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ABSTRACT

The intricate network of interactions observed in
RNA three-dimensional structures is often described
in terms of a multitude of geometrical properties,
including helical parameters, base pairing/stacking,
hydrogen bonding and backbone conformation. We
show that a simple molecular representation con-
sisting in one oriented bead per nucleotide can ac-
count for the fundamental structural properties of
RNA. In this framework, canonical Watson-Crick,
non-Watson-Crick base-pairing and base-stacking
interactions can be unambiguously identified within
a well-defined interaction shell. We validate this rep-
resentation by performing two independent, com-
plementary tests. First, we use it to construct
a sequence-independent, knowledge-based scoring
function for RNA structural prediction, which com-
pares favorably to fully atomistic, state-of-the-art
techniques. Second, we define a metric to measure
deviation between RNA structures that directly re-
ports on the differences in the base–base interaction
network. The effectiveness of this metric is tested
with respect to the ability to discriminate between
structurally and kinetically distant RNA conforma-
tions, performing better compared to standard tech-
niques. Taken together, our results suggest that this
minimalist, nucleobase-centric representation cap-
tures the main interactions that are relevant for de-
scribing RNA structure and dynamics.

INTRODUCTION

Ribonucleic acid (RNA) plays a fundamental role in a
large variety of biological processes, such as enzymatic
catalysis (1), protein synthesis (2) and gene regulation (3).
RNA molecules fold in a well-defined three-dimensional
structure dictated by their nucleotide sequence (4), that
can be determined by means of X-ray crystallography or

nuclear magnetic resonance experiments (5). Despite re-
cent important advances in the field, RNA structure de-
termination is still a complex and expensive procedure.
Computational/theoretical models, and in particular struc-
ture prediction methods, ideally complement experiments,
as they can in principle provide the tertiary, native structure
for a given RNA sequence.

Although traditionally considered simpler than the pro-
tein folding problem (4), de novo prediction of RNA three-
dimensional structure still represents a challenging task (6).
Atomistic molecular dynamics methods have been so far
limited to the predictive folding of very small systems (7,8),
whereas coarse-grained, physics-based models have proven
useful in folding larger RNA structures (9,10). However,
the most popular and successful RNA structure predic-
tion methods are the so-called knowledge-based techniques,
that typically employ fragment libraries for constructing
RNA structures. These fragments are either combined us-
ing secondary structure information (11,12) or used to gen-
erate a large number of plausible, putative structures that
are subsequently ranked according to a scoring function
(13–17). Knowledge-based methods often rely on two as-
sumptions: first, that the main structural features of RNA
molecules can be described in terms of few relevant observ-
ables. Second, that the distribution of these observables in
a data set of experimental structures displays specific fea-
tures, that can be used for generating and/or scoring three-
dimensional structures (18). A crucial issue is the choice
of the aforementioned observables. While backbone atoms
and torsional angles are the most natural choice for repre-
senting protein structures (19), RNA molecules are more
difficult to treat, due to the presence of a larger number
of flexible backbone degrees of freedom and because of
the important structural role of base–base interactions. For
this reason RNA molecules are often described in terms
of several structural observables, including backbone dihe-
drals (20,21), pseudo dihedrals (22), helical parameters (23),
hydrogen-bond networks and stacking interactions (24,25).

The proper choice of simplified, insightful descriptors for
RNA molecules is not limited to the development of struc-
ture prediction methods, but is a general and relevant is-
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sue in RNA structural analysis, as in the definition of met-
rics for comparing three-dimensional structures. The well-
known root mean square deviation (RMSD) after optimal
superposition (26) is known to be suboptimal in the analysis
of RNA structure, as it does not provide reliable informa-
tion about the differences in the base interaction network
(6,27).

This motivated the development of alternative RNA-
specific deviation measures based on selected geometri-
cal properties. These measures can be used for compar-
ing observed structures with a priori known patterns, as is
done for instance in annotation methods (28) and in motif
recognition algorithms (29–31). Other RNA specific sim-
ilarity measures were introduced with the purpose of as-
sessing the quality of RNA structural predictions (6) or for
clustering/identifying recurrent structural motifs in large
databases of known structures (21,29). The definition of a
proper structural deviation measure is also a central issue
in the construction of Markov state models (32), that typ-
ically assume the geometric similarity to provide an ade-
quate measure of kinetic proximity.

