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Abstract: Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development.
Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter
is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an
important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in
proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while
termination of the development of a potentially useful drug must be avoided. This first part of the review discusses
processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the
mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance
for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses
regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure
at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose
escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to
clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters
including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of
APFs will be discussed in more detail.  (J Toxicol Pathol 2010; 23: 189–211)
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Introduction and Overview

Adverse preclinical findings (APFs) can arise anytime
and often unexpectedly during the development of a drug
candidate.  They can fall in any of the following categories:
• Functional APFs, covered essentially by safety pharma-

cology testing1, 2, including in particular 
° QT prolongation3–10

° Immunotoxicity incl.  immunostimulation11–15

° CNS-related symptoms, such as seizuresa 16 
• Genotoxicity including mutagenicity17–22

• Morphological toxicity such as cardiotoxicity or
nephrotoxicity23–28 

• Carcinogenicity17,  22,  29–31 

• Reproductive toxicity: Functional and gross pathologi-
cal observations32–36

The above categories of APFs are essentially related to
the methodology of investigation. An APF can belong to
more than one category, e.g. have functional symptoms and
result in morphological changes.

Figure 1 is an example of a subtle morphological APF.
What do these vacuoles in the pancreatic β cells mean? Is
this finding insignificant or the first sign of a major issue? A
lot can go wrong at this point37 including e.g. ignoring the
finding as not significant or becoming hyperactive. There is
no general answer to the question what these vacuoles mean
for further development of the drug candidate, as will be
explained below. 
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This review outlines proven processes for dealing with
unexpected APFs in order to optimize the chances of suc-
cessful development of drug candidates or—if necessary—
to create a scientific basis for their early termination. This
first part of the review addresses strategic aspects regarding
the “troubleshooting” approach—others prefer to call it the
“problemsolving” approach. In the second part some exam-
ples are discussed in more detail. Drug development is a
complex process38. The accurate prediction of human drug
toxicity remains a major challenge in drug development39.
Therefore, toxicologists and toxicologic pathologists need to
be prepared to address unexpected APFs. Toxicity studies
are designed to produce toxicity at least at the high dose.
Absence of APFs may mean for example that dose selection
was wrong or that the drug candidate has no major therapeu-
tic value, or that the model used to detect toxicity is not
valid. The examples used in this review are mainly from
drug development; however, the same approach is also
meaningful for chemicals or food additives. 

Processes in Case of Adverse Preclinical Findings
—Overview

Guidance
The guiding principle of those involved in developing

and administering drugs is still “Primum non nocere”
(above all do not harm), as formulated by Hippocrates
almost 2,500 years ago.  Simultaneously the aim must be to
bring value adding drugs to the market for the benefit of
patients and the company.  Over 90% of withdrawals of mar-
keted drugs are due to clinical toxicity, particularly hepato-
toxicity and cardiovascular toxicity40–43, which underlines
the importance of a careful and intelligent preclinical and
clinical safety assessment before registration and marketing
of new drugs.  As rare APFs may only be noticed once drugs
are widely used, post-marketing surveillance is important
and provides also new insights for the development of fur-
ther drug candidates44.

Organization

The initiative to assess APFs must be kept in-
house but consulting with external specialists is
often necessary and very helpful.

Whenever possible, an experienced company-internal
associate should take the lead and the responsibility for
resolving issues in connection with an unexpected APF.
This is primarily a scientific issue, but business aspects must
also be taken into account e.g.  regarding the financial
resources a company is willing to invest in view of the poten-
tial benefits of the drug candidate for patients and the com-
pany.  If internally no “troubleshooting” leader is available,
a trusted external expert with the necessary business sense
can be commissioned with the task.  The company manage-
ment, often at several levels depending on the issue and its
anticipated impact, generally likes to be kept informed and to
take major decisions e.g. regarding resources (manpower,
money).  However, the team leader and the team must be
empowered with relevant decision making competence
within company-defined limits and must have adequate
resources. 

Good management of the various steps for assessing the
human relevance of APFs is a key success factor and
involves various steps as listed below.  These steps need not
necessarily be taken in sequential order and a specific
approach tailored to a particular problem is recommended.
The various steps frequently involve: 
• Assembling a team of in-house specialists and external

experts, e.g. drug development consulting services.
Experts from universities recognized for their achieve-
ments in the scientific field related to the APF in ques-
tion can be helpful.

• Determining in a first step the potential relevance of the
APF, e.g. by collecting information about similar drugs
as available from literature, through the USA freedom
of information acts, from the scientific community
including consultants, etc.

• Examining the options at the current state of knowl-
edge, in essence whether to

° Abandon development, e.g. for the following rea-
sons: The risk/benefit ratio of the drug most likely
is too small, the investment at stake is still minor
e.g. because the drug candidate is in an early phase
of development, or follow-up drug candidates are
available

° License drug candidate out, as other companies
might be interested in developing the drug candi-
date in different indications or are willing to take a
higher development risk

° Review the therapeutic indication of the drug can-
didate, since e.g. a harder indication for a more
serious disease could justify a higher therapeutic
risk (see also below under risk-benefit evaluation),
or a different therapeutic indication might reduce
the therapeutic dose

Fig. 1. Beta-cell vacuolization in the pancreas of a SIV 50 rat. H&E,
lens 25×. 
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° Try to resolve the issue, which is addressed below
in more detail 

• Setting up a plan for issue resolution including tentative
objectives, a time frame, budget limits and potential
exit points, among other aspects.  If a back-up drug can-
didate is available, one may consider starting to develop
it while still working on the first drug candidate.  How-
ever, if the issue is due to a class effect (see below),
similar problems are to be expected with a follow-up
drug candidate of the same chemical and/or pharmaco-
logical class.  In such as case it may be worthwhile to
run short-term screening tests to determine the relative
potential of further drug candidates to cause the APF in
question, thereby supporting the selection of the opti-
mal drug candidate

• Securing continuous support from the upper company
management through reliable reporting

• Making sure that also members not belonging to the
core team are regularly updated and kept interested in
contributing their knowledge to resolve the issue

• Contacting authorities in the event that an application
for clinical trials with an investigational new drug
(IND) exists or that clinical trials are ongoing.  Gener-
ally authorities need to be informed within 15 calendar
days after the sponsor’s receipt of the respective APF
information (see respective guidelines of the various
regulatory authorities).  However, it is not always nec-
essary to file an adverse event (safety) report; it may be
sufficient to inform the authorities about the findings
and currently planned measures.  It is understood that
the latter may have to be updated later following further
insight into the issue

• Conducting the necessary activities including scientific
evaluation and producing the necessary documents.
The end product of “troubleshooting” activities ideally
is a scientific story which explains the unexpected APF.
It is advisable to consider publishing the results in a rec-
ognized peer-reviewed journal, as this will increase the
credibility of the conclusions. 
Unfortunately, sometimes not all aspects of an APF can
be fully explained by scientific data, as will be shown in
the second part of this review.  Also this must be dis-
cussed openly and addressed in the conclusions

• Obtaining agreement with authorities and continuing
with or terminating development.  Even if not all
aspects of the APF can be explained, risk evaluation
and precautions for risk management frequently allow
proceeding with clinical development, until a final risk
evaluation becomes possible based on good human data

The steps
Identification and resolution of unexpected APFs occur

in various steps such as defined below.  In short and general
terms, after an APF is identified, it needs to be verified and
characterized in detail.  Consequently, a risk evaluation is
conducted, which includes in particular an evaluation of the

relevance of the finding for man and safety ratios, which
then serve as a basis for risk management.  This step-wise
approach is well established for environmental agents45–

48and useful also for drugs28. 

