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Abstract: Currently, terahertz metamaterials are studied in many fields, but it is a major challenge for
a metamaterial structure to perform multiple functions. This paper proposes and studies a switchable
multifunctional multilayer terahertz metamaterial. Using the phase-transition properties of vanadium
dioxide (VO2), metamaterials can be controlled to switch transmission and reflection. Transmissive
metamaterials can produce an electromagnetically induced transparency-like (EIT-like) effect that can
be turned on or off according to different polarization angles. The reflective metamaterial is divided
into I-side and II-side by the middle continuous VO2 layer. The I-side metamaterials can realize
linear-to-circular polarization conversion from 0.444 to 0.751 THz when the incident angle of the
y-polarized wave is less than 30◦. The II-side metamaterials can realize linear-to-linear polarization
conversion from 0.668 to 0.942 THz when the incident angle of the y-polarized wave is less than 25◦.
Various functions can be switched freely by changing the conductivity of VO2 and the incident surface.
This enables metamaterials to be used as highly sensitive sensors, optical switches, and polarization
converters, which provides a new strategy for the design of composite functional metamaterials.

Keywords: terahertz metamaterials; vanadium dioxide; electromagnetically induced transparency-like;
polarization converter

1. Introduction

The electromagnetically induced transparency (EIT) effect has attracted extensive
attention since it was proposed and discovered by Harris et al. [1,2]. It is a destructive
quantum interference between two different excitation transition pathways in atomic
systems. Due to the suppression of the electronic transition, an obvious transmission
window is generated at the frequency of the original absorption resonance [3]. The EIT
window has a large group refractive index, so it is suitable for optical switches and slow-
light devices [4,5]. The realization of EIT in atomic systems requires a high-intensity
pulsed laser and extremely low experimental temperature, which affect the application and
development of EIT technology. In 2008, Zhang et al. [6] used metamaterials to achieve
electromagnetically induced transparency-like (EIT-like) effects at room temperature, which
not only avoided the various constraints of EIT in atomic systems but also increased the
controllability of the EIT. EIT-like effects can be achieved by introducing bright mode and
dark mode with different resonance frequencies and intensities into the metamaterials
and controlling the near-field coupling between them. Currently, EIT-like metamaterials
(EIT-like MM) are widely used in many fields, such as high-sensitivity sensors [7–9], optical
switches [10–12], slow-light devices [13,14], and modulators [15,16].

The effective regulation of electromagnetic wave polarization is of great significance in
the fields of electromagnetic wave communication, terahertz (THz) imaging, and fundamen-
tal physics [17–19]. As polarization-control elements of electromagnetic waves, traditional
polarization converters mainly rely on the phase accumulation on the propagation path
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of electromagnetic waves to achieve polarization regulation, which has the characteristics
of large size and difficult integration [20,21]. In 2007, Hao et al. [22] proposed a reflective
metamaterial for polarization conversion. Due to the advantages of thin thickness, low loss,
and easy integration, metamaterial polarization converters quickly caught the attention
of researchers [23,24]. In 2013, Grady et al. [25] proposed a metamaterial polarization
converter suitable for the THz frequency band, which greatly expanded the application
frequency range of metamaterial polarization converters.