The analysis of RNA three-dimensional structure, the
construction of a knowledge-based structure prediction
method and the definition of a structural deviation share a
common trait: all of them are based on the apparently arbi-
trary choice of the structural observables used to represent
RNA. Is there a simple representation of an RNA molecule
that recapitulates its key structural and dynamical proper-
ties?

In this Paper we introduce a minimalist representation
for RNA molecules consisting in one oriented bead per nu-
cleotide. We first show that this description captures the
fundamental base-pair and base-stacking interactions ob-
served in experimental structures. Using this representation
we define a simple sequence-independent scoring function
for RNA structure prediction, which performs on par or
better compared to existing atomistic techniques. Based on
the same molecular description, we then introduce a metric
for calculating structural deviation. When compared with
the standard RMSD measure, this metric correlates better
with the physical time required to explore the conforma-
tional space in molecular dynamics simulations. As a fur-
ther proof of the capability of this metric to distinguish
relevant structural differences, we show that it can be suc-
cessfully used for recognizing local structural motifs, repro-
ducing results obtained with state-of-the-art techniques. Fi-
nally, in the Discussion section, we summarize the analo-
gies between these applications and we proceed with an
extensive comparison with existing techniques. The soft-
ware for performing the calculations is freely available at
https://github.com/srnas/barnaba.

METHODS

This section is structured as follows: first, we introduce
a simple representation for RNA three-dimensional struc-
tures that has an intuitive interpretation in terms of base-
stacking and base-pairing interactions. We then use this
molecular description to define i) a scoring function for
RNA structure prediction (ESCORE) and ii) a metric

Table 1. Number of base–base interactions detected in the crystal struc-
ture of the H. marismortui large ribosomal subunit

Interaction Type Occurrencesa r̃ <
√

2.5
b

Stacking 2328 2318
Watson-Crick 723 723
Non-Watson-Crick (base–base) 399 382
Base-sugar/phosphate interactions 781 398
Not annotated –– 1214

aNumber of interactions detected by MC-Annotate (25).
bBase pair (j,k) is counted when both r̃ jk and r̃kj <

√
2.5.

for calculating deviations between RNA three-dimensional
structures (ERMSD).

Molecular representation

We construct a local coordinate system in the center of the
six-membered rings, as shown in Figure 1a. Following this
definition, the relative position and orientation between two
nucleobases is described by a vector r, that is conveniently
expressed in cylindrical coordinates � , � and z (Figure 1b).
Note that r is invariant for rotations around the axis con-
necting the six-membered rings. We highlight that this defi-
nition is similar to the local referentials introduced by Gen-
dron and Major (25). The use of a nucleotide-independent
centroid makes it straightforward to compare and combine
collection of position vectors deriving from different com-
binations of nucleobases. This is of particular importance
for constructing the knowledge-based scoring function (see
below). The position vector r has an intuitive interpreta-
tion in terms of base-stacking and base-pairing interactions.
This aspect is illustrated in Figure 1c, that shows the dis-
tribution of r vectors for all neighboring bases in the crys-
tal structure of the Haloarcula marismortui large ribosomal
subunit (PDB code 1S72) (2) projected on the � and z coor-
dinates. In the figure, different colors correspond to differ-
ent types of interactions detected by MC-annotate. Due to
steric hindrance, no points are observed in a forbidden el-
lipsoidal region. Furthermore, almost all the base-stacking
and base-pairing interactions (≈99.6%) belong to a well-
defined ellipsoidal shell. It is therefore useful to introduce
the anisotropic position vector

r̃ =
(rx

a
,

ry

a
,

rz

b

)
=

(ρ

a
cos θ,

ρ

a
sin θ,

z
b

)
(1)

with a = 5 Å and b = 3 Å, so that pairs of bases in the in-
teraction shell are such that 1 < r̃ <

√
2.5. The majority of

base–base contacts lying in this interaction shell are anno-
tated either as Watson-Crick/non-Watson-Crick or as base
stacking, as detailed in Table 1. Within this region we dis-
tinguish a pairing zone and a stacking zone, according to the
type of featured interactions. The tri-modal histogram in
Figure 1c shows that these two zones can be defined with-
out ambiguity considering pairs such that the projection of
r along the z axis is larger (stacking) or smaller (pairing)
than 2 Å.