There are four major steps to deal with unexpected
APFs
1. Hazard identification: Recognition of a sus-
pected APF
2. Hazard characterization particularly regard-
ing dose-response, severity, and reversibility of
the APF
3. Risk evaluation: Essentially an intellectual pro-
cess to determine if and under which conditions
the drug may be used in man
4. Risk management: Implementation of precau-
tions for the use of the drug in man

An example regarding the various steps in dealing with
APF is the following: 
1. Hazard identification: An increased incidence of thy-

roid follicular tumors is seen in a mice lifetime bioas-
say. 

2. Hazard characterization: The working hypothesis is
that, in the absence of genotoxicity, these tumors are
likely to be of epigenetic origin and related to the hor-
monal control of the thyroid.  Deep frozen sera of the 13
week dose-finding study are investigated, and
decreased thyroxin (T4) and increased thyroid stimulat-
ing hormone (TSH) levels are found.  Liver and thyroid
weights are increased.  An additional 4 week investiga-
tive study shows increased T(4) uridine 5'-diphospho-
glucuronosyltransferase (UDP-GT) activity.

3. Risk evaluation: The drug candidate is an inducer of the
microsomal enzyme UDP-GT.  Increased glucuronida-
tion of T4 increases T4 excretion and lowers T4 serum
levels, thus leading to TSH elevation.  TSH stimulates
the proliferation of thyroid follicular cells, which in the
lifetime bioassay is associated with an increased inci-
dence of thyroid follicular tumors49. 

4. Risk management: Human beings are known to be less
susceptible to hormonal imbalance, though high TSH
levels e.g. in case of a Hashimoto goiter lead to benign
thyroid hyperplasia or thyroid adenoma also in
humans50.  Therefore, thyroid hormones and TSH are
monitored in clinical studies to make sure that at thera-
peutic doses no changes occur. 
The above steps sometimes blend, that is they may not

necessarily be conducted strictly sequentially.  APFs consid-
ered minor, e.g. clinical chemistry findings without morpho-
logical correlate, need not to be investigated in a complex
manner, and one can proceed directly to risk evaluation (e.g.
calculation of safety ratios, see below), and risk management
(e.g. limitation of the starting dose in new clinical trials and
monitoring of the respective enzymes). 
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1. Hazard identification

Hazard identification means recognition and qualitative
assessment of unexpected APFs keeping in mind that sensi-
tivity of preclinical safety test systems is more important
than specificity.  In other words: The test systems are
designed not to miss potential APFs, but in return may gen-
erate insignificant or false positive findings.

Some basic questions to answer during the hazard
identification step are:
• Is there indeed an adverse effect?
• What else is known about the drug in question? 
• Were there other relevant findings?
• Is the study technically valid?
• Is the model valid?
• Were there other modifying factors?

Is there indeed an adverse effect?
In preclinical safety studies essentially incidences,

severity levels, and time of onset (as far as possible) of
lesions in dosed and control animals are compared.  Each
finding must be examined regarding its relationship with
treatment28, 51, 52.

Distinction of treatment-related lesions vs. artifacts:
The following findings are often histological artifacts: CNS
vacuolation, terminal or post-mortem acute renal tubular
necrosis and collapsed lungs particularly in dogs mimicking
interstitial pneumonia.  Many more morphological artifacts
can be encountered and have to be recognized as such53. 

Examples of “artifacts” because of experimental condi-
tions are: Carcinogenicity at cytotoxic doses54, positive
“geno tox ic”  f ind ings  in  i n  v i t ro  a s says  a t  h igh
concentrations55, and teratogenicity at doses toxic to preg-
nant test animals.  In an effort to decrease the incidence of
irrelevant positive results, the regulatory authorities, in con-
sultation with the scientific community, have agreed e.g. on
dose selection for carcinogenicity studies56 and have started
to revise the International Conference on Harmonization
(ICH) guideline on genotoxicity testing currently available
as draft guideline S2(R1)21.  Another experimental artifact
can be light-induced retinopathy in albino rodent57; this arti-
fact may be difficult to distinguish from drug-induced retin-
opathy, if dosed animals were constantly closer to the light
source than control animals.

Distinction of treatment-related lesions vs. spontaneous
alterations and naturally occurring variations: Laboratory
animals show spontaneous alterations, partly related to spe-
cies, strain, age, housing condition, diet, infections, and
other factors.  Such alterations are seen in many different
organs58–63.  They can also be due to embryonic remnants
and misplacement of tissue64–66.  Examples are spontaneous
seminiferous tubular atrophy/hypoplasia particularly in
dogs67, seasonal arrest of spermatogenesis in hamsters,
immature sexual organs especially in dogs, mammary
estrous cycle changes, or vascular alterations68.  More rare
examples are e.g. spongiosis hepatis, as described in the next

section, or retinal gliosis, a lesion originally described in
humans69.  The latter can occur spontaneously e.g. in rats and
be mistaken as an induced lesion.  Historical control data are
very important when evaluating lesion incidences of dosed
and control animals.  The best historical control data are in-
house data of the last five years.  If such data are not avail-
able or not sufficient, external data from the same strain and
breeder can be used, while literature data can serve for
confirmation70–73.

Misdiagnosis: Also for an experienced toxicologic
pathologist it can be quite challenging to distinguish e.g. an
age-related lymphoid thymus hyperplasia in female mice
from a malignant lymphoma.  Another source of error may
be related to changes of the definition of diagnostic terms
over time, which can lead to differing interpretations: For
example, cystic degeneration or spongiosis hepatis in rats
was assumed to be (pre-)neoplastic in the past, but is now
known to occur also as spontaneous or secondary/reparative
non-neoplastic lesion74.  To minimize misdiagnoses, a
review of pathology data by a second experienced toxico-
logic pathologist and a discussion between the study pathol-
ogist and the review pathologist is beneficial to assure
quality of the histopathological evaluation75, 76.

Data handling: Statistical tests are necessary, but do not
tell anything about the biological relevance of a lesion.  Test-
ing at the 5% limit means that of one hundred statistical tests
on normally distributed homogenous data pairs such as liver
weights of high dose and control animals, 5 tests turn out
positive by chance reflecting only normal biological vari-
ance.  Therefore, toxicologists and toxicologic pathologists
must have some basic understanding of statistical tests,
know the limits of their application, and be able to correctly
interpret test results.  False positive statistical results can be
particularly awkward in the case of rare findings or a slightly
increased incidence only in a (high) dose group.  As already
pointed out above, historical control data for any type of tox-
icity studies are indispensable to analyze such findings and
to show that the statistically significant “deviation” is within
the historical control range 77. 

Another fallacy derives from dividing lesions into dif-
ferent subcategories, such as in the following example: The
incidence of pulmonary squamous cell carcinomas in the
control, low, mid, and high dose groups is 0, 0, 0, and 3,
respectively.  These data suggest a carcinogenic effect in the
high dose group.  However, there were also broncho-alveolar
carcinomas with group incidences of 4, 3, 3, and 1, respec-
tively.  If both carcinoma types are pooled to give 4, 3, 3, and
4 respectively, then no treatment-related effect is present.
For a guideline of combining neoplasms see 78. 

Review of earlier studies: It is mandatory to review ear-
lier, often shorter-term studies with the drug candidate or
related drug candidates for subtle changes, which might have
been missed or dismissed as not significant.  With hindsight
and knowing what one is looking for, it is always easier.