Metamaterials with two-dimensional materials or phase-change materials can perform
the dynamic switching of functions; breaking through the application limitations of single-
function metamaterials, they are rapidly becoming an area of research focus in the field of
metamaterials. Wen et al. [26] designed metamaterials with vanadium dioxide (VO2) resonant
surfaces, and by changing the conductivity of the VO2, the transmittance can be adjusted and
the opening and closing of the resonant peaks can be achieved. Yao et al. [27] proposed a
metamaterial with a graphene resonant surface; by changing the Fermi level of the graphene,
the polarization conversion range can be adjusted and a high polarization conversion rate
can be maintained in specific frequency ranges. Li et al. [28] designed a multifunctional
metamaterial based on Ge2Sb2Te5 (GST). Switching between transmissive quarter-wave plates
(QWP) and half-wave plates (HWP) can be achieved by controlling the crystalline state of the
GST. Song et al. [29] designed a multilayer THz metamaterial containing square VO2 layers
and rectangular metal layers. The switching of the broadband absorber and the broadband
linear polarization converter can be achieved by tuning the insulating and conducting states of
the VO2. Li et al. [30] proposed a multilayer metamaterial containing a resonant layer of VO2
and metal combinations, a continuous VO2 layer, and a continuous graphene layer. When
VO2 is in the conducting state, metamaterials can achieve broadband absorption in the 0.4
THz bandwidth. When the VO2 is in the insulating state, the switching of dual-frequency
EIT-like and broadband EIT-like is achieved by changing the Fermi level of the graphene.
Liu et al. [31] achieved switching between dual-frequency EIT-like and linear-to-circular
polarization conversion using an intermediate continuous VO2 layer. These metamaterials
have many functions, which increases their application value.

In this paper, the development of a multifunctional THz metamaterial is presented
based on the phase transition properties of VO2. When the VO2 is in the insulating state, the
electromagnetic wave incident on the I-side excites two bright modes, which are coupled
with each other to produce EIT-like. The resonance mechanism of the EIT-like MM was
analyzed in detail by analyzing the electric field distribution. The effects of the polarization
angle and structural parameters on the EIT-like were also studied, and the appearance
and disappearance of the EIT-like was controlled by adjusting the polarization angle.
When the VO2 is in the conducting state, the metamaterials on both sides can be used as
reflective polarization converters. The I-side metamaterials can achieve conversion from
linear polarization to circular polarization in the range of 0.444 to 0.751 THz. The II-side
metamaterials can achieve conversion from linear polarization to linear polarization in the
range of 0.668 to 0.942 THz. The resonance mechanisms of the two polarization converters
were analyzed in detail by using the surface current in a u–v coordinate system. The
effects of the structural parameters and the incident angle of the polarization wave on the
polarization converter were also studied. The I-side metamaterials can be used as a QWP in
the frequency range of 0.444–0.751 THz when the incident angle is less than 30◦. The II-side
metamaterials can be used as HWP in the frequency range of 0.668–0.942 THz when the
incident angle is less than 25◦. The proposed multilayer THz metamaterial shows potential
for the active manipulation of the EIT-like effect and polarization conversion, and provides
a new strategy for the design of multifunctional metamaterials.

2. Structure Model

Figure 1 shows the structure of the multifunctional THz metamaterials, which is di-
vided into two parts, the I-side and the II-side, by a VO2 layer with a thickness of 0.5 µm.
For the I-side part, the 3 micrometer-thick surface resonator layer contains three differently
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shaped structures: X-shape (XS), small double-L-shape (SDLS), and large double-L-shape
(LDLS). XS and SDLS are made of copper with electric conductivity of σ = 5.8 × 107 S/m,
and the material of LDLS is VO2. For the II-side part, surface resonator layer is com-
posed of the VO2 resonant structure with a thickness of 4 µm. The intermediate insulat-
ing layer is composed of the cyclic olefin copolymer (COC) with a relative permittivity of
2.1 + 0.006i and a thickness of 30 µm. The structural parameters of metamaterial are as follows:
l1 = 100 µm, l2 = 71.5 µm, l3 = 65.5 µm, l4 = 80 µm, l5 = 30 µm, g1 = 4.5 µm, g2 = 4 µm,
g3 = 30 µm, w1 = 20 µm, w2 = 2 µm, w3 = 7 µm, w4 = 20 µm, w5 = 10 µm. The metamaterial’s
structure was simulated using the 3D full-wave electromagnetic field simulation software CST
Studio Suite 2020. To simulate infinite periodic arrays, the periodic boundary conditions were
set in the X and Y directions and the open boundary conditions were set in the Z direction.
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VO2 is a temperature-dependent phase-change material whose electrical conductivity
and relative permittivity change during the phase-transition process. In the THz frequency
band, the relative permittivity of VO2 is described by the Drude model [32,33]:

ε(ω) = ε∞ −
ω2

p(σ)