It is well known that the strength and nature of pairing
and stacking interactions depend on the base–base distance,
on the angle � as well as on other angular parameters (e.g.

https://github.com/srnas/barnaba
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Figure 1. (a) Definition of the local coordinate system for purines and pyrimidines. (b) The vector r jk describes the position of base ring k in the coordinate
system constructed on base ring j and is expressed in cylindrical coordinates � , �, z. (c) Observed positions of neighboring bases in the crystal structure of
the H. marismortui large ribosomal subunit projected on the z–� plane. Isolines of the ellipsoidal distance r̃ are shown. Each point is colored according to
the interaction type: canonical Watson-Crick pairs in orange, base–base non Watson-Crick pairs in blue and stacking in green. Base-sugar, base-phosphate
and non-annotated pairs are shown in light gray. On the right, empirical distribution along the z coordinate obtained considering points with r̃ <

√
2.5.

Pairing and stacking regions can be unambiguously identified (|z| ≤ 2.0Å and |z| > 2.0 Å, respectively).

twist, roll, tilt) in a non-trivial manner (24,33). Such de-
pendence can be observed in Figure 2, where the points
belonging to the pairing and stacking zone of Figure 1c
are projected on two separate �–� planes. These distribu-
tions give an average picture containing contributions from
different base pair types (purine–purine, purine–pyrimidine
and pyrimidine–pyrimidine) and with weights dictated by
the employed data set. Nevertheless, the observations be-
low hold also when considering the 16 possible combina-
tions of base pairs individually and different data sets (see
Supporting Data (SD) Figrues S1–S3). In the pairing zone
(Figure 2, left panel) we first observe a dominant peak cen-
tered around (�=5.6 Å, �=60◦), corresponding to the posi-
tion of canonical Watson-Crick base pairs as well as wobble
(GU) base pairs. The two other peaks correspond instead to
base pairs interacting through the Hoogsteen or sugar edge
(13). One can also appreciate the absence of bases in the re-
gion occupied by the sugar (190◦ < � < 290◦). The probabil-
ity distribution in the stacking zone (Figure 2, right panel)
shows a broad peak in the proximity of the origin and ex-
tending up to � ≈ 4 Å, which can be compared to the typical
radius of the six-membered ring (≈1.4 Å). This means that
partial or negligible ring overlap is very frequent in RNA
structures, as also observed in a seminal paper by Bugg et al.
(34). This feature is more evident in pyrimidine–pyrimidine
and purine–purine pairs, for which high overlap is the ex-
ception rather than the rule (see Supplementry Figure S3),
whereas overlap is systematically observed in pyrimidine–
purine pairs. The fact that bases in the stacking zone are
very often ‘imbricated,’ similarly to roof tiles, rather than
literally stacked one on top of the other, does not imply
that they are not interacting. Indeed, base–base interaction
is not limited to �–� stacking but also includes electrostatic

effects, London dispersion attraction, short range repulsion
as well as backbone-induced effects (35).