What else is known about the drug in question?
Exaggerated pharmacological action: Could the
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observed APF be a consequence of an exaggerated pharma-
cological action at high doses of the drug candidate, e.g. neu-
ropathy, if healthy animals are treated with hypoglycemic
drugs79? Is the APF mediated by a receptor that is responsi-
ble for the pharmacodynamic effect? Is that receptor relevant
to man, similarly distributed, and similarly responsive in
man? 

Drug class effect: Some classes of drugs are known to
induce APFs (Table 1).  Information can be obtained e.g.
from the scientific literature, through personal contacts
directly from the scientific community or through the US
freedom of information acts.  Some of these class effects are
known to be relevant to man, such as cytotoxicity of most
anticancer drugs in rapidly proliferating tissues.  Others are
known to be more or less species-specific, such as many
endocrine effects seen in test animals.  Still others are of
somewhat uncertain relevance for man, such as vasculitis
observed with phosphodiesterase (PDE) IV inhibitors, and
need to be assessed on a case-by-case basis (see also second
part of this review).  Class effect information is crucial to
assess the relevance of an APF to man, to decide about
potential precaution measures to be taken in clinical trials
and to anticipate how registration authorities might regulate
the drug in question.  Also if a class effect is known not to be
relevant to man, a new drug candidate showing the same
APF has to be assessed carefully.  As will be discussed in the
second part of this review, peroxisome proliferation was
originally and correctly regarded as not being relevant to
man, but new peroxisome proliferator-activated receptor
(PPAR) agonists are much more potent.  Therefore it can not
be excluded that APFs observed with new PPAR agonists
are relevant to man. Already at this early stage, it may be
useful to calculate risk/benefit ratios (see below under risk
evaluation) based on structural similarities and/or therapeu-
tic class in case of a suspected class effect.

Were there other relevant findings?
Particularly in case of unexpected APFs it is important

to correlate in-life observations, clinical pathology/chemis-
try data, pathology findings, and any other observation of
relevance made during the safety study.  Clinical chemistry
data80, 81 often come from earlier time-points and can provide
information on the time course of a target organ lesion.
Pathology findings to be correlated include organ weights82,
lesions of other organs with potentially systemic conse-
quences such as in case of the hepato-renal syndrome83,
organs of the endocrine system (see second part of review),
or early lesions including preneoplastic lesions28, 84–86.  It is
clear that also findings from other studies, such as results
from pharmacological or mechanistic studies, need to be
taken into account. 

Is the study technically valid?
Important issues to be examined include dose selection

especially in rodent bio-assays56, purity of the test substance,
especially if after a change of the substance batch new toxic-
ities are observed, and study conduct including e.g. tissue

sampling62, 87–90.  It is of utmost importance that control and
dosed groups are treated in the same way with the only
exception of dosing.  This also includes that control and
dosed groups should be necropsied and processed by the
same team.  Slide evaluation should be done by the same
study pathologist.  If for time-constraints two pathologists
share the task, then splitting by dose must be avoided by all
means.  If necessary, then splitting should be by sex and the
two pathologists must take some time to also examine typi-
cal slides of the other sex.

Is the model valid? 
Animals are not humans and some particularities of test

species commonly used in preclinical safety studies are sum-
marized below.  The endocrine regulation of rodents is mark-
edly different from that of human beings 91, 92, e.g.
• Rats lack high-affinity thyroxin-binding globulin 
• The estrogen/progesterone ratio is 1:100–200 in rats,

but 1:1 in women
• The sexual endocrine system of old rats is progesterone

dominated, while that of menopausal women is just
waning with a natural decrease of estradiol and proges-
terone production by the ovaries 93

• Prolactin has a trophic effect on rat mammary gland,
but induces lactation in women 

• Increased luteinizing hormone (LH) leads to Leydig
cell (LC) tumors in rats, while human LCs are much
less sensitive 94

Anatomical particularities of rodents include rodent-
specific organs such as forestomach, Harderian gland (eye
region), Zymbal’s gland (ear), and preputial/clitoral gland.
Tumors occurring exclusively in rodent-specific organs are
often regarded as not relevant to man.  However, 
• Tumors in the rat forestomach might indicate, for

example, a risk for esophageal tumors in man
• The similarity of Zymbal’s and preputial/clitoral glands

of rats to human sebaceous glands must be kept in
mind.
Target organ concordance between test animals and

human beings need not be a prerequisite when evaluating
animal tumor findings with regard to their relevance to
humans.  Therefore, also the significance of tumors in
unique rodent tissues must be addressed using the mode of
action/human relevance framework approach (see risk eval-
uation below). 

Mice are known to have a high incidence of spontane-
ous tumors particularly in lungs, the liver, Harderian and
adrenal glands, the hematopoietic system, and ovaries.  Rats
show high incidences of mammary gland and pituitary
tumors70,  95–100.  Also, differences in absorption-distribution-
metabolism-excretion (ADME) parameters between test ani-
mals and man regarding e.g. metabolite pattern, (organ)
accumulation or distribution of drug-metabolizing enzymes,
may play a role101–104.  Differences are also found between
different strains of the same species105–111.  For example, the
incidence of the following rodent tumors is strongly strain-
and possibly partly also breeder-influenced:
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• LC tumor incidence: 88–96 % in F344 rats, below 10%
in Sprague Dawley (SD) rats, 1–2% in Long-Evans rats

• Mononuclear cell leukemia incidence: 20% in F344
rats, rare in SD rats

• Mammary gland tumors, the incidence of which varies
widely between different strains, possibly due to endo-
crine differences and viral infections
Despite the above facts the value of in vivo toxicology

studies to predict for many significant human toxicities is
established112, but the prediction of human risk based on ani-
mal data needs to take all necessary parameters into
account28, 47, 113.

What other modifying factors have to be considered?
Many factors can influence the outcome of a study114,

115, including the following conditions:
• Quality of animals, particularly of non-rodents and

among them especially of monkeys116, 117

• Age of the animals118– 120.  As age can have a potentially
important effect on drug safety, new drug candidates,
unless they can not be used for children, need to be
tested also in juvenile animals121

• Husbandry71, including e.g. light intensity122 and diet123

–128

• Feeding
° Feeding ad libitum, which actually means

Table 1. Examples of Effects Seen with Selected Drug Classes, Including Selected References

Organ Lesion Examples of involved drug classes 

Vessels Arteritis Phosphodiesterase inhibitors249–252

Some dopaminergic drugs220

Some endothelial antagonists253 
Other drugs254

Heart Direct cardiotoxicity Anticancer drugs of the anthracyclic antibiotic type and others157, 255, 256

Cardiopathy/myocardial infarction, Positive inotropic and vasoactive drugs209, 210, 255, 257

particularly in dogs

Muscles Rhabdomyolysis Lipid-lowering agents258, 259

Kidney General nephrotoxicity Aminoglycosides and other antibiotics 260–264

Cyclosporine265, 266

Papillary necrosis particularly in dogs Non-steroidal anti-inflammatory drugs (NSAID)262–264, 267, 268 

Nervous Neuronal toxicity Many substances, but in particular environmental chemicals such as
system organophosphates269, 270

Liver Hepatomegaly because of Smooth endoplasmic reticulum (SER) proliferation 
organelle proliferation e.g. with phenobarbital-like drugs52, 146, 271