ω2 + iγω
(1)

where ε∞ is the permittivity at infinite frequency, with a value of 12, and γ is the collision
frequency, with a value of 5.75× 1013 rad/s. The relationship between the plasma frequency
ωp(σ) and the conductivity σ is as follows:

ω2
p(σ) =

σ

σ0
ω2

p(σ0) (2)

where σ0 = 3 × 105 S/m, ω2
p(σ0) = 1.4 × 1015 rad/s. In the simulation, σ = 30 S/m

represents the insulating state of VO2 at room temperature and σ = 90,000 S/m represents
the conducting state of VO2 at 89 ◦C [34]. The transition between VO2 insulating state and
conducting state can produce the transmission and reflection conversion of metamaterials.

3. Electromagnetically Induced Transparency-like Effect of Metamaterials

The metamaterial is excited by the incident THz wave to produce an EIT-like effect
when the VO2 is in the insulating state. The metal resonant unit of the EIT-like MM is
composed of XS and SDLS. The THz wave with the electric field along the y-axis and
the wave vector along the z-axis is vertically incident on the surface of the metamaterial.
Figure 2 shows the transmission curves of each individual XS, SDLS, and EIT-like MM
resonator under the same polarization conditions. The XS and SDLS are excited by incident
radiation and resonate at 0.805 THz and 0.935 THz, respectively. The resonant frequencies
of the two bright modes are similar and the quality factors of the resonant windows
are obviously different, which meets the necessary conditions for an EIT-like effect. The
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transmission curve of the EIT-like MM is coherently superimposed by the transmission
curves of the bright modes. The EIT-like transmission window is formed between 0.796 THz
and 0.939 THz, with a peak frequency of 0.881 THz and a transmission peak amplitude
of 0.692.
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Figure 2. Transmission-amplitude curves of XS, SDLS, and EIT-like MM.

The generation mechanism of the EIT-like was further analyzed based on the electric-
field distribution of the metamaterial’s resonant surface. The electric-field distributions
corresponding to the trough and peak frequencies are shown in Figure 3a,b. At the trough
frequency of 0.796 THz, the bright modes are excited by the incident THz wave. The electric-
field strengths of XS and SDLS are different. The electric field is mainly concentrated on the
XS. The XS generates electric dipole resonance, and the weak coupling between the XS and
the SDLS makes the electric dipole of the SDLS rotate under the action of the original electric
field, so that its electric dipole moment turns to the direction of the external electric field.
Therefore, the electric field on the SDLS is not concentrated at the ends of the L-shaped
structure. At 0.939 THz, the SDLS produces electric dipole resonance and the electric
field plays a leading role in the structure. The resonant intensities of the bright modes
are different. Due to the weak hybridization between the bright modes, the electric-field
strength of the structure is significantly weakened, and an obvious transmission window is
induced at 0.881 THz.

Micromachines 2022, 13, x  4 of 13 
 

 

wave vector along the z-axis is vertically incident on the surface of the metamaterial. Fig-

ure 2 shows the transmission curves of each individual XS, SDLS, and EIT-like MM reso-

nator under the same polarization conditions. The XS and SDLS are excited by incident 

radiation and resonate at 0.805 THz and 0.935 THz, respectively. The resonant frequencies 

of the two bright modes are similar and the quality factors of the resonant windows are 

obviously different, which meets the necessary conditions for an EIT-like effect. The trans-

mission curve of the EIT-like MM is coherently superimposed by the transmission curves 

of the bright modes. The EIT-like transmission window is formed between 0.796 THz and 

0.939 THz, with a peak frequency of 0.881 THz and a transmission peak amplitude of 

0.692. 

 

Figure 2. Transmission-amplitude curves of XS, SDLS, and EIT-like MM. 

