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Abstract: Compared with fractional-order chaotic systems with a large number of dimensions,
three-dimensional or integer-order chaotic systems exhibit low complexity. In this paper, two novel
four-dimensional, continuous, fractional-order, autonomous, and dissipative chaotic system models
with higher complexity are revised. Numerical simulation of the two systems was used to verify
that the two new fractional-order chaotic systems exhibit very rich dynamic behavior. Moreover, the
synchronization method for fractional-order chaotic systems is also an issue that demands attention.
In order to apply the Lyapunov stability theory, it is often necessary to design complicated functions
to achieve the synchronization of fractional-order systems. Based on the fractional Mittag–Leffler
stability theory, an adaptive, large-scale, and asymptotic synchronization control method is studied
in this paper. The proposed scheme realizes the synchronization of two different fractional-order
chaotic systems under the conditions of determined parameters and uncertain parameters. The
synchronization theory and its proof are given in this paper. Finally, the model simulation results
prove that the designed adaptive controller has good reliability, which contributes to the theoretical
research into, and practical engineering applications of, chaos.
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1. Introduction

Research on chaotic systems has not ceased over the past fifty years. Scholars have discovered a
large number of three-dimensional integer-order chaotic systems, such as the Lorenz system [1–3], the
Chen system [4], the Liu system [5], and the Rossler system [6]. Subsequently, on the basis of these
classical systems, novel variations on chaotic systems have been studied [7–10]. Due to their very rich
dynamics and complex characteristics, these nonlinear chaotic systems have been applied in many
fields, such as meteorology [11,12], mechanics [13–15], and secure communication [16–19].

Recently, much research has been done on fractional calculus theory. It has been found that if
a system is described using a fractional order, we can more effectively discover its behavior and
characteristics. The same is true for a nonlinear chaotic system with a fractional order. Many
researchers, therefore, have devoted themselves to research in this field. For example, Junguo
Lu proposed the fractional Lü system and a synchronization method for it [20]. Shaobo He and
Kehui Sun proposed a generalized fractional synchronization theory and a DSP implementation
for it [21]. Marius-F. Danca studied the chaotic characteristics of hidden attractors for generalized
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fractional-order Lorentz systems, fractional-order Rabinovich–Fabrikant systems, and nonsmooth
fractional-order Chua systems [22]. It is worth pointing out that these studies are primarily directed at
three-dimensional fractional-order chaotic systems. Fractional-order chaotic systems with a higher
number of dimensions have advantages in terms of nonlinear complexity, and there are still many
unknown features to discover. However, there is a paucity of studies that focus specifically on
multivariable chaotic systems. It is necessary to conduct further research into fractional-order systems
with a high number of dimensions.

It has been found that fractional-order chaotic systems have higher nonlinearity and a higher
spreading power spectrum compared to integral ones [23]. So, these systems have a very broad
range of potential applications in the field of secure communication and other related sciences
where chaotic synchronization is the key technology. Scholars in nonlinear control disciplines
have proposed a number of effective synchronization methods since the pioneering work of
Pecora and Carroll in 1996 [24], including drive-response synchronization [25], active–passive
synchronization [26], coupled synchronization [27], continuous variable feedback synchronization [28],
adaptive synchronization [29–33], pulse synchronization [34], projection synchronization [35], finite
time synchronization [36], sliding mode control synchronization [37], hybrid synchronization [38,39],
and other methods [40–42]. Chaotic synchronization is a kind of chaos control technology. The adaptive
synchronization method has mostly been applied to integer-order chaotic systems. For example, A
Khan and A Tyagi studied a new adaptive control method for hyperchaotic systems with unknown
parameters according to the Lyapunov stability theory [38]. Feki Moez combined the Lyapunov stability
theory with an adaptive law to realize the synchronization of an integer-order Lorenz system and
applied it to secure communication [31]. S. Vaidyanathan et al. implemented adaptive synchronization
of the same structure according to the Lyapunov theory into a conservative chaotic system with
three-dimensional hidden attractors [30]. The reason why adaptive synchronization is usually used for
integer-order chaotic systems is that it is convenient when computing the integer-order derivative for
the Lyapunov function constructed using the system error. In contrast, for a fractional-order system,
since the synchronization error function is also fractional, the fractional-order terms of the Lyapunov
function are difficult to process, which can only be solved by seeking an inequality substitution [43,44]
or by designing a sliding mode control surface [37,45–47]. A more general adaptive synchronization
methodology for fractional-order chaotic systems does not exist at present.