Peroxisome proliferation  e.g. with certain hypolipemic drugs214, 272–274

Gastro-intestinal tract Ulcers in the intestinal tract Non-steroidal anti-inflammatory drugs (NSAID) 275, 276

Endocrine organs Endocrine-mediated APFs are frequent Many drugs, for overviews see e.g.277, 278

Seminiferous tubule atrophy Drugs with estrogenic properties 279–282

Pseudopregnancy with persistence of Progestational and dopaminergic compounds, e.g. neuroleptics120, 277 
corpora lutea

Thyroid insufficiency Sulfonamides283, 284

Other hormonal effects, e.g. Recombinant human parathyroid hormone285

skeletal and other changes277

Various organs Atrophy of rapidly proliferating tissues, Cytotoxic anticancer agents286–288

 e.g. bone marrow, lymphoid organs, 
epithelia of gastrointestinal tract, 
seminiferous tubules

Metabolism Phospholipidosis Amphiphilic and other drugs231, 289, 290 

 For additional references see text and second part of the review.
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overfeeding128, 129, significantly increases tumor
incidences of the pituitary130, the mammary gland,
and the lung in rats and of the liver in mice, but may
decrease the incidence of uterine tumors in rats131.
Overfeeding also increases the incidence and sever-
ity of degenerative diseases, including nephropathy
132, which may impact on excretion of xenobiotics,
and the incidence of myocarditis, polyarteritis, and
prostatitis.  Overfeeding has been shown to shorten
the life span of test animals

° On the other hand, decreased feed intake e.g.
because of toxicity-associated decreased well-
being of the test animals or poor palatability of the
drug candidate in feed admixture results in the fol-
lowing changes: Retarded growth of young ani-
mals, weight loss, decreased organ weights
particularly of the lymphatic system, decreased
resistance e.g. to preexisting infections, which
might be visible as multiple foci of acute to chronic
infection.  Decreased feeding might also reduce the
incidence of background changes as described
including references under feeding ad libitum
above.

• Contaminations of feed, water or the air and impurities
in the drug substance133

2. Hazard characterization

This step serves in particular to characterize and quan-
tify the observed APF in more detail. 

The most important objectives of the hazard char-
acterization step are to obtain additional data, as
far as needed and possible, on:
• Dose response, including exposure at the maxi-

mal tolerated dose (MTD) and at the no-
observed-adverse-effect level (NOAEL) in the
most sensitive species relevant to humans134

• Early markers for the APF, which can be used in
early human trials of the translational medicine
phase as well as in later trials to monitor humans
(risk management, see below) for the occurrence
of the respective adverse effect(s) 

• Mode of action (MoA)47, 135

Hazard characterization often involves additional
experimental work.  The amount of efforts invested depends
among other factors especially on the stage of development
of the drug candidate (past investment at stake), the proposed
indication (risk-benefit considerations, see also below),
available alternatives internally (follow-up drug candidates)
and on the market (available therapeutic alternatives), the
nature of the APF, and the conviction within the company
regarding viability of the drug candidate.

Additional investigations of available samples 
Samples may be available from the study in question or

previously conducted studies and allow e.g. the following
additional investigations: 
• Hormone measurements in blood/serum samples partic-

ularly in case of findings in endocrine organs 
• Assessment of gene or mRNA expression and/or

marker proteins or protein patterns in blood or tissue
samples

• Morphological investigations e.g. by electron micro-
scope (EM) or by immunohistochemistry (IHC) on tis-
sue samples regarding

° Proliferative cell type136–138

° Measurement of cell proliferation, e.g. by prolifer-
ating cell nuclear antigen (PCNA)138–140, and of
apoptosis141–143 

° Subcellular details partly also visible on EM pic-
tures of formalin fixed tissue, e.g. to prove or dis-
prove the presence of phospholipidosis

° Molecular epitopes, which are reasonably well pre-
served even after many years in wet and paraffin-
embedded tissue

° Morphometry for numerical or volume changes, in
particular to establish a NOAEL144 –149

Tailor-made mechanistic studies

It is crucial that the additional studies are relevant
to resolving the APF issue in question.  Therefore,
it is necessary to
° Keep the design simple and the objective includ-

ing what to (dis)prove in mind
° Avoid experiments yielding results which may

not be interpretable, e.g. because of lack of
experience, lack of historical data, unproven
method, etc.

Tailor-made mechanistic studies can have various pur-
poses, namely to better characterize the lesion in question
and/or to test one or several hypotheses about the pathogen-
esis of the observed APF.  They serve to obtain properly
sampled and prepared material for investigation by often
more sophisticated methods, such as
• EM investigations on glutaraldehyde-fixed tissues150

• IHC investigations on fresh tissue for detailed cell
kinetic studies including cell proliferation, single cell
necrosis, and similar investigations139, 145, 151

• Flowcytometry for cell typing, e.g. in connection with
immunotoxicity issues152, 153 

• Laser scanning cytometry or confocal laser scanning
micrososcopy for a detailed assessment of cellular
structures153, 154

• Microdissection followed by special analyses, espe-
cially –omics investigations (see next bullet point)155 

• -omics investigations for DNA, RNA, and protein
expression156–160.  These investigations can be useful to
find biomarkers for testing of follow-up drug candi-
dates and in clinical trials, but identifying and validat-
ing a biomarker can be resource intensive and
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demanding161, 162

• More detailed investigation of ADME parameters
including e.g. metabolites or organ accumulation.
Additional analytical work is also necessary to support
Phase III clinical trials, if in earlier clinical studies
human metabolites are observed at exposures greater
than 10% of the total drug-related exposure and at sig-
nificantly higher levels than the maximum exposure in
the toxicity studies.  This does not apply for metabolites
which are not of toxicological concern, such as most
glutathione conjugates.  For details see163, 164 
Tailor-made mechanistic studies allow an investigation

of early findings and of their development over time, e.g. by
sequential necropsies in a time-course study or by using
newer imaging techniques on live animals165.  Investigation
of early lesions is important, as early lesions are often char-
acteristic for the toxicity observed, while later lesions repre-
sent a more general reaction of the biological system to
injury. 

Toxicity generally starts with functional impairment
e.g. of selected cellular membranes of specific cells, which
results in subtle structural changes such as microvesiculation
(accumulation of water e.g. in mitochondria or lysosomes).
If the toxic insult persists, water accumulation increases and
becomes visible at the light microscopic level as vacuoles in
the primarily affected cells.  At this stage cell organelles
might be disrupted and the target cells might eventually die
resulting in non-specific inflammation dominated by leuco-
cytes and phagocytic macrophages, which may also damage
other organ cell types.  Lymphocytes generally appear some-
what later, but stay longer.  In subchronic studies the end
stage of target organ toxicity may be replacement of specific
cells by non-specific scar tissue, which may also impinge
upon other organs, such as e.g. in the hepato-renal
syndrome83. Tumors are often preceded by signs of increased
cell proliferation (see below) or by preneoplastic lesions,
particularly in livers84 – 86, 166.

To investigate if an APF is reversible, selected animals
are necropsied after a treatment-free period at the end of a
repeat dose study generally on a routine basis.  It is important
to keep in mind that early toxic lesions may disappear under
continuation of exposure to the offending drug candidate
because of adaptation and regeneration.  E.g. one or two
weeks after acute tubular necrosis kidney tubules might
appear normal with exception of tubular basophilia in hema-
toxylin&eosin (H&E) sections, a tinctorial change which is
characteristic of regenerated tubular cells.  With progressing
severity of a lesion, the likelihood of complete repair
decreases.  However, regenerative capacity is high espe-
cially in liver and kidney.  If the lesion might have regressed
to some degree or if it appears useful to investigate the
details of the recovery process, tailor-made studies may be
conducted with a longer recovery period and possibly with
investigations at various time points during the recovery
period. 