The generation mechanism of the EIT-like was further analyzed based on the electric-

field distribution of the metamaterial’s resonant surface. The electric-field distributions 

corresponding to the trough and peak frequencies are shown in Figure 3a,b. At the trough 

frequency of 0.796 THz, the bright modes are excited by the incident THz wave. The elec-

tric-field strengths of XS and SDLS are different. The electric field is mainly concentrated 

on the XS. The XS generates electric dipole resonance, and the weak coupling between the 

XS and the SDLS makes the electric dipole of the SDLS rotate under the action of the orig-

inal electric field, so that its electric dipole moment turns to the direction of the external 

electric field. Therefore, the electric field on the SDLS is not concentrated at the ends of 

the L-shaped structure. At 0.939 THz, the SDLS produces electric dipole resonance and 

the electric field plays a leading role in the structure. The resonant intensities of the bright 

modes are different. Due to the weak hybridization between the bright modes, the electric-

field strength of the structure is significantly weakened, and an obvious transmission win-

dow is induced at 0.881 THz. 

 

Figure 3. (a) Electric-field distribution of the trough frequencies; (b) electric-field distribution of the 

transmission-peak frequency. 

Figure 3. (a) Electric-field distribution of the trough frequencies; (b) electric-field distribution of the
transmission-peak frequency.

The EIT-like MM is a two-fold rotational symmetry structure, which is usually sensitive
to changes in polarization angle [35]. To deeply study the effect of different polarization
angles on the EIT-like characteristics, the transmission properties of the metamaterial under
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different polarization angles were simulated, and the results are shown in Figure 4a. The
peak frequency and frequency range of the EIT-like window do not change significantly
when the polarization angle is changed from 0◦ to 30◦. As the polarization angle increases
from 30◦ to 60◦, the amplitude of the transmission peak and the frequency range of the
transmission window decrease. When the polarization angle is greater than 60◦, the EIT-
like effect disappears and the metamaterial produces a single resonance. In summary, the
appearance and disappearance of the EIT-like are related to the response of the bright
modes to different polarization angles. The XS is a centrosymmetric structure and is
insensitive to changes in polarization angle. Figure 4b shows the simulation results of the
SDLS with different polarization angles. The degradation of the resonance corresponds
to the degradation of the EIT-like, and the changes to the EIT-like are determined by the
response of the SDLS to different polarization angles. The sensitivity of the metamaterial to
the polarization angle can be applied in the field of optical switches.
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In order to obtain further insights into the EIT-like characteristics, the effects of the
structural parameters were simulated. Only one parameter was changed at a time, and
the other parameters remained unchanged. Figure 5a shows that when the l2 length
increases, the transmission window is red-shifted, and the amplitude of the transmission
peak becomes larger. The transmission peak of the EIT-like can be regulated by changing
the length of l2. Figure 5b shows the simulation results of changing g1. When g1 increases
from 0.5 µm to 4.5 µm, the amplitude of the transmission peak remains unchanged, and the
peak frequency is slightly red-shifted. It is worth noting that the full width at half maximum
of the transmission window decreases significantly. The quality factor of the metamaterial
sensor is defined as Q = fEIT−like/FWHM. The fEIT−like is the peak frequency of the
EIT-like window and FWHM is the full width at half maximum. When the metamaterial is
used as the sensor, the increase in g1 corresponds to a higher quality factor.
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4. Polarization Conversion Properties of Metamaterials
4.1. Simulation Results

At 89 ◦C, the continuous VO2 layer in the conducting state divides the metamaterials
into I-side and II-side parts, which can be used as reflective polarization converters. To
analyze the degree of the polarization conversion of the metamaterial when the y-polarized
THz wave is incident, the Stokes parameters [36,37] are introduced as follows:

S0 =
∣∣ryy

∣∣2 + ∣∣rxy
∣∣2 (3)

S1 =
∣∣ryy

∣∣2 − ∣∣rxy
∣∣2 (4)

S2 = 2
∣∣ryy

∣∣∣∣rxy
∣∣cos ∆Φ (5)

S3 = 2
∣∣ryy

∣∣∣∣rxy
∣∣sin ∆Φ (6)

where
∣∣ryy

∣∣ is the reflection coefficient of the y-to-y polarization conversion,
∣∣rxy

∣∣ is
the reflection coefficient of the y-to-x polarization conversion, and Φyy and Φxy are the
phases corresponding to the reflected waves, ∆Φ = Φyy −Φxy. When