Motivated by the above discussion, this paper investigates two novel four-dimensional
fractional-order chaotic systems with different complexities, and establishes a universal adaptive law
based on the Mittag–Leffler [48,49] fractional stability theory. First, in order to improve the dynamic
behavior of nonlinear systems and the security of communication systems, two four-dimensional,
fractional-order, and nonlinear chaotic systems are designed. The two systems have different numbers
of equilibrium points. Their nonlinear dynamic behavior and complex dynamics are analyzed by means
of phase diagram, time domain diagram, bifurcation diagram, power spectral density, and information
entropy analysis. After that, instead of adopting the conventional method of constructing an adaptive
law by constructing a complicated function in order to use the Lyapunov stability theorem, an adaptive
controller was realized based on the fractional-order Mittag–Leffler stability theory. Irrespective of
whether or not the parameters change, the adaptive control theory is used to synchronize two chaotic
systems, which greatly enriches and extends the theoretical method for fractional-order synchronous
control with different structures.

The rest of this paper is organized as follows. Section 2 defines the fractional calculus and the
Mittag–Leffler lemma, gives the mathematical models of the two four-dimensional fractional-order
chaotic systems, and presents the numerical simulation of the nonlinear dynamics. The complexity
CO of the two systems is analyzed from the perspective of the number of simulation points N and
the system parameter values in Section 3. In Section 4, an adaptive law for the synchronization of
fractional-order systems is proposed for the cases of determined parameters and uncertain parameters.
Section 5 summarizes the conclusions.
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2. Fractional-Order Chaotic System Description and Chaotic Behavior Analysis

2.1. The Fractional Calculus and the Mittag–Leffler Stability Theorem

There are several ways to define the fractional calculus, including the Riemann–Liouville (R-L)
definition [50,51], the Caputo definition [52], and the Grünwald–Letnikov (G-L) definition [53]. Among
them, the R-L definition and the Caputo definition are the most commonly used. Compared to the
other two definitions, the Caputo definition is more widely used in the engineering field. It is suitable
for the description of an initial value problem in fractional differential equations. Therefore, we choose
the Caputo definition.

Definition 1. The Caputo fractional differential is defined as

C
a Dq

t f (t) =
1

Γ(n− q)
×

∫ t

a

f (n)(τ)

(t− τ)q−n+1 dτ (1)

where C indicates that this definition is the Caputo fractional-order definition, q is the order of the differential
calculus, n is the smallest integer greater than q, and t and a are the upper and lower limits of the definite
integral, respectively. Γ(·) is the Gamma function.

Lemma 1. Properties of the Caputo Derivative Operator [54]
If x(t) ∈ R is a continuous differentiable function, then, for any t ≥ b, the following relation holds:

1
2

C
b Dα

t x2(t) ≤ x(t)C
b Dα

t x(t), ∀α ∈ (0, 1) (2)

Definition 2. Consider the Caputo fractional nonautonomous system

C
a Dq

t x(t) = f (t, x) (3)

with initial condition x(a), where 0 < q < 1, f : [a, ∞]×Ω→ Rn is piecewise continuous in t and locally
Lipschitz in x on [a, ∞]×Ω, and Ω ∈ Rn is a domain that contains the origin x = 0 . The constant x0 is an
equilibrium point of Caputo fractional dynamic system (3), if and only is f (t, x0) = 0.

