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Abstract 

Background:  Across behavioral studies, autistic individuals show greater variability than typically developing individ-
uals. However, it remains unknown to what extent this variability arises from heterogeneity across individuals, or from 
unreliability within individuals. Here, we focus on eye tracking, which provides rich dependent measures that have 
been used extensively in studies of autism. Autistic individuals have an atypical gaze onto both static visual images 
and dynamic videos that could be leveraged for diagnostic purposes if the above open question could be addressed.

Methods:  We tested three competing hypotheses: (1) that gaze patterns of autistic individuals are less reliable or 
noisier than those of controls, (2) that atypical gaze patterns are individually reliable but heterogeneous across autistic 
individuals, or (3) that atypical gaze patterns are individually reliable and also homogeneous among autistic individu-
als. We collected desktop-based eye tracking data from two different full-length television sitcom episodes, at two 
independent sites (Caltech and Indiana University), in a total of over 150 adult participants (N = 48 autistic individuals 
with IQ in the normal range, 105 controls) and quantified gaze onto features of the videos using automated computer 
vision-based feature extraction.

Results:  We found support for the second of these hypotheses. Autistic people and controls showed equivalently 
reliable gaze onto specific features of videos, such as faces, so much so that individuals could be identified signifi-
cantly above chance using a fingerprinting approach from video epochs as short as 2 min. However, classification of 
participants into diagnostic groups based on their eye tracking data failed to produce clear group classifications, due 
to heterogeneity in the autistic group.

Limitations:  Three limitations are the relatively small sample size, assessment across only two videos (from the same 
television series), and the absence of other dependent measures (e.g., neuroimaging or genetics) that might have 
revealed individual-level variability that was not evident with eye tracking. Future studies should expand to larger 
samples across longer longitudinal epochs, an aim that is now becoming feasible with Internet- and phone-based eye 
tracking.
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Background
Autism spectrum disorder (ASD) is widely recognized 
to be a complex and heterogeneous disorder that has 
so far defied any simple diagnostic markers or cogni-
tive mechanisms [1]. Yet there is a universal agreement 
that processing of social stimuli is prominently atypical 
[2, 3], with reported difficulties encompassing orienting 
and attention to biological stimuli [4, 5], to processing the 
features of faces [6–10], to making inferences about the 
intentions [11], emotions [12–14], and beliefs [15, 16] of 
other people, and finding social stimuli rewarding [17–
21]. Many of these processes can be measured, at least 
in part, through behavioral choices, verbal ratings, neu-
roimaging, or eye tracking. Of particular value has been 
eye tracking, which has the benefit of being relatively 
unobtrusive and relatively immune to deliberate control, 
generating a large literature study in ASD [22]. Moreo-
ver, eye tracking measures can be obtained in preverbal 
infants and are thought to reflect early attentional biases 
that may contribute to the subsequent emergence of cog-
nitive and behavioral components of the autism pheno-
type [23].

Eye gaze and cognition are intimately related. Where 
we look is determined by a host of cognitive processes 
(all of those that determine visual saliency, a broad con-
struct), but eye gaze itself also has a causal effect on 
cognition [24]. Our gaze influences what we consciously 
perceive, what we subsequently remember, and what we 
expect. The detailed fixations spontaneously made onto 
a face by a given participant directly shape the informa-
tion that is represented in the brain [25]. Indeed, from 
the pattern of neural responses to visual scenes it is pos-
sible to reconstruct the fixations that people made while 
they viewed those scenes [26]. Differential eye movement 
tendencies across participants can be thought of as an 
endophenotype reflecting substantial genetic effects [27, 
28]. Quantifying the gaze patterns in autistic people thus 
provides an exceptionally rich inventory of how they pro-
cess the world, and a sensitive window both into genetic 
predispositions and into phenotypic expression—espe-
cially in regard to social behavior.

Multiple factors likely contribute to atypical gaze in 
ASD. Perhaps, the most robust general finding is that 
autistic people do not fixate faces typically, including 
expressive features (eyes, mouth) within faces, although 
this depends on context [7, 27, 29, 30]. These atypical 

fixations are thought to reflect atypical social attention, 
a leading hypothesis in autism research [31, 32]. Another 
robust finding is that autistic infants have a reduced pref-
erence for biological motion stimuli [4, 33–35]. Other 
theories propose atypical attention to visual stimuli that 
involve other people’s direction of eye gaze [36], predic-
tion [37], geometric patterns [38], local versus global pro-
cessing [39], or imitation engagement [40].

Our own work has similarly argued that atypical gaze 
in ASD is distributed across a broad range of visual fea-
tures [41]. Specifically, that study quantified gaze onto 
features of visual stimuli, encompassing low-level fea-
tures (e.g., contrast), object-level features (e.g., faces), 
and semantic-level features (e.g., emotions) in a series of 
images used in computer vision studies [42]. We found 
that autistic people gaze atypically at images as a func-
tion of both low-level and higher-level features. Those 
differences magnify with time through the trial (across 
the serial order of fixations onto the image) and include 
prominent global biases (for instance, autistic people 
look more at the center of the screen, on average). While 
we did find a greater effect of semantic-level features than 
pixel-level features, our prior study [41] suffered a major 
limitation that is ubiquitous in autism studies: we do not 
know whether the atypical gaze patterns reflect a tempo-
rally stable group difference, or whether they reflect vari-
ability within individuals.

Across ASD eye tracking studies, this is a major unan-
swered question: what portion of the variance in findings 
can be assigned to between-individual variability, and 
what portion can be assigned to within-individual vari-
ability? In general, there is substantial variability across 
autistic participants [43–45]. However, there is also 
variability among participants [46]. Furthermore, these 
sources of variability may not be static over development 
or consistent across the wide range of cognitive function-
ing seen in ASD. In part for this reason, and to ensure our 
ability to produce valid data on our tasks, we restricted 
ourselves to adult participants with IQ in the normal 
range in this study.

Because individual-level reliability is a prerequisite 
for successful classification and prediction—and impor-
tant for personalized intervention, we sought to address 
this question: are gaze patterns from autistic individuals 
simply noisier and less reliable, or are there stable phe-
notypic patterns that vary across individuals? The first 

Conclusions:  These findings pave the way for the investigation of autism subtypes, and for elucidating the specific 
visual features that best discriminate gaze patterns—directions that will also combine with and inform neuroimaging 
and genetic studies of this complex disorder.
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would suggest specific shared mechanisms that might 
contribute to ASD (e.g., noise in neural processing), 
while the second points to heterogeneity, individual dif-
ferences, and the possibility of subtypes [47]. To optimize 
generalizability, we collected data across two separate 
sessions for each participant and tested participants at 
two different sites (Caltech and Indiana University) using 
otherwise identical eye trackers and video stimuli.

We tested three competing hypotheses: (1) that gaze 
patterns of autistic individuals are less reliable or noisier 
than those of controls, (2) that atypical gaze patterns are 
individually reliable but heterogeneous across autistic 
individuals, or (3) that atypical gaze patterns are indi-
vidually reliable and also homogeneous among autistic 
individuals.

Methods
The overall aim of this study was to quantify variability in 
eye gaze to videos in autistic adults. We aimed to quan-
tify the within-individual variability both across two dif-
ferent sessions of eye tracking across two different video 
stimuli, as well as the between-individual variability 
across autistic participants, across control participants, 
and between the two groups constituted by these indi-
viduals. We then interpreted our results considering the 
three hypotheses stated above.