∣∣ryy | ≈ |rxy
∣∣ and

∆Φ ≈ 2nπ ± π/2 (n is an integer), the metamaterials can achieve linear-to-circular polar-
ization conversion. The calculated ellipticity can be used to describe the performance of
the polarization converter. The ellipticity, defined as χ = S3/S0. χ = −1, indicates that the
reflected THz wave is a typical right-hand circular polarization (RHCP) wave. By contrast,
χ = 1 means that the reflected THz wave is a typical left-hand circular polarization (LHCP)
wave. When

∣∣ryy | ≈ |rxy
∣∣ and ∆Φ ≈ 2nπ ± π (n is an integer), the metamaterial can realize

linear-to-linear polarization conversion, and its polarization conversion characteristics can
be described by the polarization conversion rate and the degree of linear polarization [38].
The polarization conversion rate is defined as PCR =

∣∣rxy
∣∣2/S0, and the degree of linear

polarization is defined as DoLP =
√

S2
1 + S2

2/S0. PCR = 1 indicates that the incident y-
polarized wave is completely transformed into the reflected x-polarized wave. DoLP = 1
means that the degree of linear polarization is the highest, and the reflected THz waves are
stable linear polarization waves.

The u–v coordinate system is obtained by rotating the x–y coordinate system by 45◦

around the z-axis, where the incident and reflected waves are decomposed into mutually
orthogonal u and v components [39,40]. The electric field of the incident wave is expressed as
Ei = Euiu + Eviv = |Eui|exp(jϕ)u + |Evi|exp(jϕ)v. The electric field of the reflected wave is
expressed as Er = Euru+ Evrv. The symbols u and v are the unit direction vectors in the u-axis
direction and v-axis direction, respectively. Jones calculus is used to explain the relationship
between the incident and reflected waves [41]. The component of the reflected wave in the u-



Micromachines 2022, 13, 1013 7 of 13

direction is expressed as Eur = |ruu|exp (jϕuu)Eui + |ruv|exp (jϕuv)Evi. The component of the
reflected wave in the V direction is expressed as Evr = |rvu|exp (jϕvu)Eui + |rvv|exp (jϕvv)Evi.
The symbols ruu, rvv, rvu, and ruv represent the polarization of u to u, v to v, u to v, and v to u,
respectively. In order to illustrate the polarization conversion properties of the metamaterial,
the v- and u-polarized waves are incident from the I-side of the metamaterial, and the
simulation results are shown in Figure 6a,b. In the frequency range of 0.444 to 0.751 THz,
the cross-polarized reflection amplitudes are approximately equal to 0, the co-polarized
reflection amplitudes are nearly equal, and the phase difference is close to 90◦ and−270◦. The
amplitude curves of ryy and rxy are shown in Figure 6c. The I-side metamaterial resonates at
0.419 THz and 0.778 THz, which causes ryy and rxy to intersect between the two frequencies.
The resonance at 0.659 THz brings the amplitudes of the reflected polarization waves close to
each other. The calculated χ is shown in Figure 6d. In the frequency range of 0.444–0.751 THz,
χ > 0.92 indicates that the I-side metamaterials can convert the y-polarized incident wave to
the LHCP wave.
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Figure 7a,b show the simulation results of the II-side metamaterials in the u–v coordi-
nate system. The amplitudes of rvu and ruv are 0. In the frequency range of 0.668–0.942 THz,
the amplitudes of ruu and rvv are gradually close to unity, and the phase difference is
close to ± 180◦. The simulation and calculation results of the II-side metamaterials in the
x–y coordinate system are shown in Figure 7c,d. The amplitude of rxy is higher than 0.72
and the amplitude of ryy is lower than 0.2 in the frequency range. The incident y-polarized
wave is largely converted into an x-polarized wave. The PCR is greater than 0.94 and the
DOLP is close to 1 in the frequency range, which indicates that the II-side metamaterial has
the ability to achieve linear-to-linear polarization conversion.