Scoring function

The empirical distribution of all r vectors observed in ex-
perimental RNA structures displays very specific features,
as described above. We use these geometrical propensities
to construct a knowledge-based scoring function for RNA
structure prediction. More precisely, we define a function
of the atomic coordinates (in this case of the r vectors in a
molecule) that quantifies the compatibility of a given RNA
3D conformation with respect to the expected distribution
observed in native RNA structures. This scoring function,
called ESCORE, is defined as a weighted sum over all pairs
of bases in a molecule:

ESCORE =
∑

j,k

p(r jk) (2)

Notice that both permutations of the j, k indexes should
be included in the sum since the vectors r jk and rkj pro-
vide two partially independent pieces of information. The
weights p(r) are given by the empirical probability distri-
bution of nucleobases in the crystal structure of the H.
marismortui large ribosomal subunit. With this definition,
a lower weight is assigned to structures with pairs of bases
in relative positions not compatible with the training set,
including those with steric clashes. The probability distri-
bution p(r) is calculated considering only pairs of bases
within the interaction shell (r̃ <

√
2.5) and using a Gaus-

sian kernel density estimation with bandwidth = 0.25 Å.
Note that p(r) does not depend on the identity of the nu-
cleotides, and the RNA molecule is therefore treated as a
homopolymer. The sum of the probabilities is used instead
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Figure 2. Empirical density distributions of neighboring nucleobases (r̃ <
√

2.5), obtained by projecting points belonging to the pairing and stacking zone
of Figure 1 on the �–� plane. Densities are computed with a uniform binning in Cartesian coordinates and using a Gaussian kernel density estimation with
bandwidth 0.25 Å. Hoogsteen, Watson-Crick and Sugar edges are indicated. The six-membered and five-membered (for purine only) rings are sketched in
red.

of their product, in order to decrease the impact of low-
count regions on the scoring function. This procedure has
been first introduced in the field of hidden Markov model-
ing for speech recognition (36) and has a formal justification
known as ‘summation hack’ (T. Minka, The ‘summation
hack’ as an outlier model, http://research.microsoft.com/
en-us/um/people/minka/papers/minka-summation.pdf). A
non-redundant set of high-resolution structures (16) was
also employed as a training data set for the ESCORE, pro-
ducing similar results.

Structural deviation

The collection of the scaled vectors r̃ (see Eq. 1) in an RNA
molecule provides information about the relative base ar-
rangement. One could thus define a metric for measuring
the distance between two RNA structures, � and �, as

d =
√√√√ 1

N

∑
j,k

|r̃α
jk − r̃β

jk|2 (3)

Similarly to Eq. 2, also here both permutations of the j, k
indexes should be included in the sum. The d quantity is
highly non-local, because large differences in distant pairs
give large contributions to the sum. To remove this effect it
is convenient to introduce a cutoff distance r̃cutoff in the same
spirit as we did for the scoring function discussed above.
However, we notice that a cutoff would introduce disconti-
nuities in the metric. A possible solution is to introduce a
function that maps the vectors r̃ to new vectors G(r̃) with
the following properties:

(1) |G(r̃α) − G(r̃β)| ≈ |r̃α − r̃β | if r̃α, r̃β � r̃cutoff.
(2) |G(r̃α) − G(r̃β)| = 0 if r̃α, r̃β ≥ r̃cutoff.
(3) G(r̃) is a continuous function.

There is no requirement here on the dimensionality of
the G vector. The above properties are satisfied by the four-
dimensional vectorial function

G(r̃) =

⎛
⎜⎜⎝

sin (γ r̃ ) r̃x
r̃

sin (γ r̃ ) r̃y

r̃
sin (γ r̃ ) r̃z

r̃
1 + cos (γ r̃ )

⎞
⎟⎟⎠ × �(r̃cutoff − r̃ )

γ
(4)

where γ = π/r̃cutoff and � is the Heaviside step function.
We note that the dependence of G on the direction of r̃
vanishes as r̃ approaches the cutoff value r̃cutoff. We thus
set r̃cutoff = 2.4, so that for the typical distances between
stacked and paired bases (r̃ <

√
2.5, see Figure 1c) the con-

tribution of the r̃ directionality is significant. In-depth dis-
cussion on Eq. 4 can be found in SD Text 4. Having defined
the mapping function G(r̃), the ERMSD distance reads

ERMSD =
√√√√ 1

N

∑
j,k

|G(r̃α
jk) − G(r̃β

jk)|2 (5)