Lemma 2. The Mittag–Leffler stability theorem [55]
If the equilibrium point of the nonlinear fractional dynamic system is xeq = 0, and D is the region containing

the far point, then V(t, x(t)) : [0, ∞)× D → R+ is a continuous differentiable function and satisfies{
V(t, x(t)) ≥ γ(‖x‖)
DαV(t, x(t)) ≤ 0

(4)

where γ(·) is a K class function. If x ∈ D and 0 < α < 1, then the equilibrium point xeq = 0 is globally stable.

2.2. Description of the Two Fractional-Order Chaotic Systems

In order to improve the complexity of the classical three-dimensional fractional-order Lorenz
system [56,57], two four-dimensional dissipative autonomous system models are constructed as
Equations (5) and (6). 

dqx1
dtq = 20a1x2 − 27a1x1

dqx2
dtq = 7a1x1 − x1x3 + 25a1x2

dqx3
dtq = x1x2 − 3a1x3

dqx4
dtq = 0.1a1x1x3

(5)
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dqy1
dtq = 35a2y2 − 20a2y1 + 5a2y4

dqy2
dtq = 7a2y1 − y1y3 + 15a2y2

dqy3
dtq = y1y2 − 3a2y3

dqy4
dtq = 0.1a2y1y3

(6)

where x1, x2, x3, x4, y1, y2, y3, and y4 are state variables, q is the fractional order of the two systems
(Equation (5) and Equation (6)), and a1 and a2 are parameters of the two systems. When 0 < q < 1
and a1 = a2 = 1, the equilibrium of the system (5) is O4(0, 0, 0, w∗), where w∗ is an arbitrary
real number, and the equilibrium of the system (6) is O5(0, 0, 0, 0). So, the system (5) has countless
equilibria, and the system (6) has only one equilibrium. The four eigenvalues of the Jacobian matrix
at the equilibrium O5(0, 0, 0, 0) are λ1= − 25.9787, λ2 = 20.9787, λ3 = 3, and λ4 = 0. It is clear that
equilibrium O5(0, 0, 0, 0) is an unstable saddle-focus point. If both systems are dissipative autonomous
systems, then the parameters must satisfy a1 > 0 and a2 > 0.

2.3. Analysis of the Chaotic Behavior in the Two Fractional-Order Chaotic Systems

In order to study the nonlinear dynamic behavior of the two systems, numerical simulations
were performed using the Matlab software (R2016a, MathWorks, Natick, MA, USA). The simulation
algorithm uses the predictor–corrector scheme [58] to solve fractional differential equations. The initial
values for the two systems were (1, 2, 2, 3), the parameters were chosen to be q = 0.8 and a1 = a2 = 1,
the simulation step size was set as h = 0.01, and the number of simulation points N was 4000.

The attractor projection of the new fractional-order chaotic system (5) is shown in Figure 1, which
shows that the system motion’s trajectory is randomly separated into certain areas but is never closed.
The system (5) is in a chaotic state and has a typical double-scroll chaotic attractor. At the same time,
it can be seen from the time series of x3 and its power spectral density, which was obtained by a
Fourier transform of the autocorrelation function in Figure 2, that the system’s power spectrum is a
nonperiodic continuous waveform, which is consistent with the characteristics of the random signals.
Figure 3 plots the Poincaré map of the system (5)’s dependence on the plane of x3 = 50, where the
dense point set is shown. This means that the attractor has complex folding behavior and the dynamics
of the system (5) are chaotic.
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Figure 1. The projection of the chaotic attractor for the system (5): (a) in the x1 − x2 − x3 space; (b) in
the x1 − x3 − x4 space; (c) on the x1 − x2 plane; and (d) on the x2 − x3 plane.



Entropy 2019, 21, 383 5 of 19

Entropy 2019, 21, x 5 of 20 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. The projection of the chaotic attractor for the system (5): (a) in the 1 2 3x x x− −  space; (b) 

in the 1 3 4x x x− −  space; (c) on the 1 2x x−  plane; and (d) on the 2 3x x−  plane. 