Micromachines 2022, 13, 1013 8 of 13Micromachines 2022, 13, x  8 of 13 
 

 

 

Figure 7. (a) Schematic diagram and simulation curve of the II-side metamaterial in u–v coordinate 

system; (b) phase difference of simulation curve of the II-side metamaterial in u–v coordinate sys-

tem; (c) simulation curve of the II-side metamaterial in x–y coordinate system; (d) calculated PCR 

and DoLP. 

4.2. Mechanism Analysis 

The mechanism of the linear-to-circular polarization conversion can be further ana-

lyzed by analyzing the resonance of ryy at 0.419 THz, 0.659 THz, and 0.778 THz. Figure 

8a,b show the current distribution of the I-side metamaterials for v- and u-polarized inci-

dent waves, respectively. When the v-polarized wave is incident, the resonant layer cur-

rents at 0.419 THz and 0.659 THz are opposite to those of the VO2 layer, forming a loop to 

excite the magnetic dipole resonance. The resonant layer and VO2 layer have neither in-

duced current nor resonance at 0.778 THz. Similarly, when the u-polarized wave is inci-

dent, the magnetic resonance is excited at 0.659 THz and 0.778 THz due to the opposite 

current directions of the metamaterial resonant layer and the VO2 layer. There is no reso-

nance at 0.419 THz. The I-side metamaterial exhibits plasmonic resonance eigenmodes at 

0.419 THz and 0.778 THz [42], where the eigenmodes are not a vector synthesis of the u 

and v components, but are generated by only one component. In the frequency range of 

0.419–0.778 THz, the u and v components appear with the degradation of the eigenmodes. 

Magnetic resonance controls the magnitude and phase of the reflected electric field along 

the u- and v-axes to achieve the condition of circular polarization, and the superposition 

of the three resonances achieves broadband linear-to-circular polarization conversion. 

Figure 7. (a) Schematic diagram and simulation curve of the II-side metamaterial in u–v coordinate
system; (b) phase difference of simulation curve of the II-side metamaterial in u–v coordinate
system; (c) simulation curve of the II-side metamaterial in x–y coordinate system; (d) calculated PCR
and DoLP.

4.2. Mechanism Analysis

The mechanism of the linear-to-circular polarization conversion can be further ana-
lyzed by analyzing the resonance of ryy at 0.419 THz, 0.659 THz, and 0.778 THz. Figure 8a,b
show the current distribution of the I-side metamaterials for v- and u-polarized incident
waves, respectively. When the v-polarized wave is incident, the resonant layer currents at
0.419 THz and 0.659 THz are opposite to those of the VO2 layer, forming a loop to excite
the magnetic dipole resonance. The resonant layer and VO2 layer have neither induced
current nor resonance at 0.778 THz. Similarly, when the u-polarized wave is incident, the
magnetic resonance is excited at 0.659 THz and 0.778 THz due to the opposite current
directions of the metamaterial resonant layer and the VO2 layer. There is no resonance at
0.419 THz. The I-side metamaterial exhibits plasmonic resonance eigenmodes at 0.419 THz
and 0.778 THz [42], where the eigenmodes are not a vector synthesis of the u and v compo-
nents, but are generated by only one component. In the frequency range of 0.419–0.778 THz,
the u and v components appear with the degradation of the eigenmodes. Magnetic res-
onance controls the magnitude and phase of the reflected electric field along the u- and
v-axes to achieve the condition of circular polarization, and the superposition of the three
resonances achieves broadband linear-to-circular polarization conversion.
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Figure 8. (a) Current distribution of the I-side metamaterial under v-polarization; (b) current distri-
bution of the I-side metamaterial under u-polarization.