Participants
Data used in this study were collected as part of a larger 
study that included extensive behavioral assessment, 
neuroimaging, and eye tracking. Here we present only 
the eye tracking data (collected outside the scanner), 
together with a subset of the behavioral assessment data. 
Participants were recruited through flyers distributed 
at outpatient treatment programs, community support 
groups, and other community locations (various college 
campuses, YMCA, etc.). We initially recruited a total 
of 183 individuals, 67 of whom were adults with a DSM 

diagnosis of ASD (20 female; 22 tested at the Caltech 
site) and 116 of whom were typically developing (TD) 
controls (33 females; 34 tested at the Caltech site). One 
hundred seventy-six participants watched Episode A (see 
details of stimuli below; 62 ASD), and 167 participants 
watched Episode B (59 ASD). We limited our analyses 
to those 166 participants who watched both Episodes 
A and B (58 ASD). We subsequently excluded 10 autis-
tic and 3 control participants due to eye tracking data 
quality (see Eye tracking and Gaze heatmaps sections for 
details). The final sample consisted of 48 autistic indi-
viduals (age 18–41 years, mean = 27.69 years; 17 tested at 
the Caltech site) and 105 TD controls (age 19–55 years, 
mean = 27.09 years; 33 tested at the Caltech site) of simi-
lar age, sex ratio, and full-scale IQ (Table 1).

ASD group enrolled at Caltech met the following cri-
teria: (a) had a prior diagnosis of ASD made by a quali-
fied clinician (M.D. or Ph.D.), (b) ASD diagnosis was 
confirmed through a clinical interview with a par-
ticipant (and parent, if available) conducted by L.K.P. 
(who is a licensed clinical psychologist), and (c) scores 
from ADOS-2 Module 4 administered at Caltech were 
either at or above the ASD-diagnostic cutoff on at least 
two components of the original algorithm and within 1 
point of the cutoff for the third component or within 1 
point of the total score diagnostic cutoff using the Hus 
and Lord [48] algorithm (i.e., Social Affect + Restricted 
Repetitive Behaviors >  = 7). Autistic individuals were 
not excluded due to comorbid diagnoses of depression, 
anxiety, or ADHD, but were excluded if the total score on 
Beck Depression Inventory II fell in the moderate–severe 
range (25 +).

ASD group enrolled at Indiana University had a prior 
community diagnosis of ASD or Autism, Asperger’s 
Syndrome, or Pervasive Developmental Disorder-Not 
Otherwise Specified (PDD-NOS). The ADOS-2 Module 
4 was administered at Indiana University by research-
reliable administrators; scores were within 1 point of the 

Table 1  Participants’ demographic information, IQ, and ADOS scores (for ASD group)

TD typically developing control group, ASD autism spectrum disorder group. ADOS CSS-Overall: calibrated severity scores, which were generated from the Hus and 
Lord [48] algorithm (ASD group only). AQ: the Autism Spectrum Quotient [49]. T tests were two-tailed and unpaired, assuming equal variance. χ2 was used to test for 
independence of the fraction of males between two groups

**10 TD and 1 autistic individuals with missing IQ scores were excluded from this comparison and t test

TD mean (SD) ASD mean (SD) TD/ASD min–max Test p

Sample 105 48

Fraction male 70.5% 79.2% χ2 = 0.864 0.353

Age at experiment (years) 27.09 (7.29) 27.69 (5.37) 19–55/18–41 t(151) = − 0.501 0.617

Full-scale IQ** 110.01(10.20) 111.38 (14.98) 85–136/84–150 t(140) = − 0.637 0.525

ADOS CSS-Overall – 7.04 (1.98) –/3–10 – –

AQ 15.70 (6.41) 28.06 (7.67) 4–40/10–48 t(151) = − 10.314  < 0.001
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total score diagnostic cutoff using the revised scoring 
algorithm (Hus and Lord algorithm; SA + RRB >  = 7, as 
indicated above for Caltech). We excluded participants 
taking antipsychotic medication.

The frequency of ASD symptoms was measured in both 
groups using the Autism Quotient (AQ) [49]. In the ASD 
group, autism symptom severity was indexed with Over-
all Calibrated Symptom Severity (CSS-Overall) derived 
from the ADOS-2 using the Hus and Lord algorithm [48].

Stimuli
Participants freely watched two episodes of the televi-
sion sitcom “The Office” (NBC Universal, originally aired 
in 2005). Episode 1 of Season 1 (22 min., called Episode 
A here) was viewed in three separate parts, one shortly 
after the next one (part 1, 6 min. 58 s.; part 2, 8 min. 30 s.; 
part 3, 6 min. 28 s.), with no task between parts. Episode 
4 (21 min., called Episode B here) was shown in a differ-
ent testing session paused at times and participants were 
briefly asked to verbally respond to social comprehen-
sion questions, as described in [43], but gaze data during 
these pauses were excluded from the analyses performed 
in this study. Both episodes were viewed on the same day 
separated by a break.

To ensure that familiarity with the stimuli did not influ-
ence our results, all participants also completed a brief 
9-point questionnaire asking about prior familiarity with 
each of these two episodes (with 1 meaning “not at all” 
and 9 meaning “very much”). These data were used to 
split participants into those who were familiar (rating > 5) 
or unfamiliar (rating < 5) with each episode. Question-
naire data were missing for one autistic and two con-
trol participants in Episode A and for two autistic and 
six control participants in Episode B. These participants 
were excluded from this familiarity analysis. For Episode 
A, 17  (24) autistic individuals and 50  (47) TD controls 
were familiar (unfamiliar) with the episode. For Episode 
B, 13  (32) autistic individuals and 39 (52)  TD controls 
were familiar (unfamiliar) with the episode. This familiar-
ity information was then used to verify that there were 
no significant differences in any of our reported results 
between familiar and unfamiliar groups, either when 
confined to the ASD group or to the TD group.

Eye tracking
Participants were comfortably seated in front of a Tobii 
TX300 eye tracker at approximately 65  cm from the 
screen (a movable 23″, 1920 × 1080 widescreen moni-
tor). The eye tracker provided calibrated gaze data at 
300 Hz (0.4° spatial resolution). Gaze data were collected 
at 120 Hz at the Caltech site for 12 participants (2 ASD) 
because of a user error. As gaze data were down-sampled 
to the video frame rate (24 Hz) before our analyses (see 

the next section for details), this difference in sampling 
frequency was compensated across participants. We 
focused our analyses on the raw gaze data; analyses using 
derived fixations yield similar results. Prior to starting 
the videos, participants carried out a 9-point calibration 
on the screen, followed by a 9-point validation in which 
the gaze error to the 9 calibrated locations was quanti-
fied; the 9 target dots spanned the full extent of the 
screen. For Episode A, the calibration–validation pro-
cedure was repeated prior to viewing each of the three 
parts. For Episode B, the procedure was completed once 
at the very beginning of the episode. Quantitative accu-
racy results were immediately displayed to the experi-
menter, who would adjust the screen and/or participant 
and redo the calibration–validation procedure if any of 
the points had > 1.5° of error. A computer error resulted 
in the loss of the validation data, so further quantitative 
assessment of validation accuracy is not possible. We 
excluded nine autistic and two TD control individuals 
from our analyses as their gaze data were missing (either 
missing data points from the eye tracker or gaze out of 
the stimuli presentation monitor) at more than half of the 
video watching duration in one or both episodes.

In analyses described below, eye tracking data were 
used in two main ways: (i) data from two episodes were 
analyzed separately to compare gaze patterns across the 
two episodes (e.g., Figs.  1 and 2—all panels other than 
panels C, F, I, L), (ii) data from two episodes were com-
bined into a single 43-min dataset and analysis proce-
dures were performed on the combined dataset together 
with data sampling procedures to investigate how iden-
tified gaze patterns change with changing video epoch 
duration and to estimate confidence interval and statisti-
cal significance of computed gaze metrics (e.g., Figs. 2C, 
F, I, L and 3).