  
(a) (b) 

Figure 2. The time series of state variable 3x and its frequency spectrum for system (5): (a) the time 

series; and (b) the frequency spectrum. 

  
(a) (b) 

x 3

-25 -20 -15 -10 -5 0 5 10 15 20 25
x1

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40
x2

20

25

30

35

40

45

50

55

60

-15 -10 -5 0 5 10 15
x1

-100

-80

-60

-40

-20

0

20

40

Figure 2. The time series of state variable x3 and its frequency spectrum for system (5): (a) the time
series; and (b) the frequency spectrum.

Entropy 2019, 21, x 5 of 20 

 

  
(a) (b) 

  
(c) (d) 

Figure 1. The projection of the chaotic attractor for the system (5): (a) in the 1 2 3x x x− −  space; (b) 

in the 1 3 4x x x− −  space; (c) on the 1 2x x−  plane; and (d) on the 2 3x x−  plane. 

  
(a) (b) 

Figure 2. The time series of state variable 3x and its frequency spectrum for system (5): (a) the time 

series; and (b) the frequency spectrum. 

  
(a) (b) 

x 3

-25 -20 -15 -10 -5 0 5 10 15 20 25
x1

-40

-30

-20

-10

0

10

20

30

40

-40 -30 -20 -10 0 10 20 30 40
x2

20

25

30

35

40

45

50

55

60

-15 -10 -5 0 5 10 15
x1

-100

-80

-60

-40

-20

0

20

40

Figure 3. The Poincaré map of system (5)’s dependence on x3 = 50: (a) the x1 − x2 plane; (b) the
x1 − x4 plane.

In order to further study the nonlinear chaotic behavior of the system (5), bifurcation diagrams
and the Largest Lyapunov exponents (LLEs) of the system (5) are discussed below. Figure 4a depicts
the bifurcation diagram of the state variable x1 when making changes to the parameter a1, and the
corresponding LLE graph is shown in Figure 4b. In the a1 ∈ (0.8, 2.4) range, the LLE is positive,
and the system is in a chaotic state. When a1 ∈ (2.4, 3), the LLE is negative, and the system is in
a nonchaotic state. Additionally, the bifurcation diagram and LLE graph in Figure 5 illustrate the
dynamic behavior of the system (5). Figure 5 exhibits the change in dynamic behavior of the system (5)
for the state variable x1 in the region of q ∈ (0.67, 1). Specifically, when q ∈ (0.67, 0.78), the bifurcation
diagram shows that the system is in a nonchaotic state and has a negative LLE. When q ∈ (0.78, 0.88),
the bifurcation diagram shows that the system has transitioned from a periodic to a chaotic state and
there is a positive LLE. When q ∈ (0.88, 1), the LLE is a small positive number that is close to zero, and
the bifurcation diagram illustrates different dynamic behaviors with lower complexity in the system,
including weak chaotic and quasi-periodic limit cycle states.
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Figure 5. The bifurcation diagram and LLEs of the system (5) for x1 with a1 = 1 and q ∈ (0.67, 1):
(a) the bifurcation diagram; and (b) the LLE graph.

The attractor phase diagram of the new system (6) is presented in Figure 6. It can be seen from the
three-dimensional and two-dimensional phase diagrams of the system that the system has a chaotic
attractor with double scrolls. In addition, the time series of y3 and its power spectral density are
exhibited in Figure 7. The power spectral density is continuous and has no obvious peaks, and the
time series aperiodic, which is consistent with the properties of chaotic signals. Finally, Figure 8 shows
the Poincaré map of the system (6)’s dependence on y1 = 0. There are dense point sets on the y2 − y3

and y2 − y4 planes, showing that the system has complicated folding behavior.
For q = 0.8, the bifurcation diagram and the Largest Lyapunov exponents (LLE) of system (6)