In vitro studies with cell or tissue cultures, organ slices
or the perfused target organ can be useful to investigate

metabolism, effects on subcellular organelles, receptors, or
gene expression.  Such studies also serve to obtain data on
dose-effect relationship at subcellular or molecular levels.
For this purpose human cell lines are available.

Increased cell proliferation
Increased cell proliferation is generally associated with

tumors in lifetime bioassays92, 167–169, but this is not always
the case 170.  Increased cell proliferation is seen particularly
in the following conditions:
• Subacute to chronic cytotoxicity with increased cell

death, which must be avoided in lifetime bioassays by
correct dose selection56 

• Chronic tissue irritation e.g. in case of 
° Crystals or aggregates with proteins and lipids in

the urinary system.  A well-known example is sac-
charine, which at very high doses formed bladder
calculi leading to urinary bladder carcinoma in
male rats171, 172.  A more recent example is the
occurrence of urinary bladder carcinomas follow-
ing treatment with certain PPAR agonists, as dis-
cussed in more detail in the second part of this
review

° Solid state carcinogenicity e.g. at subcutaneous
injection sites especially in rats or at implantation
sites of microchips173 or transponders174, particu-
larly in mice

° Age-related “spontaneous” lesions, e.g. chronic
progressive nephropathy, particularly following
exacerbation by xenobiotic treatment, which seems
to slightly increase renal tubule cell neoplasms175

• Increased physiological stimulation of cells leads to cel-
lular hypertrophy (increase in size, generally with pro-
liferation of cellular organelles) and hyperplasia
(increase in cell number).  The best known examples
are the hormonally-mediated tumors in rodents, which
are frequent in bioassays and generally without signifi-
cance to man92.
For an overview of various types of epigenetic (not

genotoxicity-related) carcinogenicity see Table 2. 

3. Risk evaluation

The most important parameters for assessing the
relevance of an observed unexpected APF for man
are
a. Mode of action (MoA) of the drug candidate

eliciting the APF
b.Safety ratio (also called safety factor or safety

margin) between the highest non-toxic exposure
in the most sensitive and relevant animal species
and the therapeutic drug exposure of man

c. Weight of evidence (WoE) based on the above
and further parameters as appropriate 

a. Mode of action
Understanding the MoA as established during step 2 of
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Table 2. Epigenetic Carcinogenicity is Generally without Relevance to Man Unless Mentioned in the Table, with Selected References

Pathogenesis Examples of compound(s) and, if appropriate, target organs and details
regarding MoA

Cytotoxicity Cell proliferation for reparation of Many drugs at cytotoxic doses for prolonged periods of time291

target organ Note: Man is less sensitive to tumorigenicity associated with increased
cell proliferation

Chemicals binding to α2μ globulin in renal tubular cells leading to
kidney tumors in male rats, which produce significant amounts of α2μ
globulin under testosterone92, 292

Chronic irritation Cell proliferation for reparation and Drugs which
adaptation of target organ/site -  are irritating at subcutaneous injection site 167

-  predispose for urolithiasis such as saccharine, PPAR agonists, etc.172, 293

Note: Man is less sensitive to tumorigenicity caused by chronic irritation

Induction of drug Trophic effects on liver cells, Phenobarbitone and similar inducers of drug metabolizing 
  metabolizing enzymes particularly in rats enzymes52, 180, 227, 271 leading to adaptive hepatocyte hypertrophy,

hyperplasia, and finally tumors

Trophic effect on thyroid of rats Microsomal enzyme inducers (see also above) increase T3 and T4
excretion leading to TSH elevation in rats which lack high-affinity
thyroxin-binding globulin50, 294, 295

Note: High TSH levels e.g. in case of a Hashimoto goiter lead also in
humans to benign thyroid hyperplasia or thyroid adenoma

Induction of peroxisome Increased oxidative stress (?) Liver tumors with “early” hypolipemic drugs, such as clofibrates273, 274

   proliferations

Stimulation of Cytokine and growth factor release (?) Lipo- and fibrosarcomas in rats and hemangiosarcomas in mice with new
   adipocytes (?) PPAR agonists296, 297

Hormonal stimulation Direct hormonal stimulation has a Drugs with hormonal action lead to hypertrophy, hyperplasia, and tumors in
trophic effect the target organ 92

Hormonal imbalance Dopaminergics by lowering of prolactin lead to estrogen dominance in old
rats and uterine tumors93, 120

Note: As sex hormones are decreased in aging women, this MoA is not
relevant to humans

Decrease of hormone receptors The dopaminergic mesulergine reduces the number of LH receptors in
Leydig cells (LC) resulting in increased LH and LHRH levels
Note: Not relevant to man tolerating large increases of LH, e.g. in case of
the Klinefelter syndrome94, 120 

Block of hormone production results H2-blockers lower gastric HCl resulting in increased gastrin levels leading
in increased stimulation of target organ to stimulation of enterochromaffin-like cells (ELC) with hyperplasia and

carcinoids particularly in rats92, 298–302 
Note: H2-blockers are basically not considered to be tumorigenic in man, 
but may lead to ELC hyperplasia303. Therefore, some residual risk can not
be excluded304, 305

Antithyroid agents lower T3 and T4 thus increasing TSH which leads to
thryroid tumors particularly in rats being sensitive to inhibition of thyroid
peroxidase50, 92, 294

Note: High levels of TSH in Grave’s disease (M. Basedow) are not
associated with thyroid tumors in man

Sulfonamides decrease iodine thyroid uptake and lead to thyroid tumors,
particularly in rats50, 294, 306 

Unknown β2-agonists e.g., salbutamol or terbutaline induce hyperplasia of salivary
glands and mesovarian leiomyomas in rats92, 307. Can be suppressed by β-
blockers such as propranolol 

For additional references see text.
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addressing APF is the optimal basis for predicting the rele-
vance of an unexpected APF for man and, if necessary, for
managing and minimizing human risk.  This has increasingly
been emphasized again in recent years in a number of publi-
cations in particular regarding the relevance of tumors in
rodent bioassays for man47, 176–183, but also for other types of
toxicities176, 184.  Examples showing how the elucidation of
the MoA helped in risk evaluation are given in the second
part of the review. 

b. Safety ratios
The safety ratio is defined as follows:

Animal NOAEL exposure**
Safety ratio* =

 Max (anticipated) human exposure***

* The safety ratio is often called “safety factor” and in
some regions “safety margin”.  However, the latter is
sometimes also used for the ratio between exposure at
NOAEL and exposure at LOAEL (low observed
adverse effect level, within or between species).  There-
fore, it is advisable to clearly define these terms when
using them in a report or publication. 

** Exposure at NOAEL of the most sensitive species rele-
vant to humans regarding the particular APF134 .

*** If the anticipated human dose is not well known, as it is
often the case during very early phases of development,
also the calculation of the safety ratio between animal
NOAEL exposure and exposure at pharmacodynami-
cally effective doses in the same species is helpful.  For
clinical trials the safety ratios between animal NOAEL
exposure and exposure at the human starting dose is rel-
evant.
The safety ratio is an important quantitative means to

set the first human doses to be tested in early clinical trials in
man185, 186.  As a basic rule and on practical grounds, a safety
ratio is estimated by a safety (or uncertainty) factor of 10 for
extrapolation from animal to man and an additional factor of
10 for inter-individual variation in man, resulting in a total
safety ratio of 100.  However, this comfortable safety ratio is
frequently not achieved, and a safety ratio of 10–20 is often
acceptable. 