Automatic segmentation of frames to areas of interest 
(AOIs)
Human body parts in each frame of videos were 
detected by using a pre-trained neural network model 
provided in the DensePose module in the Detectron2 
deep learning software [50, 51]. Twenty-four differ-
ent body parts provided by the DensePose model were 
merged to obtain three main parts of the body for our 
interest: the head area, hands area, and other body 
parts (see Additional file 1: Fig. S1). The regions within 
a frame where no body parts were detected were taken 
as non-social content. Within each frame, face areas 
and five facial keypoints (two eyes, nose, and two sides 
of the mouth) were detected by using the RetinaFace 
face detector model provided in the InsightFace deep 
face analysis toolbox [52, 53]. The five keypoints were 
used to automatically define eyes and mouth areas by 
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following these steps: (i) outline the smallest bounding 
box that encloses the five keypoints of a face, (ii) out-
line a medium bounding box that has corners at mid-
points between the corners of the small bounding box 
defined in (i) and the corners of a larger bounding box 
provided by the face detector method that encloses the 
total face area, (iii) the total area in the medium bound-
ing box defined in (ii) was divided into two parts based 
on the horizontal line passing through the nose key-
point by taking the upper areas as eyes area and the 
lower area as mouth area. Stimulus videos were recon-
structed by overlaying detected body and face segments 
onto frames and watched to ensure manually that the 
automatic methods provided a reliable estimation of 
AOIs. 96.2% of frames across two video episodes (the 
total number of frames was 61,724) depicted at least 
one person. Face and face part (eyes and mouth) areas 
were detected in 94.9% of all frames.

To compute the percentage of total gaze time to an 
AOI, gaze data were coded into various areas, including 
faces, eyes, mouth, hands, non-head body, and non-social 
content, which were defined using the above automated 
segmentation methods. To perform this coding, first the 
gaze data were down-sampled to the video frame rate by 
taking the average of gaze points corresponding to each 
frame (i.e., there is one average gaze point per frame). 
Next, the average gaze point was represented as a disk of 
diameter of 1-degree visual angle. Finally, the gaze was 
assigned to an AOI based on the maximum area of over-
lap between a gaze point disk and any of the AOIs con-
sidered (see Additional file 1: Fig. S1 E, F).

While computing the percentage of total on-screen 
gaze time, the number of frames where the gaze fell suc-
cessfully onto the stimulus presentation monitor was 
divided by the total number of frames in the video. How-
ever, while computing the percentage of total gaze time 

Fig. 1  Eye tracking demonstrates reliable gaze differences to features of videos. A ASD versus TD comparison in their percentage of total gaze time 
to faces in the stimulus video Episode A. Error bars span the 2.5–97.5th percentiles, boxes span the 25th to 75th percentiles, and horizontal black 
lines indicate medians. Effect size of the difference between groups (Cohen’s d) is shown on top of the plot. Individuals are denoted by distinct 
red-yellow spectrum colors based on their percentage of gaze time to faces in Episode A and the same participant-wise colors were used for 
Episode B (also for Fig. 2). Inverted triangles: participants tested at Caltech; circles: participants tested at Indiana University. B Same plot as in A, but 
for data from video Episode B. C Effect size of the differences between groups in their percentage of total gaze time to several areas of interest in 
two separate videos. Bar heights show Cohen’s d and error bars show their bootstrap confidence intervals. Saturated colors, asterisks, and p values 
show the statistical significance of Cohen’s d (p < 0.05, assessed with bootstrap tests, and corrected for multiple comparisons via false discovery 
rate); desaturated colors show nonsignificant differences. D Effect size of the differences between groups in their average correlation with reference 
gaze heatmaps created by either combining all TD controls (Ref. TD) or all autistic individuals (Ref. ASD). Same format as C 
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to a particular AOI, the number of frames where gaze fell 
onto that area was divided by the total number of frames 
with successful on-screen gaze. This approach allowed 
us to control for possible individual differences between 

participants in their total on-screen gaze time, such that 
this did not bias the differences in their total gaze time 
to other AOIs (see “Partial correlation analysis” for addi-
tional controls).

Fig. 2   High within-individual reliability in ASD. A, B Individual participants’ percentage of on-screen gaze time is plotted using data from two 
separate videos. Individual participants are denoted by red-yellow (ASD) or dark–light blue (TD) spectrum colors that encode the percentage of 
gaze time to faces in Episode A (panels D, E; as in Fig. 1A, B) and the same participant-wise color codes were used for other panels (panels A, B, G, 
H, J, and K). Triangular (circular) markers indicate participants from Caltech (IU) site. Line: Pearson’s correlation and bootstrapped CI are depicted 
for visualization purposes, but Spearman’s correlation was used to assess reliability in gaze patterns. D, E Individual participants’ percentage of gaze 
time to faces is plotted from two separate videos. G, H Individual participants’ percentage of gaze time to eyes is plotted from two separate videos. 
J, K Individual participants’ average gaze heatmap correlation with TD reference gaze heatmaps. C, F, I, L Sampling analysis based on 10-min epoch 
from the videos and bootstrap resampling of individual participants
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Gaze heatmaps
Temporally binned heatmaps were used to assess the 
similarity of each participant’s gaze pattern to a refer-
ence group (reference group calculations were always 
leave-one-out, i.e., excluded the comparison partici-
pant, if that participant was a member of the respective 
reference group, to eliminate bias). A gaze heatmap was 
built for each participant for each time bin by convolv-
ing each gaze point in the time bin with a two-dimen-
sional isotropic Gaussian with a standard deviation of 
0.5° of visual angle. One degree of visual angle corre-
sponded to 41 square pixels on the screen in our study. 
A time bin duration of 1 s was used for the results pre-
sented here. Other tested time bins (0.5 and 2 s) yielded 

essentially the same results. A reference gaze heatmap 
was built for each time bin by applying the same Gauss-
ian convolution on aggregate gaze data from all par-
ticipants in a group (TD for the TD reference heatmap; 
ASD for the ASD reference heatmap; see Fig. 1D). The 
reference gaze heatmaps thus reflected the visual sali-
ence of the videos for that participant group (both TD 
reference and ASD reference heatmaps were highly cor-
related; see Results). To estimate how an individual’s 
gaze aligned with a reference visual salience at each 
time bin, we calculated the correlation between the 
individual’s gaze heatmap and the reference heatmap 
for each time bin. To calculate correlation coefficients 
between heatmaps, each 2-D heatmap was first con-
verted to a single vector of values, and then the Pearson 
correlation between these two vectors was calculated. 
One autistic and one control participant exhibiting 
mean gaze heatmap correlation values exceeding 4 SD 
from the mean of all other participants were excluded 
from analyses to produce a more normal distribution 
for the estimation of effect sizes in group differences 
(but results remain essentially unchanged with their 
inclusion).

Estimation of effect sizes in group differences
Cohen’s d was used to provide a standardized measure of 
the effect size for the difference between the mean val-
ues of ASD and TD groups for their gaze time to vari-
ous features of videos. We preferred Cohen’s d to provide 
a practical estimate for the magnitude of an effect of 
interest (i.e., difference between groups) rather than just 
reporting the results of statistical tests that measure the 
significance of a difference between group means [54, 
55]. A bootstrap procedure was used to robustly esti-
mate Cohen’s d and its confidence interval. Individual 
participant’s gaze time percentages or heatmap correla-
tion values were randomly sampled 10,000 times with 
replacement separately for each group, and Cohen’s d 
between groups was computed at each iteration. The 
mean Cohen’s d for each gaze feature was obtained by 
averaging the d values across bootstrap iterations. The 
confidence interval of Cohen’s d was taken as 2.5th and 
97.5th percentiles of the bootstrap distribution.