as a function of parameter a2 are shown in Figure 9. Similarly, Figure 10 illustrates the dynamic
chaotic behavior process in terms of a bifurcation diagram and an LLE graph when a2 = 1 and as
q increases from 0.77 to 1. Figure 9 indicates that, when a2 ∈ (0, 0.8), there are negative, zero, and
small positive LLE values, and the system is in a periodic state or a weak chaotic state with low
complexity. As the value of a2 increases from 0.8, the LLE is positive, so system (6) has chaotic behavior.
Figure 10a shows that the dynamic state of system (6) can be roughly divided into three phases. More
specifically, in the range of q ∈ (0.77, 0.8), the system exhibits complex bifurcation behavior, and there
are large fluctuations in the corresponding LLE. When q ∈ (0.8, 0.91), there is a positive LLE with
small fluctuations and large values; hence, the system is in a chaotic state with high complexity. For
the range of q ∈ (0.91, 1), there is extremely complex dynamic behavior, including nonchaotic states,
chaotic states, and weak chaotic states.
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3. Entropy Analysis

As mentioned above, higher complexity implies higher security. In this section, we will further
analyze the nonlinear dynamic behavior of the above two chaotic systems (system (5) and system (6))
with respect to the complexity of the time series. It is well-known that another statistical property
of these systems is entropy, which is a measure of the dynamic chaotic behavior and has a certain
relationship with the Lyapunov exponent and the Hausdorff dimension.

Generally, the complexity of chaotic systems is divided into behavior complexity and structural
complexity. To date, several algorithms have been developed to calculate the complexity of a chaotic
system’s behavior, and they all evolved from the Kolmogorov method and Shannon's entropy [59].
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However, for chaotic systems with a high number of dimensions, the calculation results may overflow,
leading to unexpected results. Structural complexity entails an analysis of the energy characteristics
in a transformed domain, which means that the scope of analysis is holistic rather than local. Thus,
the results obtained from a structural complexity analysis have more global meaning than the results
obtained from a behavior complexity analysis [60]. For these reasons, research on structural complexity
algorithms based on the Fourier transform and the wavelet transform, such as the spectral entropy
algorithm (SE) and the small entropy algorithm, has made great progress. In addition, there is an
improved complexity algorithm, called CO, that is based on the fast Fourier transform (FFT). Due to its
fast calculation speed, CO has many important properties and has achieved good complexity analysis
results in practical applications. Moreover, since the signals in a real system are all analog, CO directly
operates on continuous data without coarse-grain processing of the original data, thereby avoiding
the changes in the dynamic property that may occur due to excessive coarse-grain processing. The
CO algorithm can better describe the degree of randomness in system variables and more accurately
describe the complexity of a chaotic system. Therefore, we adopted the CO algorithm to analyze the
complexity of the system, and compared the results with those from the Lyapunov exponent and
bifurcation analysis.

3.1. Description of the CO Complexity Algorithm

The CO complexity algorithm decomposes a sequence into regular and irregular components,
reflecting the proportion of irregular components in the sequence. The steps for calculating the
measured value are as follows.

Firstly, a discrete Fourier transformation is performed on the random sequence
{x(n), n = 0, 1, 2, 3, · · · , M− 1} for a given length by

X(k) =
M−1

∑
n=0

x(n)e−j 2πnk
M =

M−1

∑
n=0

x(n)Wnk
M (7)

where k = 0, 1, 2, · · · , M− 1.
Then, the mean square value of {X(k), k = 0, 1, 2, 3, · · · , M− 1} is calculated by

GM =
1
M

M−1

∑
k=0
|X(k)|

2

(8)

Let

X̃(k) =

{
X(k) i f |X(k)|2 > rGM
0 i f |X(k)|2 ≤ rGM

(9)

where r(r > 0) is the control parameter. The inverse of the Fourier transform of X̃(k) is performed
using Equation (10).

x̃(n) =
1
M

M−1

∑
k=0

X̃(k)ej 2π
M nk =

1
M

M−1

∑
k=0

X̃(k)W−nk
M (10)

where n = 0, 1, 2, · · · , M − 1. Finally, the CO algorithm’s complexity calculation is defined as in
Equation (11).