According to the FDA guidance for industry on estimat-
ing the maximum safe starting dose in initial clinical trials
for therapeutics in adult healthy volunteers185, usually the
NOAEL from the most relevant animal studies should first
be converted to a human equivalent dose (HED) using stan-
dard factors presented in Table 1 of the guidance and taking
into account the body surface.  Using sound scientific judg-
ment, a safety ratio (called safety factor in the guidance)
should be applied to the relevant HED to arrive at the maxi-
mum recommended starting dose (MRSD).  This guidance
says that in general a safety ratio of at least 10 should be con-
sidered. 

High safety ratios are less important for life-saving
indications and/or elderly target patient populations particu-

larly in the following context:
• Marginal increase of tumor incidence
• No therapeutic alternatives on the market or significant

therapeutic or safety advantages over available alterna-
tives

• MoA is well understood and/or the issue is manageable
e.g. by using early biomarkers in clinical and in outpa-
tient institutions. 
Conversely, safety ratios are important in case of APFs

which may be relevant to man and irreversible, such as neu-
ronal degeneration or toxicity to the reproductive organs
leading to sterility. 

The calculation of a safety ratio is only possible under
the assumption that below a limit or threshold dose the drug
candidate does not induce toxicity.  Since many decades
thresholds are accepted for general toxicity and epigenetic
tumorigenicity, but in recent years also increasingly for
genotoxicity187–190.  However, others argue that covalent
binding of genotoxic drugs or of parts/metabolites thereof to
cellular macromolecules like proteins and DNA may not be
repaired completely: Therefore some effects may persist and
accumulate with repeated exposure191.  The discussion is
ongoing, but according to the 2006 European Medicines
Agency (EMA, former EMEA) guideline on the limits of
genotoxic impurities in drug substance a “threshold of toxi-
cological concern” (TTC) value of 1.5 μg/day of a genotoxic
impurity resulting in a mathematical excess cancer risk of <1
in 100,000 over lifetime exposure is considered to be accept-
able for most pharmaceuticals192.  This allows calculating an
acceptable daily intake based on the expected daily dose.
Higher limits may be justified under certain conditions such
as short-term exposure. 

Low safety ratios including safety ratios below 1, which
means significant animal toxicity at dose levels below anti-
cipated human doses, do not necessarily stop development,
in particular in case of central nervous (CNS) drugs.  CNS-
related APFs such as sedation, ataxia, convulsions or death
may actually require a slowly increasing dose regimen to
allow the healthy test animals to adapt to the treatment.  To
proceed to early clinical trials in case of a low safety ratio,
the APF should be relatively easy to monitor in man and be
recognizable early, before permanent toxic damage is
inflicted.  In addition, an earlier than usual completion of the
preclinical program is mandatory in most cases, as will be
discussed for CNS drugs in more detail in the second part of
this review.

c. Weight of evidence (WoE)
The WoE evaluation is the conclusion of the risk evalu-

ation process, similar to evidence-based human medicine193,

194.  The WoE as used in this paper is established on a case-
by-case basis using a multifactorial, multidisciplinary
approach181, 195–198.  The WoE evaluation is a summary of the
relative importance and causal relationships of various
aspects of the particular issue, including dose/exposure-
response, metabolism, tissue distribution, severity, revers-
ibility, (anticipated) relevance to man, (anticipated) relative
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sensitivity of man, and means to look for early signs of
adverse findings in man.  In addition, the WoE evaluation
also takes into account the conditions of drug use and the
overall therapeutic context, such as 
• The severity of the disease condition and how the new

treatment option impacts on quality of life and survival
• The novelty of the drug in question, i.e. whether there is

a true medical need for this drug and/or whether it has a
relevant new mode of action

• The availability of alternative therapies and their rela-
tive safety and efficacy as compared to the drug in ques-
tion

• The target population, in particular its age
• The intended duration of use

A WoE analysis and conclusion is a process, which has
to be continued throughout drug development.  Typical mile-
stones are first trials in humans, each time when testing
larger populations, escalating doses, extending the duration
of treatment in clinical trials, and finally before submitting
registration documents to the approving authorities.  In case
of significant findings for a drug on the market, the WoE
analysis and conclusions need to be repeated for the specific
case. 

For example: A WoE conclusion that a tumor response
in rodent bioassays does not preclude administration of the
drug candidate to humans, may be based on several of the
following facts: 
• In comparison with control animals only slight increase

in tumor number, no shift to less-differentiated tumor
type, no earlier occurrence of tumors, no reduction of
the life span of test animals
No clear dose-response (e.g. highest incidence of the
questionable tumor finding in the mid dose)
Or in other words: The tumors in dosed animals appear
and behave similar to tumors of control animals

• A sufficient safety ratio
• Absence of genotoxicity allowing to adopt a threshold

concept of the carcinogenic mechanism
On the other hand a real carcinogenic alert exists, if one

or the other genotoxicity test is positive and/or one or several
of the following conditions are observed: Marked dose-
related increase in tumor incidence, early onset of tumor for-
mation potentially associated with early pre-neoplastic
lesions and/or shift to a less differentiated tumor type in
comparison with control animals, potentially associated with
decreasing longevity of the treated animals.  The WoE
approach should also take into account decreased incidences
of certain tumor types and weigh them against increased
tumor incidences199. 

Many drugs are on the market which are carcinogenic
in laboratory animals, generally rodents, but are found to be
safe in humans.  For overviews see e.g.181, 200, 201.  Often the
situation is not as clear as given in the above examples and—
as shown in the second part of this review—there are also
new drugs on the market e.g. with animal tumors and posi-
tive genotoxicity tests. 

Evaluation of various types of adverse preclinical
findings

Functional effects: This section is limited to functional
toxicity without morphological correlate as e.g. seen in
safety pharmacology studies202 or occurring in toxicity stud-
ies with certain drug candidates.  Low safety ratios do not a
priori preclude successful development, though additional
safety data are generally needed and special precautions
should be applied for first-in-man trials.

Human diseases caused by a regulatory imbalance are
relatively frequent, affecting e.g. the endocrine system
(over- or underproduction of hormones), the cardiovascular
system, in particular the blood pressure, or the metabolic
system (e.g. human metabolic syndrome).  Drug candidates
developed for such disorders actually disturb the corre-
sponding regulatory system in healthy test animals and may
therefore be associated with dose-limiting and marked APFs.
E.g. anti-diabetes drugs can lead to hypoglycemic brain
damage203, 204 or drug candidates overstimulating neurons
can result in neuronal degeneration204, an effect also
observed in humans at excessive doses205. 

As mentioned, test animals are often very sensitive to
drug candidates intended for treatment of disorders of the
central nervous system (CNS) and react with tremors,
decreased activity, sedation, recumbency, loss of balance
and ataxia, seizures, and also death already at relatively low
doses, occasionally below the intended therapeutic dose.
Such APFs are usually without histopathological correlates,
dose-limiting, and reversible on cessation of dosing.  Fre-
quently the severity decreases with continuing dosing and an
escalating dose regimen can help to achieve acceptable
exposure in preclinical safety studies.  Many drugs on the
market show such CNS signs at relatively low doses in test
animals, including clozapine, haloperidol, risperidone,
buproprion, tricyclic antidepressants or acetylcholine
esterase (AChE) inhibitors such as rivastigmine and benzo-
diazepines (see respective drug information in the PDR16). 