To examine the effect of reducing the number of data 
samples on estimated group differences, we combined 
this bootstrap resampling of participants with a ran-
dom sampling of different duration epochs from videos. 
In this procedure, we first combined gaze data from the 
two video episodes into a single 43-min dataset. Then (i) 
an epoch of a specific duration (e.g., 10  min., contigu-
ous) was selected randomly from the combined 43-min 
data; (ii) 48 autistic and 105 control participants were 
sampled with replacement (i.e., bootstrap resampling); 

Fig. 3  Classification and clustering of participants based on the 
similarity of gaze patterns. A Correctly classified and misclassified 
participants across cross-validation iterations of a Gaussian Naive 
Bayes classifier. Color bar encodes the frequency at which an 
individual participant was classified correctly. Participants denoted 
by square (diamond) markers were correctly classified (misclassified) 
more than 75% of the time across iterations. Participants shown 
with pentagon markers were classified with a frequency lower than 
75% (i.e., confused as autistic or TD control in different iterations). 
Red-yellow (dark-light blue) spectrum colors depict autistic (TD 
control) participants. The four-dimensional gaze features space 
used to build the classifier was projected onto a two-dimensional 
t-SNE space here for visualization purposes only. B Unsupervised 
clustering of participants into subgroups using a Gaussian mixture 
model procedure. The clustering procedure automatically identified 
two groups of participants (indicated as Cluster 1 and 2). Color 
bar encodes the frequency at which an individual participant was 
assigned to Cluster 1. Participants denoted by right- (up-) pointing 
triangle markers were assigned to Cluster 1 (Cluster 2) more than 
75% of the time across iterations. Participants shown with hexagon 
markers were assigned with a frequency lower than 75% (i.e., 
confused as Cluster 1 or 2 in different iterations)
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(iii) Cohen’s d was computed for each considered gaze 
feature (e.g., gaze time to faces) based on gaze data for 
this selected video epoch and these sampled participants. 
These steps (i–iii) were repeated 10,000 times to obtain 
a distribution of Cohen’s d for each considered gaze fea-
ture. Finally, (iv) mean Cohen’s d for each gaze feature 
was obtained by averaging the d values across 10,000 
iterations. The steps (i–iv) were repeated separately for 
different epoch durations examined (e.g., 10 min, 5 min, 
2 min, etc.; see Additional file 1: Table S1).

Estimation of effect sizes in within‑individual reliability
Spearman’s correlation in individuals’ gaze time to vari-
ous AOIs between two video episodes was used to meas-
ure the within-individual reliability in gaze patterns. To 
obtain a statistically more reliable estimate of the corre-
lation and to examine the effect of data size on the esti-
mated values, we used a random sampling of different 
duration epochs from videos. In this procedure, we first 
combined gaze data from the two video episodes into 
a single 43-min dataset. Then (i) two non-overlapping 
epochs, each with the same specific duration (e.g., 10 
contiguous minutes), were selected randomly from the 
combined 43-min data; (ii) Spearman’s correlation was 
computed for each considered gaze feature (e.g., gaze 
time to faces) based on gaze data from these two epochs. 
The steps (i–ii) were repeated 10,000 times to obtain a 
distribution of Spearman’s correlation for each consid-
ered gaze feature. Finally, (iii) the mean correlation for 
each gaze feature was obtained by averaging the correla-
tion values across 10,000 iterations. The steps (i–iii) were 
repeated separately for different epoch durations exam-
ined (see Additional file 1: Table S2).

Partial correlation analysis
We performed a partial correlation analysis to examine 
whether the reliability measured in the percentage of 
gaze time to faces or eyes, or the heatmap correlations 
with TD reference heatmaps can be explained solely by 
individual differences between participants in their per-
centage of on-screen gaze time. This analysis procedure 
measures the correlation between two variables x (i.e., 
the percentage of gaze time to faces in Episode A) and y 
(i.e., the percentage of gaze time to faces in Episode B) 
while partialing out the effect of a third variable z (i.e., the 
percentage of on-screen gaze time in Episode A) on x and 
of a fourth variable w (i.e., the percentage of on-screen 
gaze time in Episode B) on y. To implement this analy-
sis with the Spearman correlation, first the values of each 
variable were transformed to their rank scores. Second, 
to partial out the effect of z from x, a simple linear regres-
sion of x on z was computed, and the residuals were 
obtained. The residuals provided the variance in x that 

could not be explained by z. Third, the same procedure 
was applied to obtain the residuals from the regression 
of y on w. Finally, the Pearson correlation coefficient (not 
the Spearman correlation, as the data were already rank-
transformed) between the two residuals was computed.

Gaze fingerprinting
To estimate whether an individual’s patterns of gaze to 
visual features were reliable and individually distinctive 
across different epochs of videos, we used a gaze finger-
printing approach [28, 56]. In this approach, each indi-
vidual’s gaze data within a time bin was represented as 
an eight-dimensional gaze vector (the percentage of time 
spent looking at screen, faces, non-social content, non-
head body parts, hands, eyes, mouth, and heatmap corre-
lations with TD reference heatmaps). In the identification 
procedure, given a gaze vector of a participant in a time 
bin, we calculated the pairwise L2 distances between 
this gaze vector and all gaze vectors from all participants 
(including themselves) from another time bin. Participant 
identity was then predicted based on the minimum pair-
wise distance. This procedure was repeated for each indi-
vidual and the successful identifications were counted. 
Prior to computing distances, each feature channel in 
the gaze vectors was standardized to zero mean and unit 
variance across participants within each time bin to con-
trol for range and variance differences between features. 
The statistical significance of identification accuracy was 
computed by a permutation test with 10,000 iterations. 
At each iteration of the permutation, identities were shuf-
fled across gaze vectors, and then the fraction of success-
ful identifications was computed. The obtained empirical 
null distribution of identification accuracy was used to 
assess the p value of the actual measured identification 
accuracy.

The initial analysis of gaze fingerprinting was per-
formed across the two video episodes. To provide a sta-
tistically more reliable estimate of the identification 
accuracy, we used a random sampling of different dura-
tion epochs from videos and a bootstrap resampling of 
participants. In this procedure, we first combined gaze 
data from the two video episodes into a single 43-min 
dataset. Then (i) two non-overlapping epochs, each with 
the same specific duration (e.g., 10  min., contiguous), 
were selected randomly from the combined 43-min data; 
(ii) 48 autistic and 105 control participants were sampled 
with replacement; (iii) the identification accuracy was 
computed based on gaze data from these two epochs. 
The steps (i–iii) were repeated 10,000 times to obtain a 
distribution of identification accuracy. Finally, (iv) the 
mean accuracy was obtained by averaging the accuracy 
values across 10,000 iterations. The steps (i–iv) were also 
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repeated separately for different epoch durations exam-
ined (see Additional file 1: Table S6).

Gaussian mixture model
For an unsupervised partitioning of participants into 
subgroups, we trained a variational Bayesian Gaussian 
mixture model [57]. This approach allowed us to learn 
the number of subgroups (i.e., clusters) from data auto-
matically. To obtain multiple estimates of the number 
of clusters over different epochs of videos, we first com-
bined gaze data from the two video episodes into a single 
43-min dataset. Using a moving window of 10-min length 
with a step size of 1 min, the gaze data were sampled 33 
times. At each epoch, each participant was represented 
by a four-dimensional vector, where the dimensions are 
the percentage of total gaze time on-screen, faces, eyes, 
and average heatmap correlation with TD reference gaze 
heatmaps as used in previous analyses. These partici-
pant-wise four-dimensional vectors were concatenated 
across participants to obtain a two-dimensional matrix 
with dimensions (number of participants × 4) for each 
epoch. A Bayesian Gaussian mixture model was fit to 
this matrix to reveal underlying clusters based on gaze 
similarities between participants. The model was initial-
ized to identify five clusters (tests with initialization of 
10 or 20 clusters yielded the same results) but returned 
predominantly two large clusters (each containing more 
than 30 participants) and three small clusters (each con-
taining one, two, or three participants only). Individuals 
in these three small clusters were then assigned to one 
of the large clusters based on the minimum Euclidean 
distance between an individual’s four-dimensional gaze 
vector and the mean gaze vector representing the cluster 
center. To perform this analysis, we used the implemen-
tation of variational Bayesian Gaussian mixture models 
in the Python machine learning library scikit-learn [58].