CO(r, M) =

M−1
∑

n=0
|x(n)− x̃(n)|2

M−1
∑

n=0
|x(n)|2

(11)

From the above process, we know that the larger the proportion of the energy in the irregular part
in the sequence, the closer the corresponding signal is to the random sequence, and the greater the
complexity. In addition, high-efficiency FFT and inverse fast Fourier transform (IFFT) techniques are
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used during processing, which makes the calculation speed of the CO algorithm very fast. In this paper,
the CO complexity was used to analyze the dynamic behavior of the system, and the parameter r = 15.

3.2. Influence of the Number of Simulation Points on Entropy

For system (5) and system (6), the prediction–correction method [58] was used to solve the
equation. For a1 = a2 = 1, a simulation step size h = 0.01, a fractional order q = 0.8, and the initial
conditions (x1, x2, x3, x4) = (y1, y2, y3, y4) = (1, 2, 2, 3), the CO complexity of the two systems with
respect to the number of simulation points N is shown in Figure 11, where the blue curve corresponds
to the CO of system (5) and the red graph corresponds to the CO of system (6). When N ∈ (1000, 11000),
Figure 11 shows that there are gentle fluctuations: the CO complexity of the two systems (5) and (6)
fluctuates slightly around the two lines of CO = 0.45 and CO = 0.38, respectively. It is worth pointing
out that as N increases the ripples become smaller, which indicates that the complexity of the system
tends to be balanced for a large N value. Figure 11 also reflects that the value of CO for system (5) is
larger than that of system (6); that is, system (5) is more complicated than system (6).
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3.3. Influence of System Parameters on Entropy

There are three variables in systems (5) and (6): a1, a2, and q. For a simulation step size h = 0.01
and N = 4000, Figure 12 presents how the three variables affect the value of CO. When fixing q = 0.8,
and varying the value of parameters a1 and a2 (where the coordinate variable a denotes a1 and a2, and
a ∈ (0.5, 1.1)), the blue curve represents the CO of a1 for system (5) and the red graph represents the
CO of a2 for system (6), as shown in Figure 12a. The two curves indicate that the value of CO rises
as a increases, and the complexity of the system (5) is greater than the complexity of the system (6),
which is consistent with the results discussed in Section 3.2. Figure 12b shows the CO complexity as a
function of q, where a1 = a2 = 1 and q ∈ (0.77, 1). As described in Section 2.3, there is chaotic behavior
in both systems when q ∈ (0.8, 0.85). The CO complexity has high values in this region as shown
in Figure 12b, which means that the CO algorithm can better reflect the degree of dynamic behavior
and the complexity in fractional-order chaotic systems. Moreover, Figure 12b also shows that the
complexity of system (5) is greater than that of system (6), which is consistent with the previous results.
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and (b) the CO complexity as a function of q.