Another important group of functional APFs is related to
the cardiovascular system.  Drug candidates that promote QT
prolongation potentially associated with the much feared tor-
sades de pointes, include the antiarrhythmics quinidine, dis-
opyramide, procainamide, sotalol, dofetilide, and ibutilide as
well as methadone, thioridazine, and haloperidol3, 5–10, 206–208.
The relevance of QT prolongation found in preclinical safety
tests needs to be established in specific clinical trials7 and
does per se not preclude further drug development.  Drug can-
didates with positive inotropic activity increase heart rates in
dogs, resulting over time in morphological alterations includ-
ing myocardial necrosis209, 210.  For more detail see second
part of this review. 

Adverse clinical chemistry findings in laboratory ani-
mals, such as moderate elevation of selected serum enzymes
without significant morphological alterations, do not prevent
progression of a drug candidate into clinical trials, as the cor-
responding parameter can be monitored in man.  However,
clinical chemistry investigations provide useful biomarkers,
particularly to screen series of drug candidates before start-
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ing development.
Morphologic effects: Morphologic toxicity23–28 falls

into one or several of the following basic pathological reac-
tion patterns of biological systems.

Regressive alterations include in particular cytotoxicity
which may progress to cell death.  Almost any drug tested at
high enough doses is cytotoxic.  A sufficient safety ratio (a
quantitative measure) is needed for continuing development,
unless the MoA suggests that the APF is qualitatively not
relevant to man.  It depends upon the intended indication
what constitutes a sufficient safety ratio (risk-benefit evalua-
tion, see also Fig. 3 below).

Progressive alterations are hypertrophy, hyperplasia,
and neoplasia.  Hypertrophy and hyperplasia generally indi-
cate adaptation to cope with increased workload e.g. following
induction of metabolic enzymes especially in the liver, stimu-
lation of target organs by hormones (see below), or
glomerular211 and renal tubular hypertrophy212 following treat-
ment with diuretics and other drugs.  To assess the human rel-
evance of a proliferative APF understanding of the responsible
MoA is crucial, especially in case of potentially epigenetic
tumors arising as a result of prolonged cellular stimulation in
the absence of genotoxicity27, 113, 213–216 .  A sufficient safety
ratio is needed, unless the MoA is clearly irrelevant to man.
Human evidence to trace the emergence of proliferative
changes in man can generally only be obtained by invasive
techniques including biopsies and is impracticable.

Inflammation can result from different types of injury.
For instance exacerbation of background infections needs to
be taken into account when treating test animals with immu-
nosuppressive agents or when toxicity decreases the well-
being and therefore potentially the resistance against infec-
tions.  Some drug candidates lead to inflammation of organs
or organ systems by unknown MoA, e.g. PDE IV inhibitors
to vasculitis, as discussed in more detail in the second part of
this review.  However, inflammatory foci can also be the
consequence of toxic injury e.g. around hepatocellular or
renal papillary necrosis.  It is important to understand the
pathogenesis of inflammation, which provides at least some
understanding of the MoA.  Safety ratio calculations can
support risk evaluation. 

Metabolic changes manifest themselves often in form
of storage of endogenous substances, e.g. fat, and may be the
consequence of subtle toxicity.  Storage diseases in the strict
sense are e.g. phospholipidosis resulting from an impaired
clearance of membranes (more detailed discussion in the
second part of this review).  Such changes may occasionally
also be accompanied by functional impairment of the
affected organ217.  Accumulation of administered drugs or
metabolites can sometimes be seen as pigment deposits in
the respective organ, often without impairment of organ
function218.

Primary circulatory and respiratory disturbances are
less frequent.  The latter can occasionally be a consequence
of phospholipidosis.  Drug-induced arteritis in laboratory
animals219–221 is often without clinical dysfunction.  Circula-
tory and respiratory disturbances including morphological

changes can result from exaggerated pharmacological action
of drug candidates as well: Particularly the aforementioned
high sensitivity of dogs to drug candidates with positive ino-
tropic activity is well-known209,  210.

Malformations as toxicity endpoint are important in
reproductive toxicity studies.  Maternal toxicity needs to be
taken into account to determine the relevance of potential
developmental toxicity evidenced as fetal malformations
and/or embryofetal toxicity.  The pathogenesis of malforma-
tions is practically always unknown, unless due to cytotoxic
drugs; however, for obvious reasons the latter need not to be
tested in reproductive studies.  Safety factors are of little help
for the risk evaluation of potential teratogens: The drug can-
didate has to be labeled as potentially teratogen, if develop-
mental toxicity is observed in the absence of maternal
toxicity.  Well controlled large human studies proving the
absence of human teratogenicity can not be conducted for
ethical reasons.  Pharmaceuticals are classified according to
their potential fetal risk according to animal and, where
available, human data and the potential benefit of the drug
for mothers.  The categories range from “no fetal risk based
on human data” to “proven human fetal risk outweighing the
potential benefit for the pregnant mother”.  The definitions
of these pregnancy categories differ between regulatory
agencies222–224.  Malformations will be discussed in more
detail in the second part of this review.

Affected organelles: If unexpected morphological
APFs are noted, EM investigations may be used to investi-
gate early subcellular changes.  EM investigations can also
serve to select drug candidates with low potency for induc-
ing a specific APF known to occur with a particular class of
drugs, e.g. antidepressant drug candidates with a low poten-
tial for inducing phospholipidosis.  Newer methods includ-
ing gene expression and fluorescent microscopy can partly
replace the more resource intensive EM investigations225.
EM and other methods may support drug candidate selection
and may help avoiding longer animal studies.  However, for-
tuitously detected subcellular changes without functional
consequences and/or progression to histopathological alter-
ations are not relevant and therefore such sophisticated
investigations are not needed in routine toxicity studies. 

Not infrequently drug candidates have marked effects
on specific cellular components.  Best known is the effect of
inducers of drug metabolizing enzymes associated with
hyperplasia of the smooth endoplasmic reticulum (SER), the
site of enzymes metabolizing xenobiotics, particularly in the
liver.  SER proliferation occurs in dose-dependent fashion
and leads to cellular hypertrophy and hyperplasia with
increased liver weight.  It can be recognized histologically in
H&E sections by a clearly eosinophilic cytoplasm226.  In
electromicrographs the proliferation of the SER is easily
seen, also in formalin-fixed tissues from routine toxicity
studies.  SER hyperplasia and the associated phenomena are
reversible upon cessation of treatment.  However, in lifetime
studies marked SER proliferation is generally associated
with liver tumors in rodents because of sustained increased
hepatocyte stimulation as explained above.  Induction of
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metabolic enzymes occurs to a greater extent in rodents than
in man and liver tumors due to SER proliferation are without
much relevance to man180, 213, 227.  However, enzyme induc-
tion may have significant consequences for the pharmacody-
namics of drugs228. 

Lysosomes are particularly abundant in cells specialized
in phagocytosis such as leukocytes and macrophages.  If
ingested material, often cellular membranes, can not be
degraded, phagolysosomes accumulate in the cell or in the
draining lymphatic organs, the spleen, the reticuloendothe-
lial system of the liver or in other organs.  This results in a
storage-type disease229, 230.  If the accumulation is mild, it can
resolve231.  Excessive accumulation of phagolysosomes can
impair the physiological functioning of the cell and also lead
to single cell necrosis.  This type of storage disease is there-
fore of some concern to regulators and will be discussed in
more detail in the second part of this review.  Its significance
to man needs to be evaluated on a case-by-case basis.  A suf-
ficient safety ratio is important.