Summary of methods
We analyzed eye tracking data from a sample of autistic 
adults and TD controls matched on age-, sex- and full-
scale IQ (Table 1). To best distinguish our three hypoth-
eses, we aimed to assess each participant’s reliability in 
gaze most precisely. For this reason, we incorporated the 
following features into our study. First, we selected adult 
participants with intellectual functioning in the normal 
range, reducing variation related to general inattention, 
difficulty following instructions, or difficulty understand-
ing the video stimuli. Second, we used a rich and highly 
social television sitcom (“The Office”; NBC Universal) 
as these are the stimuli that we have found successful 
in probing atypical cognition in our prior neuroimag-
ing work on ASD [43, 59]. Third, we used two different 

video episodes to test within-individual reliability across 
stimuli.

Results
Visual engagement to social features
We first quantified gaze differences between ASD and 
TD control groups by calculating the percentage of time 
spent looking at several predefined visual features in the 
videos, such as faces, hands, and face parts (see Auto-
matic segmentation of frames to areas of interest in 
Methods). As expected, compared to the TD group, the 
ASD group looked less at faces (percentage of face look-
ing time = 77.4% ± 5.8% in Episode A and 70.8% ± 5.6% 
in Episode B for the ASD group, 80.7% ± 3.8% in Epi-
sode A and 73.9% ± 4.2% in Episode B for the TD 
group, mean ± standard deviation across participants; 
Fig.  1A and 1B) and less at eyes within faces (percent-
age of eyes looking time = 52.0% ± 13.0% in Episode 
A and 47.0% ± 14.2% in Episode B for the ASD group, 
60.2% ± 13.3% in Episode A and 54.9% ± 12.3% in Episode 
B for the TD group; Cohen’s d = 0.618 in Episode A and 
d = 0.604 in Episode B for faces, p < 0.001, bootstrap test; 
Fig. 1C), but looked more at other body parts and at non-
social content (inanimate objects and/or background).

This AOI-based analysis was complemented by an 
alternative analysis using gaze heatmaps. The Pearson 
correlation was used to compare each participant’s gaze 
heatmap to a TD reference heatmap, both were con-
structed using gaze data from 1-s epochs of videos (a 
leave-one-participant-out approach was used to prevent 
bias for TD individuals, see Gaze heatmaps in Methods). 
The reference heatmap reflected the visual salience of the 
videos in respective time bins. We found that the correla-
tion was significantly higher in the TD group than in the 
ASD group (Pearson’s r = 0.61 ± 0.08 in Episode A and 
0.59 ± 0.08 in Episode B for the ASD group, 0.67 ± 0.08 in 
Episode A and 64.8 ± 0.09 in Episode B for the TD group, 
mean ± standard deviation across participants; Cohen’s 
d = 0.820 in Episode A, d = 0.692 in Episode B, p < 0.001, 
bootstrap test; Fig. 1D).

As a complementary analysis, we constructed refer-
ence heatmaps from all ASD groups (using a leave-one-
out approach for autistic individuals). We found that the 
reference heatmap based on the ASD group was highly 
correlated with the reference heatmap based on the TD 
controls (Pearson’s r between heatmaps = 0.966 ± 0.023 
in Episode A; 0.963 ± 0.026 in Episode B, mean ± stand-
ard deviation across 1-s time bins within each episode). 
This result suggests that the shared preferential atten-
tion to stimuli between the autistic individuals was highly 
correlated with that between the TD individuals—even 
though the prior results showed that they were individ-
ually atypical. In addition, the TD group was still more 
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strongly correlated with this new reference heatmap than 
the ASD group (Pearson’s r = 0.60 ± 0.07 in Episode A and 
0.58 ± 0.07 in Episode B for the ASD group, 0.66 ± 0.07 in 
Episode A and 63.4 ± 0.08 in Episode B for the TD group, 
mean ± standard deviation across participants; Cohen’s 
d = 0.787 in Episode A, d = 0.642 in Episode B, p < 0.001, 
bootstrap test; Fig.  1D), corroborating the above result 
obtained using TD reference heatmaps. The latter result 
indicates a lack of common gaze pattern among autistic 
individuals—otherwise the ASD group would have been 
more strongly correlated with the ASD reference heat-
map than the TD group was. These findings thus already 
provide initial evidence against hypothesis 3 that atypical 
gaze patterns are homogeneous among autistic individu-
als (we provide stronger evidence below).

The exact proportion of time spent looking at any fea-
ture would be idiosyncratic for any video, depending on 
exactly what it depicts. We note that overall time spent 
looking at faces was significantly higher in Episode A 
than Episode B within each group (Cohen’s d = 1.149 in 
the ASD group and d = 1.696 in the TD group, p < 0.001, 
bootstrap test, Fig. 1A). However, the differences between 
ASD and TD groups in their gaze time to various fea-
tures of videos remained similar across the two episodes 
(Fig.  1C). A statistically more robust analysis based on 
the sampling of different duration epochs from videos 
and bootstrap resampling of individual participants was 
used to examine the effect of reducing data size and dif-
ferent epochs on assessed group differences. We found 
that the significant group differences can be observed 
with epochs sampled from the video that are as short as 
2 min (Additional file 1: Table S1).

Within‑individual reliability
We next examined whether the discriminating differ-
ences between the groups (Fig.  1C, D) were driven by 
noisier (less reliable) gaze patterns in the ASD group (i.e., 
hypothesis 1). We reasoned that if autistic people have 
less reliable gaze patterns, then the rank order among 
autistic individuals in their gaze time to various AOIs 
(such as faces in the video) as well as rank order of heat-
map correlations with TD reference heatmaps should 
reflect this variability when comparing within-individual 
data between two sessions (two distinct videos, Episode 
A and B). An initial test comparing rank-order correla-
tions (Spearman’s ρ) between two different video epi-
sodes showed that this prediction was incorrect: those 
participants who look least at specific features (e.g., faces) 
in one video, also do so reliably in a second video (Fig. 2).

A statistically more robust analysis based on the sam-
pling of 10-min epochs from combined data of two epi-
sodes (see Methods) confirmed equivalent and high 
within-individual reliability in the ASD and TD groups 

(all correlations significantly different from zero; Spear-
man’s ρ > 0.635, p < 0.001, bootstrap test, FDR corrected, 
Fig. 2C, F, I, and L). Furthermore, the reliability estimates 
did not differ between the groups (p > 0.333 for gaze 
time to on-screen, faces, eyes, and heatmap correlation; 
bootstrap test, FDR corrected). In an additional analysis, 
we examined the reliability values using different dura-
tion video epochs in a range of 10  min–0  s (Additional 
file  1: Table  S2). We found that although the estimated 
reliability values decreased with decreasing epoch dura-
tion, as would be expected, there was no significant dif-
ference between the values assessed for ASD and TD 
groups in any of the epoch durations examined (p > 0.333, 
bootstrap test; Additional file 1: Table S2). These results 
indicate that the gaze patterns of autistic individuals are 
as reliable as those of TD controls, providing evidence 
against hypothesis 1.

A potential concern about Fig.  2 is that participants’ 
on-screen gaze time (panels A-C) could reflect their 
attention to the task, or the level of visual engagement, 
and thus large individual differences in this measure 
might drive high within-individual reliability values esti-
mated for other measures (panels D–L). To examine this 
issue, we compared the rank-order correlations provided 
in Fig.  2 with the residual correlations computed after 
partialing out the effect of on-screen gaze time from gaze 
time to faces or eyes, or heatmap correlations (Additional 
file  1: Table  S3). This control analysis confirmed that 
the correlation values shown in Fig. 2 remain essentially 
unchanged after controlling for individual differences in 
on-screen gaze time.