Note that ERMSD is proportional to the Euclidean dis-
tance between G vectors, which are non-linear functions
of the atomic coordinates. As such, ERMSD is positive
semidefinite, symmetric, and satisfies triangular inequality.
During the developmental stage we tested a non-vectorial
version of the ERMSD: instead of using the vectorial func-
tion G(r̃), we considered the scalar, continuous function

Gs(r̃) = (r̃cutoff − r̃ ) × �(r̃cutoff − r̃ ) (6)

which is similar to a contact-map distance (37,38). This
scalar version differs from ERMSD when considering struc-
tures with four nucleotides or less, while the two quantities
are highly correlated when analysing larger structures (Sup-
plementry Figure S5).

http://research.microsoft.com/en-us/um/people/minka/papers/minka-summation.pdf


13310 Nucleic Acids Research, 2014, Vol. 42, No. 21

RESULTS

Scoring function for RNA structure prediction

We assess the quality of the ESCORE on its capability of
recognizing the folded state among a set of decoys (39). We
consider here a total of 39 different decoy sets previously
used to benchmark other knowledge-based scoring func-
tions: 20 decoy sets generated de novo using the FARNA
algorithm (13) and 19 additional decoy sets from the work
of Bernauer et al. (16) obtained by gradual deformation of
the native structures. As a measure of performance we use
the normalized rank (40), defined as the percentage of de-
coys scoring better than the native structure. In order to
simulate a realistic structure prediction experiment, we ad-
ditionally report the RMSD from native of the best scoring
structure in the decoy set. Because the RMSD has been re-
ported to be a suboptimal indicator of structural proximity
for RNA, we also compute the interaction fidelity network
(INF), which measures the overlap between annotations in
two structures (27), as well as the ERMSD introduced here.
Equivalent analyses are performed using two state-of-the-
art scoring functions, namely the FARFAR (15) and the all-
atom knowledge-based scoring function RASP (17). Both
FARFAR and RASP are defined at atomistic resolution.
FARFAR combines the low-resolution FARNA potential
with explicit terms for solvation and hydrogen bonding,
while RASP is a statistical potential based on pairwise in-
teratomic distances. These two scoring functions are among
the best available (6) and the only ones for which it was pos-
sible to perform automatic scoring of a large set of decoys.

Figure 3 summarizes the results obtained on all the 39
decoy sets. For each method we report the number of de-
coy sets below the value indicated on the horizontal axis.
Thus, the better is a scoring function, the faster the curve
reaches the maximum number 39. In general, whereas FAR-
FAR performs well in ranking and RASP in finding the best
decoys, ESCORE performs well in both tasks (See also Sup-
plementry Table S6). This is a remarkable result consider-
ing that ESCORE employs a coarse-grained representation
(one bead per nucleotide) and is not sequence dependent.
The scoring results on all RNA decoys, together with a short
discussion of the cases for which ESCORE fails to identify
correctly the native structure can be found in Supplementry
Figures S7 and S8.

RNA structural deviation

The definition of an accurate measure of structural devi-
ation for comparing RNA three-dimensional structures is
a relevant problem, as the standard RMSD approach does
not report on differences of base-stacking and base-pairing
patterns, that are the fundamental, key features of RNA
molecules (25). As a striking example, the RMSD between
an ideal A-form double helix GGGG

CCCC and the mismatched struc-
ture GGGG

CCCC is 1.9 Å, meaning that the threshold of 4Å that
is sometimes employed to consider two structures as simi-
lar (8) may not be sufficiently strict. A similar issue arises
in kinetic modeling of proteins, where the assumption that
geometrically close configurations (in terms of the RMSD
distance) are also kinetically close has been shown to be

Figure 3. Quantitative comparison of our scoring function ESCORE with
FARFAR (15) and RASP (17) on 39 different decoy sets. In the upper left
panel, number of decoy sets with normalized rank lower than the value on
the horizontal axis. For example, the normalized rank is 0.2 or less for 37
out of 39 decoy sets using the ESCORE, 33/39 using FARFAR and 31/39
using RASP. The faster the curve reaches 39, the better the performance
of the scoring function. In the other panels, equivalent plots for RMSD,
INF (27) and ERMSD of the best scoring decoy to the native structure, as
labeled. See Supplementry Table S6 for a complete list of results.

problematic in discretizing the register shift dynamics of �
strands (32).