Peroxisomes are particularly abundant in liver cells and
are rich in peroxide reducing enzymes.  Peroxisome prolifer-
ation is relatively easy to induce in rodent livers.  At least
one factor contributing to the resulting liver tumors is an
increased production of hydrogen peroxides232.  The older
PPAR α agonists such as clofibrate were not considered to
be carcinogenic in humans at therapeutic doses.  However,
today’s PPAR agonists in development are much more
potent than fibrates233.  In rodent carcinogenicity studies
PPAR α and dual α/γ agonists induce tumors at multiple
sites, in multi-species and strains of both sexes.  Though the
known PPAR agonists are not genotoxic in the standard ICH

genotoxicity battery, they have to be labeled as “probable
human carcinogens” according to the USA Environmental
Protection Agency (EPA) and the International Agency for
Research on Cancer (IARC) criteria234.  For a more detailed
discussion of PPAR agonists see second part of this review. 

In recent years mitochondrial toxicity has received
some attention and is increasingly being implicated in drug-
induced clinical idiosyncratic toxicity235–243.  However, the
study of chemical effects on mitochondrial respiration dates
back many decades244 .  Mitochondrial toxicants are partly
known to inhibit or uncouple oxidative phosphorylation,
thus leading to oxidative stress and inhibition of DNA repli-
cation, transcription or translation.  Mitochondrial alter-
ations need to be assessed on a case-by-case basis.

Summary of the risk evaluation process 
A decision chart for dealing with unexpected APFs is

shown in Fig. 2.
The risk evaluation process includes both a qualitative

and quantitative analysis: The qualitative evaluation answers
the question if the observed APF can be relevant to man in
principle.  For this purpose, the establishment of the MoA is
crucial.  The quantitative analysis, that is the calculation of
safety ratios, becomes important when the APF is not
(entirely) test species-specific or when the MoA of the APF
is not (entirely) clear.

Safety ratios in conjunction with other information have
to be included into a complete WoE analysis.  An important
part of the latter is also an assessment of the risk-benefit
ratio245 as depicted in Fig. 3.

A greater benefit of drug treatment in case of a severe
disease and/or missing therapeutic alternatives justifies a
higher treatment risk.  The limit between acceptable and
unacceptable risk-benefit ratio is blurred.  Therefore the
package insert can only make the treating physician aware of
the therapeutic risk.  If the risk is considerable, the treating
physician then has to make his/her own decision based on a
case-by-case evaluation regarding the patient and the clinical
conditions and then choose the optimal treatment solution
under the given circumstances. 

Additional evidence, if and to which extent an APF is
relevant to man, often comes from translational medicine

Fig. 3. Risk/benefit ratio. Greater benefit justifies higher risk.

Fig. 2. The main aspects of a simplified risk evaluation as part of
the weight of evidence analysis (WoE, for details see text)
for significant adverse preclinical findings (APFs) with drug
candidates: Mode of action (MoA) assessment combined
with calculation of safety ratios (NOAEL exposure in most
sensitive and relevant animal species vs. maximal human
therapeutic exposure). For the definition of a sufficient
safety ratio see text.
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with first-in-man clinical trials.  The ultimate proof may only
become available with long-term clinical follow-up studies
and post-marketing drug monitoring, which is also addressed
in the next chapter.  However, clinical observations do gen-
erally not allow verifying in humans potential genotoxicity
or teratogenicity observed in preclinical development: Geno-
toxic effects are generally too weak and cancer may, if at all,
develop only after many years of exposure.  Ethical barriers
do not allow exposing pregnant women; if on rare occasions
pregnant women were exposed to potentially teratogenic
drugs, generally no final conclusions are possible.

4. Risk management

Risk management means to take precautions to mini-
mize the risk for man195, e.g. by 
• More carefully monitoring patients with increased risk

for adverse reactions e.g. because of chronic kidney dis-
ease in case of drugs mainly excreted by the kidney

• Excluding women in child bearing age in case of poten-
tially teratogenic drugs, unless they are under contra-
ceptive therapy and the expected benefit outweighs the
potential risk

• Carefully selecting the initial doses for the first-in-man
clinical trials185

• Escalating the dose in clinical studies with particular
care

• Increasing clinical monitoring, e.g., serum and urinary
biomarker measurements throughout treatment

• Adequately instructing health professionals
• Employing an effective post-marketing surveillance

program246

Risk management is a task of the physicians responsible
for clinical trials on behalf of the drug company and as actual
trial leaders in hospitals.  Once the drug is on the market, risk
management is a task of the treating physicians in hospitals
and in outpatient institutions.  However, toxicologists and
toxicologic pathologists are required to contribute their
knowledge based on preclinical data of the drug, particularly
for setting dose limitations and suggesting monitoring activ-
ities in early clinical trials, but also when it comes to increase
doses in later human trials or when signs of potentially new
toxicities (in the clinical environment often called “side-
effects”) are observed during the post-marketing phase. 

Recently, the USA Food and Drug Administration
(USA FDA) has published a draft guidance on risk evalua-
tion and mitigation strategies (REMS)247, 248.  This document
requires e.g. a communication plan to health care providers,
measures to assure safe use of the drug in question, an imple-
mentation plan for such measures, and a timetable for sub-
mission of follow-up assessments. 

Conclusions

Drug development is complex and not infrequently the
path to market is paved with obstacles.  Toxicologists and
toxicologic pathologists play an important role in drug

development and have to contribute to the well-being of
patients who will be treated with a new drug.  They also have
to avoid being overcautious and promoting premature termi-
nation of a potentially useful drug.  Drug development is
routine in many aspects, but becomes challenging when
sound scientific judgment is needed.  The toxicologic pathol-
ogist with training in medical sciences is well equipped to
contribute significantly to hazard identification, hazard char-
acterization, risk evaluation, and proposing measures for risk
management.  This paper has outlined possible processes to
resolve unexpected APFs and has provided an overview over
typical issues encountered, from functional toxicity to mor-
phological toxicity, genotoxicity, carcinogenicity, and repro-
ductive toxicity.

This first part of the review emphasizes that “trouble-
shooting” is a task which must be managed from within the
company, though external experts might be able to contrib-
ute significantly to solutions.  The clarification of the patho-
genesis of an APF, that is the MoA of the drug candidate
leading to this APF, is important in the process to evaluate
the relevance of the finding to man.  In addition, the calcula-
tion of safety ratios provides a quantitative measure for the
potential risk to man particularly in early clinical trials.
Identification of early markers of toxicity adds further safety
to these studies in man.  Additional tailor-made mechanistic
studies need to be carefully planned, taking into account
potential hypotheses regarding the MoA.  The methods
employed must be well established in the facility running
investigative studies and historical control data must be
available to assure that the results are interpretable.  The con-
clusion of the risk evaluation process is an analysis of the
WoE of the various parameters characterizing the APF, tak-
ing into account also the context of the drug use, medical
need, and alternatives on the market.

In the second part of this review a number of APFs will
be discussed in more detail, in particular with regard to their
MoA and their relevance to man.  Examples will cover tox-
icity, both of the functional and morphologic type, genotox-
icity, tumorigenicity, and reproductive toxicity.  The
examples will also show that the MoA of drugs leading to
APFs can sometimes not entirely be clarified, but that a well
founded risk evaluation may still be possible. 
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