Similarly, the mechanism of linear-to-linear polarization conversion is explained by
analyzing the resonance of ryy at 0.698 THz and 0.882 THz. Figure 9a,b show the cur-
rent distribution of the II-side metamaterials for the v- and u-polarized incident waves,
respectively. The II-side metamaterial induces opposite currents in the resonant layer
and VO2 layer for the incident v-polarized waves and u-polarized waves. Therefore, the
metamaterial produces magnetic resonances at 0.698 THz and 0.882 THz, which also show
the degeneration and hybridization of plasmonic resonance eigenmodes [43]. Magnetic
resonance controls the magnitude and phase of the reflected electric field along the u- and
v-axes to achieve linearly polarized conditions, and, thus, linear-to-linear polarization
conversion is achieved in the range of 0.668–0.942 THz.
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4.3. Influence of Incidence Angle and Structural Parameters

It is of great significance to investigate how the incidence angle (θ) of THz waves
affect the polarization conversion properties of metamaterials. In order to understand
the stability of the polarization converter to the change in θ, the θ of the THz waves was
changed for simulation. Figure 10a,b show the simulation spectrum of the I-side and
II-side metamaterials when changing the θ, respectively. For the I-side metamaterial, when
the θ changes from 0◦ to 30◦, the bandwidth of the polarization conversion increases
slightly, and the ellipticity remains around 1. When the θ continues to increase, a dual-band
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polarization-converting metamaterial is achieved, but the ellipticity decreases significantly.
For the II-side metamaterial, when the θ changes from 0◦ to 25◦, the frequency range of the
polarization conversion is stable, and the degree of polarization conversion remains high.
However, when the θ continues to increase, the polarization conversion range gradually
decreases. Based on the above research, when θ < 30◦, the I-side metamaterial can be used
as a stable QWP in the frequency range of 0.444–0.751 THz. When the θ < 25◦, the II-side
metamaterial can be used as a stable HWP in the frequency range of 0.668–0.942 THz.
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Except for the θ of the THz waves, the internal conditions, such as structural pa-
rameters, can also affect the polarization conversion properties. The influence of the
key structural parameters on the polarization conversion properties of the metamaterial
was studied. When the other parameters of the I-side metamaterial remain unchanged,
the length of l1 changes uniformly from 90 µm to 110 µm in steps of 5 µm; the simu-
lation results of the ellipticity are shown in Figure 11a. Two narrow polarization con-
version ranges are gradually merged into a broadband when l1 increases from 90 µm to
100 µm. As l1 continues to increase, the ellipticity decreases significantly at high frequencies.
Figure 11b shows the calculated χ after changing the length of w1. As w1 increases from
5 µm to 25 µm, the bandwidth for χ > 0.9 first increases and then decreases. The l4 and
g2 of the II-side metamaterial were changed separately for simulation, and the calculated
PCR values are shown in Figure 11c,d. The increase in l4 not only broadens the frequency
range of the polarization conversion, but also maintains a high PCR in the range. As g2
increases from 2 µm to 10 µm, the PCR grows closer to 1, although the corresponding
bandwidth decreases.
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5. Conclusions

In summary, this paper closely studied a multilayer terahertz metamaterial. The meta-
material exhibited different functions when the VO2 was in the insulating and conducting
states. The metamaterial can exert an EIT-like effect that can be turned on or off, according
to different polarization angles, when the VO2 is in the insulating state. The metamaterial
was divided into I-side and II-side by the middle continuous VO2 layer when the VO2 was
in the conducting state. The I-side metamaterial can achieve linear-to-circular polarization
conversion from 0.444 to 0.751 THz when the incident angle of the y-polarized wave is less
than 30◦. The II-side metamaterial can achieve linear-to-linear polarization conversion from
0.668 to 0.942 THz when the incident angle of the y-polarized waves is less than 25◦. The
two types of polarization converter were freely switched by changing the incident surface
of the y-polarized wave. Because the EIT-like window of the metamaterial is very sensitive
to the change in the dielectric constant of the surrounding environment, the metamaterial
can be used as a highly sensitive metamaterial sensor. The metamaterial can also be used
as an optical switch according to the polarization-sensitive characteristics of the EIT-like. In
a specific frequency range, the I-side and II-side metamaterials can be used as QWP and
HWP, respectively. The multilayer terahertz metamaterial has potential applications in
substance detection, ultrafast switches, THz communication, and THz imaging.
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