Next, we examined whether there is a systematic rela-
tion between autism symptom severity and measured 
gaze patterns in the ASD group. To do this, we calculated 
Spearman’s rank-order correlations between four gaze 
features (percentage of on-screen, face- and eye-looking 
time, and heatmap correlations with TD reference heat-
map) and a severity measure (calibrated severity scores, 
CSS-Overall, which were generated from the Hus and 
Lord [48] algorithm). We found that there was no sig-
nificant correlation between any of these gaze features 
and the examined severity measure (Additional file  1: 
Table S4).

Finally, to ensure that familiarity with the stimuli did 
not influence our results, we used questionnaire data that 
were collected to measure each participant’s prior famili-
arity with each of the two episodes (ratings in a range 
from 1 to 9; with 1 meaning “not at all” and 9 meaning 
“very much”). Splitting participants into those who were 
familiar (ratings > 5) or unfamiliar (rating < 5) verified 
that there were no significant differences in any of our 
reported results between familiar and unfamiliar groups, 
either when confined to the ASD group or to the TD 
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group (two-tailed, unpaired t test, |t|< 1.85 and p > 0.07; 
see Additional file 1: Table S5).

Gaze fingerprinting
To corroborate these findings, we asked whether indi-
viduals can be uniquely and reliably distinguished from 
other participants based on their patterns of gaze alone. 
For this analysis, we used a multivariate “gaze finger-
printing” procedure [28, 56], which complemented the 
univariate approach used above in investigating within-
individual reliability. We examined the identification of 
individuals based on the similarity between their gaze 
patterns across two episodes, quantified using the dis-
tribution over eight gaze features: the percentage of time 
spent looking at the screen, faces, non-social content, 
non-head body parts, hands, eyes, mouth, and heatmap 
correlations with TD reference heatmaps. This analysis 
provided a fingerprinting identification accuracy of 35.4% 
(17/48) and 29.5% (31/105) for the ASD and TD groups, 
respectively, both significantly above chance (p < 0.001, 
permutation test; the chance level was 6.2% (3/48) and 
2.9% (3/105) from the 95th percentile of an empirical null 
distribution). A statistically more robust analysis based 
on the sampling of 10-min epochs from two episodes’ 
combined data and bootstrap resampling of individual 
participants (see Methods) provided similar accuracies 
(34.4% for ASD and 35.6% for TD group; p < 0.001, per-
mutation test, FDR corrected). Furthermore, the groups 
did not differ in identification accuracy (mean[ASD-
TD] = 1.2%, p = 0.982, bootstrap test).

To test how fingerprinting identification accuracy 
scales with duration of the video, we gradually reduced 
the sampling epoch and found that the identification 
accuracy for each group remained significantly higher 
than chance for 2-min epochs (20.4%, p = 0.013 for ASD 
and 18.9%, p < 0.001 for TD group), but dropped to close 
to chance level for 1-min epochs (15.5%, p = 0.042 for 
ASD and 14.0%, p = 0.029 for TD group, see Additional 
file 1: Table S6). Next, we examined whether a subset of 
the eight gaze features might carry sufficient informa-
tion for fingerprinting as effectively as the full set. We 
removed gaze time to non-social content, non-head 
body parts, and hand areas from the feature set because 
they are highly correlated with gaze time to face areas. 
We also removed gaze time to mouth areas because of 
its high correlation with that to eye areas. Gaze finger-
printing analysis based on the four remaining features 
(percentage of on-screen, face- and eye-looking time, and 
heatmap correlations) yielded nearly the same identifica-
tion accuracy as the full set of features (32.6%, p < 0.001 
for ASD and 35.2%, p < 0.001 for TD group for 10-min 
epochs; 20.6%, p = 0.011 for ASD and 21.0%, p < 0.001 
for TD group for 2-min epochs). Furthermore, none of 

these additional analyses revealed any significant differ-
ence between the identification accuracy estimated for 
ASD and TD groups (p > 0.896, bootstrap test), consistent 
with our initial rank-order correlation analyses. Taken 
together, these findings demonstrate substantial within-
individual reliability in gaze that is equivalent in ASD and 
TD groups, and that is distributed across multiple visual 
features.

Within‑group heterogeneity
The results shown in Figs. 1 and 2 confirm atypical gaze 
patterns in autistic individuals and substantial within-
individual reliability despite considerable between-indi-
vidual variability: some individuals always gaze at faces, 
while some rarely do, yet reliably so. Supporting our 
hypothesis 2 that atypical gaze patterns are individually 
reliable but heterogeneous across autistic individuals, 
this pattern of results provides initial evidence against 
hypothesis 3 that atypical gaze patterns are individually 
reliable and also homogeneous among autistic individu-
als. Furthermore, the fact that autistic individuals are less 
correlated with the ASD group reference heatmap than 
individual controls (Fig.  1D) already suggested that the 
ASD group must be heterogeneous in their gaze patterns. 
To compare in further detail whether individually reliable 
gaze patterns are heterogeneous (hypothesis 2) or homo-
geneous (hypothesis 3) across the ASD group compared 
to the control group, we performed two complementary 
analyses.

In the first analysis, we examined the supervised 
dichotomous classification of ASD versus TD based 
on their gaze patterns. We reasoned that if atypical 
gaze patterns are homogeneous across the ASD group, 
then the classification of individuals as ASD versus TD 
should be accurate and reliable. We used the Gaussian 
Naive Bayes algorithm to build a classifier of ASD ver-
sus TD groups. To robustly estimate classification accu-
racy, we sampled a 10-min epoch from the combined 
data of two episodes, randomly held-out 16 autistic and 
35 control individuals (one-third of participants in each 
group), and trained a classifier on the remaining par-
ticipants’ data using four gaze features: the percentage 
of on-screen, face- and eye-looking time, and average 
heatmap correlations with TD reference heatmaps. As 
the fingerprinting procedure above indicated, indi-
viduals can be reliably identified from their gaze fea-
tures based on 10-min gaze data using these four gaze 
features. We then assessed the classification accuracy 
based on data from held-out participants. This cross-
validation (CV) procedure consisting of a random 
sampling of an epoch and model estimation steps was 
repeated 10,000 times. We found that the mean classifi-
cation accuracy was only slightly greater than would be 
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expected by chance (0.618 ± 0.058; mean ± SD across 
CV iterations; p = 0.039, bootstrap test, the chance 
level was 0.607 from the 95th percentile of an empiri-
cal null distribution). To provide insight into the classi-
fication accuracy, we examined the frequency of correct 
classification and misclassification of individual partici-
pants across 10,000 CV iterations of the classifier. We 
found that 95 participants, 15 autistic, were correctly 
classified more than 75% of the time across CV itera-
tions. However, 32 participants, 22 autistic, were mis-
classified more than 75% of the iterations (see Fig. 3A). 
This low classification performance confirms that the 
ASD group has a heterogeneous gaze pattern, which 
precludes diagnostically robust classification.