In order to elucidate the difference between the standard
RMSD and the ERMSD, we compute these two quantities
on a series of snapshots taken from an atomistic molecu-
lar dynamics simulation of a short stem-loop. These struc-
tures have been obtained by repeatedly melting and fold-
ing (see SD Text 9), and thus include near-native structures,
partially folded, misfolded as well as extended conforma-
tions. Figure 4 shows that structures with similar RMSD
do not necessarily present the same base–base interaction
network of the native state: in fact, the secondary struc-
ture can be substantially different. Conversely, the ERMSD
discriminates structures with near-native base–base con-
tacts (ERMSD <0.8) from structures with non-native base–
base interactions (ERMSD>1). Note that in general low
ERMSD correspond to high INF values, except for the
region around ERMSD=1.5, RMSD=2.7. In this region
we observe structures with formed stem and distorted loop
(high INF) but also structures with formed loop and incor-
rect stem (low INF). While Figure 4 serves as an illustra-
tive example, the validity of the ERMSD is more rigorously
assessed by performing two tests that probe the accuracy
of the method in the analysis of structural and dynamical
properties of RNA molecules. More precisely, in the fol-
lowing two subsections we demonstrate i) that the ERMSD
is a good measure of kinetic proximity between configura-
tions, performing considerably better compared to standard
structural distances and ii) that the ERMSD is highly spe-
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Figure 4. Heavy-atom RMSD from native versus ERMSD of snapshots
taken from an atomistic molecular dynamics simulation. The difference in
the secondary structure between the native state and samples is calculated
using the INF measure, which ranges from 1 (identical secondary struc-
ture) to 0 (completely different). Very different secondary structures can
be found below 4 Å RMSD. Four selected structures with different values
of RMSD, ERMSD and INF are shown, together with their secondary
structure. Figures were generated with Varna (48).

cific in recognizing known structural motifs within a large
set of crystallographic structures.

Structural and kinetic proximity. The correspondence be-
tween a structural deviation (RMSD, ERMSD, etc.) and the
kinetic distance (defined as the time needed to evolve from
one configuration to the other), can be quantitatively as-
sessed by computing the coefficient of variation (CV).

The CV of a structural deviation d is defined as the ratio
of the standard deviation to the mean calculated on struc-
tures separated by a time lag �

CVd (τ ) = σd (τ )
〈d(τ )〉 (7)

To a large CV corresponds a large standard deviation, and
therefore a high uncertainty between geometric and kinetic
distance (41). Note that the standard deviation is normal-
ized with the mean, and the CV is thus scale-invariant. In
the approximation that the deviations at fixed time lag are
normally distributed, this analysis is equivalent to the his-
togram overlap discussed in Ref. (38). The connection be-
tween kinetic and structural distance is inevitably limited
by the fact that the typical time necessary for a transition

Figure 5. Coefficient of variation calculated on a 100 ns molecular dynam-
ics simulation of the add riboswitch. The coefficient of variation for the
ERMSD is compared with heavy-atoms RMSD, with the distance RMSD
(dRMSD) and with the scalar variant of the ERMSD. Standard deviations
are calculated using a blocking procedure.

is in general different from the time necessary for the re-
versed transition, in contrast with the symmetric definition
of structural deviations. Nevertheless, this analysis provides
insightful and intuitive information for the purpose of qual-
itatively comparing different metrics.

In Figure 5 we show the CV as a function of time separa-
tion in molecular dynamics simulation of the add riboswitch
(42,43). The molecular dynamics simulation was initialized
in the native state and remained stable throughout the 100
ns run, while experiencing non trivial dynamics such as
base-pairing breakage/formation and double-helix breath-
ing. The CV for ERMSD is compared with RMSD and with
dRMSD. Additionally, the scalar variant of ERMSD, based
on Eq. 6, is also presented.