3.4. Analysis of the Chaotic Diagram of System Entropy

In order to reflect the distribution relationship between system parameters and CO, a contour
map with different color schemes was used to show the chaotic characteristics of the proposed systems.
A simulation step size h = 0.01, simulation points N = 4000, and the prediction–correction method
were used to solve the equations. Figure 13 describes the CO in terms of the system parameters a1 and
a2 and the fractional order q. The contour map in Figure 13a shows that, in the range of q ∈ (0, 0.78),
system (5) is in a nonchaotic state. The high-complexity chaotic region is mainly concentrated in
the range of q ∈ (0.78, 0.88), which is consistent with the results of Figure 12b. As for the range of
q ∈ (0.88, 1), there are crisscross contours that represent different CO measurement values from the
system. This also means that system (5) has multiple nonlinear dynamic behaviors, which also coincide
with the bifurcation diagram and the maximum Lyapunov diagram of system (5) (shown in Figures 4
and 5, respectively). For the CO complexity of system (6), it can be seen from Figure 13b that it is in
accordance with the bifurcation diagram and the maximum Lyapunov diagram of system (6) (shown
in Figures 9 and 10, respectively). More specifically, when a2 ∈ (0, 0.21), the system is in a nonchaotic
state; when a2 ∈ (0.21, 1.7), the system complexity will increase as q decreases. Throughout the whole
of Figure 13, it can be observed graphically that when q ∈ (0.77, 0.85), the system complexity will
increase as the value of a1 and a2 increases. This is consistent with the outcomes discussed in Section 3.3.
This further confirms that the CO entropy method can be employed to measure the complexity of
fractional-order chaotic systems, and provides an alternative method for the dynamic analysis of
nonlinear systems in practical applications.
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4. Adaptive Synchronization of Fractional-Order Systems

Based on the Mittag–Leffler stability theory, an adaptive control scheme will be developed to
synchronize two dissipative autonomous systems: the drive system (5) and the response system (6).
Results from numerical simulations and details of the process for the mathematical proof are presented
to demonstrate the effectiveness of the proposed method.

4.1. Adaptive Synchronization for Determined Parameters

To analyze the synchronization, let us define the state errors between the driving system (5) and
the response system (6). Then, the error system can be represented by

e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

e4 = y4 − x4

(12)

The fractional-order error system (13) can be expressed as
dqe1
dtq = −27a1e1 + 35a2e2 + y1(27a1 − 20a2) + x2(35a2 − 20a1) + 5a2y4 + u1(t)

dqe2
dtq = 25a1e2 + 7a1e1 + 7y1(a2 − a1) + y2(15a2 − 25a1)− e1y3 − e3x1 + u2(t)

dqe3
dtq = −3a1e3 + 3y3(a1 − a2) + e1y2 + e2x1 + u3(t)

dqe4
dtq = 0.1(a2y1y3 − a1x1x3) + u4(t)

(13)

where u1(t), u2(t), u3(t), and u4(t) are error control functions, and a1 and a2 are the parameters of the
driving system and the response system, which satisfy the conditions a1 > 0 and a2 > 0.

Theorem 1. For the drive system (5) and the response system (6), if the control function of the system is selected
as follows 

u1(t) = 27âe1 − 35a2e2 − y1(27a1 − 20a2)− x2(35a2 − 20a1)− 5a2y4

u2(t) = −25âe2 − 7a1e1 − 7y1(a2 − a1)− y2(15a2 − 25a1) + e1y3 + e3x1

u3(t) = 3âe3 − 3y3(a1 − a2)− e1y2 − e2x1

u4(t) = (â− a1)e4 − 0.1(a2y1y3 − a1x1x3)

(14)

where parameter â is an estimation of parameter a1, then the adaptive law of the estimated parameter is

Dq â = −27e1
2 + 25e2

2 − 3e3
2 − e4

2 + λ(â− a1) (15)

If the parameter λ ≤ 0, then the state error system has equilibrium e = 0 and a1 = â, the error system is
globally asymptotically stable, thus, the response system is globally asymptotically synchronized with
the drive system i.e., for any initial value, lim

t→∞
‖e(t)‖ = 0.

Proof of Theorem 1. Substituting Equation (14) into Equation (13), one can obtain
dqe1
dtq = 27e1(â− a1)

dqe2
dtq = −25e2(â− a1)

dqe3
dtq = 3e3(â− a1)

dqe4
dtq = e4(â− a1)

(16)

It can be seen that the error dynamics system (16) appears to be independent of the response
system parameter a2. As long as the error system is stable, it is possible to synchronize two different
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chaotic systems with different parameters. According to Lemma 2 of the Mittag–Leffler stability theory,
we construct the Lyapunov control function (17) by taking e1, e2, e3, e4, and â− a1 as variables.