In the second analysis, we examined the unsupervised 
assignment of individuals into subgroups based on their 
gaze patterns. We reasoned that if atypical gaze patterns 
are homogeneous (hypothesis 3) across the ASD group, 
then discovered subgroups should reliably split autistic 
individuals from TD controls. We used a Gaussian mix-
ture model to automatically assign participants into sub-
groups based on the same four gaze features used in the 
classification analysis. Using a moving window of 10-min 
epochs across two episodes’ combined data with a step 
size of 1 min, the number of subgroups was learned from 
data for 33 separate iterations. This procedure discovered 
predominantly two subgroups across the iterations (two 
subgroups 25 times; three subgroups eight times, but 
with the size of one participant six times, two once, and 
three once). After combining these small subgroups with 
the larger two subgroups based on their gaze similarity 
with the average gaze pattern of larger groups (see Meth-
ods), the procedure identified one larger group (Cluster 
1; n = 103.72 ± 8.71 members, mean ± SD across 33 itera-
tions; 25.48 ± 3.24 autistic) and one smaller group (Clus-
ter 2; n = 49.27 ± 8.71 members; 22.52 ± 3.24 autistic). 
Eighty-eight participants, 20 autistic, were assigned to 
Cluster 1 for more than 75% of the time across iterations; 
and 34 participants, 17 autistic, were assigned to Cluster 
2 more than 75% of the iterations (Fig. 3B). These num-
bers suggest that Cluster 1 captured largely TD controls 
whereas Cluster 2 captured those autistic and TD indi-
viduals who deviated from the majority of TD controls. 
Thus, the clustering result corroborated the prior clas-
sification result that the autistic individuals cannot be 
regarded as a homogeneous group, but rather consisted 
of at least two separate subgroups, some of them reliably 
similar to TD controls, and others reliably dissimilar.

Taken together, the classification and clustering results 
indicate that gaze patterns of autistic people are strongly 
heterogeneous across individuals and could not be con-
sidered as a homogeneous group distinct from TD con-
trols, rejecting hypothesis 3 in favor of hypothesis 2.

Discussion
Collecting eye tracking data across two 20-min sitcom 
episodes allowed us to quantify in detail how people look 
at social and non-social features in videos. There were 
large individual differences, both in ASD group and in 
TD controls, in how people looked at the various features 
in these video stimuli. However, across the two videos 
(as well as randomly subsampled epochs from them), 
each individual participant’s gaze pattern was remarkably 
consistent. Those participants who spent the most time 
gazing at faces in Episode A of the videos also spent the 
most time gazing at faces in Episode B, for instance. AOI-
based analyses were corroborated by data-driven heat-
map analyses. We found that within-individual reliability 
in how participants looked at video stimuli was remark-
ably high, even though there were large individual differ-
ences across individuals.

Given that both autistic and control participants were 
individually reliable in their gaze patterns to videos, we 
next asked whether this reliability could be used to iden-
tify individuals across different epochs of videos at a level 
that is better than would be expected by chance. Using a 
fingerprinting analysis, which is sensitive to both within-
individual reliability and between-individual distinctive-
ness, we indeed found this to be the case. These findings 
thus eliminate our hypothesis 1 that gaze patterns of 
autistic individuals are less reliable or noisier than those 
of controls, but still leave open hypothesis 2 that atypi-
cal gaze patterns are individually reliable but heterogene-
ous across ASD participants or hypothesis 3 that atypical 
gaze patterns are individually reliable and also homoge-
neous among autistic people. The large between-individ-
ual differences seen in both participant groups already 
suggest that hypothesis 3 is unlikely to be the case. How-
ever, we tested this further with classification methods.

We next used both supervised and unsupervised clas-
sification methods to ask whether the participant group 
(ASD or TD) could be reliably identified from an indi-
vidual’s gaze pattern. We found this not to be the case: 
both classification approaches had poor accuracy and 
resulted in many misclassifications. There was also initial 
evidence suggesting the possible presence of further sub-
types of participants as defined by their gaze patterns, a 
suggestion that will require larger sample sizes to prop-
erly assess (see Limitations). Taken together, the findings 
provide strong support for our hypothesis 2: gaze to nat-
uralistic videos is heterogeneous across autistic partici-
pants (large between-individual variability), and this is as 
reliable from one video to the next as in controls (small 
within-individual variability).

Are autistic individuals all distinct in their own way, 
or is there evidence suggesting subgroups? The answer 
may be: both. Our clustering analysis points to at least 
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two possible subgroups of ASD in the present data: those 
with gaze similar to TD controls, and a subgroup with 
heterogeneous but individually reliable atypical gaze. 
This pattern is reminiscent of neuroimaging results we 
[43] and others [45] have documented previously, and 
leaves open the discovery of homogeneous ASD subtypes 
if larger sample sizes can be analyzed in future studies. 
The systematic differences in how autistic participants 
look at visual stimuli compared to TD controls would 
be expected to translate to differences also in evoked 
BOLD-fMRI activations [24] and may be an endopheno-
type reflecting substantial genetic effects [27, 28]. While 
genetics, gaze, and neuroimaging data will all need to be 
put together for a comprehensive mechanistic explana-
tion of ASD, eye tracking will continue to have strong 
practical advantages, given current technological devel-
opments affording collection at home from laptop-based 
[60] or smartphone-based cameras [61]. Such in-home 
collection could be used in order to achieve the larger 
sample sizes required to further test both for long-term 
longitudinal stability within individuals, as well as to 
explore possible subtypes among them.

The practical advantage of eye tracking data is further 
borne out by our finding that surprisingly short epochs 
of the video (2 min) and re-testing after a relatively short 
time (an hour or so from Episode A to Episode B) were 
sufficient to produce the patterns we report. The robust-
ness of our findings to these relatively short time win-
dows also suggests that long-timescale semantic features 
of the videos (the overall arc of the story, for instance) 
were not features driving the results. With respect to 
specific features, we found a rather distributed effect 
over heatmaps and facial features, with no single feature 
driving the effect. However, it is worth noting that our 
features were correlated with various degrees and that 
the videos we used always had social features (people) 
present. Future studies with more specifically designed 
visual features could help to further constrain those fea-
tures that are the most informative and could in principle 
be used to derive video stimuli with even higher within-
individual reliability and between-individual differences. 
Possibly such stimuli could also improve the classifica-
tion analyses in distinguishing autistic individuals from 
controls.

While posing some challenges of their own, naturalistic 
stimuli such as movies have rapidly become the stimulus 
of choice for many studies in social neuroscience [62] and 
for good reason: compared to the much more impover-
ished and artificial stimuli typically employed in earlier 
studies (such as cropped photographs of grayscale faces), 
movies have the benefit of high participant engage-
ment, and reducing confounds to data quality including 
sleepiness and motion artifacts [63]. In brain imaging 

studies, they have also been used to advantage in studies 
of autism, leveraging one broad data-driven class of anal-
yses: inter-subject brain correlations that demonstrate 
the power of this stimulus to drive shared brain process-
ing in relation to which individual differences can be 
sensitively detected [43, 45, 64–67]. Ever since early stud-
ies that found atypical eye tracking to movies in autistic 
people [29], a number of studies have found this type of 
stimulus to be a particularly efficient and sensitive tool. 
Moreover, there are now highly annotated shared video 
stimuli available that have been used in several brain 
imaging and eye tracking studies (e.g., StudyForrest [68]). 
Eye movements to engaging stimuli are also easily obtain-
able across the lifespan, from infancy through adulthood, 
and are ideally suited to inform basic mechanisms of dys-
function in autism while also identifying quantitatively 
defined subtypes and markers.

Limitations
There are three main limitations to our study. First, our 
results are based on a relatively small sample that is not 
representative of ASD in general. While the broad con-
clusions about temporal stability of gaze patterns in ASD 
appear robust across our sample, the power to lever-
age this individual-level stability to better understand 
between-individual variability, let alone to discover possi-
ble ASD subtypes, is clearly limited. However, this limita-
tion could be easily addressed in future studies, since eye 
tracking is in principle possible over the Internet (e.g., 
WebGazer [69]) and even through mobile phones [61], 
enabling much larger sample sizes. Furthermore, our 
sample consisted of adults with IQ in the normal range, 
and it remains unclear if our findings would generalize 
to children and individuals with lower IQ. Relatedly, we 
include common comorbidity, such as mild–moderate 
depression, anxiety, and ADHD in our sample, leaving 
open questions about the extent to which these may have 
contributed to our findings.