We first observe that for short time separations the corre-
spondence between geometric and kinetic distance is high
(low CV) in all cases, and it diminishes at large time lag.
The CV for the ERMSD is consistently lower compared to
both RMSD and dRMSD, suggesting this measure to bet-
ter reflect the temporal separation between configurations.
We also note that, in this test, the scalar and vectorial ver-
sion of the ERMSD behave very similarly.

Search of structural motifs. RNA molecules display a great
variety of base–base interaction patterns (RNA motifs) that
play a key role in RNA folding and that mediate impor-
tant biological processes (44). A structural deviation should
therefore accurately capture such RNA-specific features.
This property can be assessed by searching for known RNA
structural motifs in the database of experimentally solved
structures. Here, we use the ERMSD to search for five
known internal loop motifs (K-Turn, C-loop, Sarcin Ricin,
triple sheared, double sheared) and two hairpin loops (T-
loop and GNRA) within the RNA structure atlas database
(45) release 1.43, composed by 772 crystal structures. As
a reference, we compared the results with ‘find RNA 3D’
(FR3D) (29), the most extensively used and carefully tested
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Table 2. Structural search of known motifs within the RNA motif atlas. The table summarizes the number of found motifs compared with FR3D (http:
//rna.bgsu.edu/rna3dhub/motifs). See SD Text 11 for a full list.

Motif Reference PDB Found motifs False positive

T-LOOP 3RG5 57/66 17
GNRA 4A1B 217/219 63
C-LOOP 3V2F 18 /22 7
D-SHEAR 1SAQ 23/26 3
T-SHEAR 3V2F 24/31 18
K-TURN 3GX5 10/22 15
SARCIN 1Q96 13/16 3

method for RNA motif recognition. FR3D employs a re-
duced representation with one centroid per nucleobase, and
computes the geometrical deviation by combining fitting
and orientation errors after optimal superposition. Refer-
ence and motif structures were obtained from the RNA 3D
motif atlas release 1.13. Except for the K-turn motif, we
were able to correctly identify almost all FR3D matches, in-
cluding motifs with bulged bases (Table 2). By visual inspec-
tion, it can be seen that most of the false positive (i.e. motifs
that were found using the ERMSD and not by FR3D) are
either bona fide matches or known motif variants, while the
residual discrepancies are due to differences in the employed
cutoff value (45). We refer the reader to SD Text 10 for a de-
tailed description of the search strategy and to SD Text 11
for the full list of results.

DISCUSSION

A fully atomistic description of an RNA molecule requires
on average ≈20 non-hydrogen atoms per nucleotide, and
thus ≈60 degrees of freedom per nucleotide. Biologically
relevant RNA structures are composed of hundreds or even
thousands of nucleotides that display an intricate network
of interactions. The complexity of the problem is further
increased when considering that many RNA molecules are
highly dynamic entities, and multiple chain configurations
are needed for describing their mechanism and function (3).
In order to provide a simpler representation, RNA struc-
tures are usually analysed in terms of sugar pucker confor-
mations, backbone dihedrals (20,21) or pseudo dihedrals
(22). Complementary approaches consider instead base-
pair parameters (propeller, slide, roll, twist, etc.) and hy-
drogen bonding to classify base-pair interactions in terms
of recurrent geometrical configurations observed in experi-
mentally solved RNA structures (23–25).

A key result of the present work is that the main struc-
tural and dynamical properties of RNA can be described in
terms of the spatial arrangement of the nucleobases only.
Since nucleobases are substantially rigid, this implies 6 de-
grees of freedom per nucleotide. This observation is in full
accordance with previous analysis of RNA crystal struc-
tures (25,46), where the position and orientation of nucle-
obases only were considered. This work complements the
analysis by showing that nucleobase position and orienta-
tion are sufficient to correctly describe the RNA dynamics
as obtained from explicit solvent molecular dynamics sim-
ulations.

