
cleic acids might be constrained by functional CRISPR-Cas 
systems. To cope with such situation, prokaryotes either 
lack these systems or place them under stringent control 
[67, 68]. This is exemplified by the case of E. coli, a para-
digm of genome plasticity [69, 70] in spite of being in pos-

session of CRISPR-Cas systems [6]: a subtype I-E system is 
present in the majority of strains and a complete I-F system 
exists in a reduced number of isolates. Still, cells harboring 
cas genes of the two subtypes are extremely rare [6, 61]. 
Unexpectedly, the E. coli I-F system is constitutively ex-
pressed under normal laboratory growth conditions [71, 
72]. Therefore, in principle, it is permanently acting against 
gene transfer. However, the PAMs of the spacers present 
in the I-F arrays of E. coli differ from the proto-spacer adja-
cent motifs that elicit the most efficient interference [71]. 
Such a relaxed interference could provide the opportunity 
for beneficial foreign DNA to be acquired, while at the 
same time still limiting exchange of unwanted genetic ma-
terial. Remarkably, when I-F cas are absent in the E. coli 
genome, an array with a limited number of I-F repeats is 
invariably present, allegedly as a remnant of an ancient 
complete I-F system [6, 61, 73]. Most strikingly, the vast 
majority of spacers in these orphan arrays match cas I-F 
genes [6, 73], playing a crucial role in preventing the barri-
er effect of their cognate genes [73]. Strains harboring 
these arrays use them as a constitutively expressed anti-
cas mechanism that avoids the establishment of a fully 
equipped, immunity-prone CRISPR-Cas I-F system: intrusive 
DNA containing cas I-F genes is degraded through the ac-
tion of the encoded Cas proteins guided by the resident 
crRNAs [73]. This anti-cas mechanism strongly supports the 
hypothesis that CRISPR-Cas immunity could be annoying 
for the carrier cell. 

Opposite to I-F, expression of the E. coli I-E system is 
precisely regulated. H-NS protein is the main repressor of 
the system and its silencing effect can be lessened by the 
transcription factor LeuO [74–76]. The cAMP receptor pro-
tein (CRP) also contributes to CRISPR inhibition, acting as a 
competitor of LeuO for binding to the regulatory regions in 
the CRISPR-cas locus [77]. However, activity of the I-E sys-
tem of E. coli has not been detected under the multiple 
laboratory growth conditions so far tested (our un-
published results), and the natural circumstances upon 
which such silencing is relieved remain to be clearly eluci-
dated. In this regard, quorum sensing autoinducers of the 
N-Acyl-homoserine-lactone (AHL) class appear to activate 
CRISPR-Cas systems in Gram-negative bacteria such as 
Pseudomonas aeruginosa [78] and Serratia sp. [79] at ele-
vated cell densities, when the risk of infection by bacterio-
phages is the highest [80]. Although this sort of induction 
has not been detected in pure cultures of E. coli, the pres-
ence in this species of AHL receptors [81, 82] raises the 
possibility that their CRISPR-Cas systems might be regulat-
ed through an interspecific crosstalk, by signals secreted by 
other members of the microbial community. Overall, these 
findings illustrate the complexity of I-E CRISPR-Cas regula-
tion in E. coli. Moreover, its diverging spacer count and 
identity within the species is an indication that CRISPR ac-
tivity, at least at the adaptation stage, is turned on at a 
different pace depending on the particular group of strains.  

Related to this, a notable case is that of pathogenic 
strains. When compared to non-pathogens (i.e., commen-
sals), they gain a selective advantage via the acquisition 
through HGT of virulence factors, allowing them the ability 
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to colonize more varied ecological niches within their hosts 
[70, 83, 84]. Inquiringly, a recent work from our group [85] 
established a negative correlation between pathogenicity 
and I-E CRISPR repeat count in E. coli: commensal strains 
tend to have more repeats than pathogenic isolates. This 
observation is compatible with the hypothesis that the 
activity of CRISPR-Cas I-E is kept limited when environmen-
tal adaptation needs to take precedence over protection, 
to minimize the negative effects of an evolutionary con-
straint. Another related question is why E. coli strains have 
lost either the I-E or the I-F cas genes, depending on their 
particular environment [6, 85]. Indeed, most extra-
intestinal pathogens pertaining to diverse phylogroups 
retain a I-F CRISPR-Cas system while the majority of com-
mensals and enteric pathogens harbor a I-E system [85]. 
The preference for one or the other CRISPR-Cas subtype is 
suggestive of functional differences between the two sys-
tems. In this sense, previous works have reported that 
whereas spacers within I-E arrays of E. coli target viruses 
and plasmids alike, most I-F spacers matching known se-
quences have a plasmid origin [6, 72, 85]. Being plasmids 
the primary vectors for antibiotic resistance genes [86], 
this bias of I-F toward targeting plasmids is in agreement 
with the observation that the carrier strains are particularly 
susceptible to antibiotics [72]. Even though the reason for 
this apparent specialization is unknown, it highlights the 
inconvenience of an indiscriminate interference and the 
burden of carrying multiple CRISPR-Cas systems. 

In summary, the analysis of the different CRISPR-Cas 
settings found in E. coli strengthen the idea that these sys-
tems, despite conferring protection, could severely hamper 
prokaryote evolution, hinting at how detrimental they 

could become if left unrestricted. Therefore, avoiding cas 
genes and limiting CRISPR-Cas activity when present ap-
pears to be a necessary evil for a prokaryote, where a deli-
cate balance should be reached between the two extremes, 
those of promiscuity or chastity in terms of genetic ex-
change. 
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