A second methodological limitation concerns not 
the number of participants, but the number of distinct 
blocks of temporal samples. We collected only two, both 
close in time and for similar (but distinct) video epi-
sodes. It is important to note that the precision of our 
within-individual participant data is of course limited by 
measurement error. However, it could also be limited by 
relevant state-dependent changes within an individual. 
It would be important to collect longer-term longitudi-
nal data, and data across a larger diversity of stimuli to 
better address this issue. A particularly valuable direc-
tion would be to collect longitudinal eye tracking data 
that incorporate dense state-dependent measures, such 
as sleepiness and mood across data collection sessions. 
Such a much more comprehensive inventory could give 
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us a window into how variable visual attention is across 
weeks or even years, across development and the lifes-
pan in general, and in relation to changes in emotion and 
other states that may be associated with autism symptom 
severity. It could also be used to assess the efficacy of 
interventions, and even provide some insight into what 
processes the intervention is changing (e.g., gaze to faces 
but not to other features might change throughout train-
ing). These future directions could also be implemented 
through Internet-based data collection as we mentioned 
above. The fact that individual samples could be as short 
as 2-min, given our results, makes this potentially fea-
sible even in individuals with more severe autism, or in 
infants.

A final limitation concerns the interpretation of our 
findings. We have interpreted them as evidence for the 
hypothesis that autistic participants show good test–
retest reliability—low variability—within an individual. 
The reliability we found in autistic participants was 
comparable to what we found in control participants. 
However, we only measured eye movements. It remains 
possible that other dependent measures—performance 
tasks or questionnaires based on interpreting the videos, 
or neuroimaging—would have revealed higher variability 
in ASD. One version of this limitation is the possibility 
that perhaps autistic people might have atypically vari-
able cognition over time (i.e., unreliable cognition) but 
that they are able to compensate for this, at least in our 
sample of individuals with IQ in the normal range, to 
produce relatively stable gaze patterns. What makes this 
possibility less likely is the fact that eye movements are 
not under strong volitional control, and that the stimuli 
we used are highly engaging. A top-down compensatory 
mechanism thus seems implausible.

Conclusions
We asked whether autistic people show variability in their 
gaze patterns at the within-individual level (individual 
reliability) and/or the between-individual level. Using eye 
tracking across two videos, and analyzing data across two 
performance sites, we quantified within-individual and 
between-individual variability in gaze patterns in videos. 
Taken together, the classification and clustering results 
indicate that gaze patterns of autistic people are strongly 
heterogeneous across individuals and could not be con-
sidered as a homogeneous group distinct from TD con-
trols, rejecting hypothesis 3 that atypical gaze patterns 
are homogeneous among autistic individuals in favor of 
hypothesis 2 that the gaze patterns are heterogeneous 
across autistic individuals. The strong cross-video corre-
lations in gaze patterns, together with the fingerprinting 
analysis, demonstrate high individual reliability, rejecting 
hypothesis 1 that gaze patterns of autistic individuals are 

less reliable or noisier than those of controls, and instead 
also supporting hypothesis 2: atypical gaze patterns are 
heterogeneous between autistic individuals but reliable 
within an individual.
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Additional file1. Figure S1: Automatic segmentation of frames to areas 
of interest (AOIs). A Because of the copyright restrictions of the sitcom 
“The Office”, the visualization is shown by using a sample royalty free 
image (by Alena Darmel from Pexels.com). B Automatic segmentation of 
video frames to detect regions depicting human body parts, including 
head (yellow), hands (pink), and other body parts (blue). Remaining non-
shaded areas (i.e., black areas in panel D) were taken as non-social context. 
C Automatic segmentation of frames to detect regions depicting human 
faces and estimation of five facial keypoints, including two eyes, nose, 
and two sides of the mouth. These keypoints were used to define eyes 
(orange) and mouth (turquoise) areas within each frame. D Segmentation 
results from panels B and C are combined. E A sample gaze point is shown 
as a disk of diameter of 1-degree visual angle. F The gaze point was com-
bined with AOIs to determine the gaze was onto which AOI. Table S1: 
Effect size of the differences (quantified with Cohen’s d) between groups 
in their percentage of total gaze time on-screen, faces, eyes, and in their 
average heatmap correlation with TD reference gaze heatmaps. Cohen’s d 
between the groups (TD-ASD) were computed within randomly sampled 
epochs of videos (duration given in rows, see Methods) for 10,000 itera-
tions and then averaged across the iterations. Values in parentheses show 
the statistical significance of effect size (bootstrap test, FDR corrected for 
multiple comparisons within each epoch duration). This table comple-
ments Fig. 1C, D using a sampling procedure that examines the effect of 
reducing data size on estimated group differences. Asterisk denotes p < 
0.001. Table S2: Spearman’s correlation among individuals within a group 
in their gaze time to various AOIs and in their average gaze heatmap cor-
relation with TD reference heatmaps. Correlation values were computed 
between two randomly sampled epochs of videos (duration given in col-
umns) for 10,000 sampling iterations and then averaged across the itera-
tions. Values in parentheses show the statistical significance of the correla-
tion (bootstrap test, FDR corrected for multiple comparisons within each 
epoch duration). This table complements analyses provided in Fig. 2C, 
F, I, L for different duration sampling epochs. Asterisk denotes p < 0.001. 
Table S3: In the first row (“ASD - Gaze to faces”), Corr(XEpA, XEpB) reports 
Spearman’s correlation (and its statistical significance, asterisk denoting p 
< 0.001) between data from two separate videos (Episode A and B) for the 
percentage of gaze time to faces for the ASD group (as shown in Fig. 2A). 
Corr(XEpA, On-ScreenEpA) reports the correlation between on-screen and 
face gaze times in Episode A for the group. ParCorr(XEpA, XEpB) reports 
the residual (partial) correlation between gaze times to faces in Episode 
A and B after partialing out the effect of on-screen gaze time from gaze 
time to faces separately in each episode. Other rows in the table repeat 
this analysis for other gaze features and TD group. Table S4: Spearman’s 
correlation (and its statistical significance, uncorrected) between four 
gaze features (percentage of on-screen, face- and eye-looking time, and 
heatmap correlations with TD reference heatmaps) and an autism severity 
measure (calibrated severity scores, CSS-Overall, which were generated 
from the Hus and Lord algorithm; see main text) in Episode A (EpA) and 
Episode B (EpB). Table S5: Effect of familiarity with an episode on gaze 
features. A 9-point questionnaire (in a range from 1 to 9) about prior 
familiarity with each episode was used to split participants into those 
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who were familiar (ratings > 5) or unfamiliar (ratings < 5) with an episode. 
The calculated t-statistic (and its p value) for the means of familiar and 
unfamiliar participants in the ASD group, in the TD group, and across all 
participants independent of ASD diagnosis for their four gaze features 
(percentage of on-screen, face- and eye-looking time, or average heatmap 
correlations with TD reference heatmaps). T tests were two-tailed and 
unpaired, assuming equal variance. For Episode A (EpA), 17 (24) autistic 
individuals and 50 (47) TD controls were familiar (unfamiliar) with the 
episode. For Episode B (EpB), 13 (32) autistic individuals and 39 (52) TD 
controls were familiar (unfamiliar) with the episode. Table S6: The change 
in fingerprinting identification accuracy as a function of sampling epoch 
duration. The fingerprinting analysis was performed either using eight 
gaze features (the percentage of time spent looking at screen, faces, non-
social content, non-head body parts, hands, eyes, mouth, and heatmap 
correlations with TD reference heatmaps) or four features (percentage of 
on-screen, face- and eye-looking time, heatmap correlations). Accuracy 
values were computed using two randomly sampled epochs of videos 
(duration given in columns) for 10,000 times and then averaged across 
the iterations. Values in parentheses show the statistical significance of 
accuracy (bootstrap test, FDR corrected for multiple comparisons within 
each epoch duration). Asterisk denotes p < 0.001.
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