As shown in Figure 1, RNA base–base interactions
mainly occur in a restricted neighborhood of the nucle-
obase that is well approximated by an ellipsoidal shell. Since

specific regions of the ellipsoidal shell surrounding nucle-
obases correspond to different types of pairing and stack-
ing interactions, it is in principle possible to infer secondary
structure information directly from the pairing and stack-
ing plots of Figure 2. This procedure is formally similar
to the one employed in the analysis of protein structures,
where the angular preferences of the backbone approxi-
mately correspond to different secondary structures (19).
Our approach depends on nucleobase positions only and
is thus complementary to that proposed in Ref. (22), where
backbone pseudo dihedrals were used to classify RNA sec-
ondary structures.

By considering only the relative spatial arrangement of
nucleobases, we introduce a knowledge-based scoring func-
tion for RNA structure prediction (ESCORE). In contrast
with several studies underlining the importance of an atom-
istic description for an accurate scoring (15–17), our work
shows that a minimalist description of nucleobase arrange-
ment is sufficient to produce equivalent or better results.
Two aspects are worth highlighting. First, while the back-
bone can be ignored for scoring, one cannot avoid includ-
ing the chain connectivity in the sampling algorithm used
to generate the decoys. Second, the outcome of the scoring
benchmarks is strongly dependent on the employed decoy
sets. Some of the decoy sets generated using the FARNA
algorithm are very challenging, as all scoring functions
(ESCORE, FARFAR and RASP) are highly degenerate,
and assign good scores to structures that are very far from
native (see e.g. Supplementry Figure S6, decoy set 1A4D
and Ref. (16)). These decoys can be therefore used to im-
prove the current methodologies for de novo predictions of
RNA structure.

A second aspect intimately connected with the choice of
molecular representation is the definition of a proper struc-
tural proximity measure. Typically, structural deviations
are used either to analyse and compare three-dimensional
structures (e.g. RMSD, dRMSD, INF (27)) or to recognize
and cluster RNA structural motifs (29–31). The ERMSD
introduced here is suitable for both tasks. A distinctive fea-
ture of the ERMSD is the use of the ellipsoidal metric r̃ ,
that naturally stems from the empirical data and that takes
into account both relative distance and orientation of nucle-
obases. Interestingly, the intrinsic base anisotropy has been
also discussed in the context of the electronic polarizabil-
ity of nucleobases (35) and anisotropic interactions have
been used in coarse-grain models for proteins (47). We note
that the ERMSD is conceptually reminiscent of the INF
measure (27), that also considers the differences in the net-
work of base-pairing and base-stacking interactions. With

http://rna.bgsu.edu/rna3dhub/motifs
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respect to INF, however, the ERMSD presents important
advantages: i) it does not depend on the annotation scheme
employed and therefore on the quality of the structure, ii)
it is a continuous function of the atomic coordinates and
iii) it is well defined even when the annotation is not in-
formative (e.g. for unfolded states, unstructured, or single-
stranded RNAs). The last two items make the ERMSD par-
ticularly well-suited for studying dynamical processes, such
as RNA folding or binding events. The ERMSD also shares
a number of similarities with the structural distance used
in FR3D for recognizing three-dimensional motifs (29).
However, in the ERMSD calculation we introduce impor-
tant simplifications: i) the definition of the local coordinate
system is not nucleobase-specific and requires the knowl-
edge of three atoms per nucleobase only (Figure 1a), ii) the
ERMSD calculation does not require least square fitting
and iii) the problem of combining the positional and orien-
tational base–base distance is circumvented by introducing
an ellipsoidal metric. The fact that the two methods pro-
duce similar results (Table 2) strongly suggests that for most
practical uses the ERMSD is accurate enough to capture the
specific pattern of base–base interactions.

In this study we introduce a minimalist representation
of RNA three-dimensional structures that solely considers
the relative orientation and position of nucleobases. Based
on this representation, we construct a scoring function for
RNA structure prediction and we define a metric for cal-
culating deviation between RNA three-dimensional struc-
tures. In both cases, the results are on par or better com-
pared with state-of-the-art techniques. Taken together, the
presented results suggest that this minimalist representation
captures the main interactions that are relevant for describ-
ing RNA structure and dynamics. As a final remark, we
note that the methodology presented here can be readily ap-
plied to DNA molecules as well.
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