V(e, γ) =
1
2

eTe +
1
2

γ2 (17)

where e = [e1, e2, e3, e4]
T , γ = â− a1, and parameter â is an estimate of parameter a1. The adaptive law

of the estimated parameters is shown in Equation (15).
On the basis of Lemma 1, the derivative of the function (17) is

DqV ≤ e1 · Dqe1 + e2 · Dqe2 + e3 · Dqe3 + e4 · Dqe4 + (â− a1) · Dq â
= 27e1

2(â− a1)− 25e2
2(â− a1) + 3e3

2(â− a1)

+e4
2(â− a1) + [−27e1

2 + 25e2
2 − 3e3

2 − e4
2 + λ(â− a1)](â− a1)

= λ(â− a1)
2

(18)

According to the stability theory of Lemma 2, when λ ≤ 0, then DqV ≤ 0, there exists an
equilibrium e = 0 and a1 = â; and the error system (16) is globally asymptotically stable, thus, the
drive system (5) and response system (6) are globally asymptotically synchronized. This completes the
proof. �

4.2. Adaptive Synchronization for Uncertain Parameters

For the situation of uncertain parameters, the drive system is taken to be Equation (19) and the
response system is taken to be Equation (20).

dqx1
dtq = 20ax2 − 27ax1

dqx2
dtq = 7ax1 − x1x3 + 25ax2

dqx3
dtq = x1x2 − 3ax3

dqx4
dtq = 0.1ax1x3

(19)


dqy1
dtq = 35ay2 − 20ay1 + 5ay4 + v1(t)

dqy2
dtq = 7ay1 − y1y3 + 15ay2 + v2(t)

dqy3
dtq = y1y2 − 3ay3 + v3(t)

dqy4
dtq = 0.1ay1y3 + v4(t)

(20)

where v(t) = [v1(t), v2(t), v3(t), v4(t)]
T is the control variable, and a is an unknown parameter.

Assume that the system error function is 
e1 = y1 − x1

e2 = y2 − x2

e3 = y3 − x3

e4 = y4 − x4

(21)

Then, the fractional-order error system is
dqe1
dtq = −20a(e1 − e2) + 15ay2 + 7ax1 + 5ay4 + v1(t)

dqe2
dtq = (7e1 + 15e2)a− e1y3 − e3x1 − 10x2 + v2(t)

dqe3
dtq = −3ae3 + e1y2 + e2x1 + v3(t)

dqe4
dtq = 0.1a(e1y3 + e3x1) + v4(t)

(22)
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Theorem 2. For the drive system (19) and the response system (20), if the control function of the system is
selected as 

v1(t) = 20(e1 − e2)â− 15ay2 − 7ax1 − 5ay4

v2(t) = −7ae1 − 35ae2 + e1y3 + e3x1 + 10x2

v3(t) = −e1y2 − e2x1

v4(t) = −0.1(e1y3 + e3x1)a− e4a

(23)

where â is an estimate of parameter a, then the adaptive law for estimating the parameter is

Dq â = −20e1
2 + 20e1e2 (24)

The error system exists an equilibrium e = 0 and a = â, the error system is globally asymptotically stable,
thus, the response system is synchronized with the drive system globally and asymptotically, i.e., lim

t→∞
‖e(t)‖ = 0

for any initial value.

Proof of Theorem 2. Substitute the control function (23) into the error system (22) and arrange the
expressions as 

dqe1
dtq = 20(e1 − e2)(â− a)

dqe2
dtq = −20e2a

dqe3
dtq = −3e3a

dqe4
dtq = −e4a

(25)

In order to synchronize two different chaotic systems with two unknown parameters, what we
need to do is to stabilize the error system. In light of Lemma 2 of the Mittag–Leffler stability theory, e1,
e2, e3, e4, and â− a1 are chosen as the variables for the Lyapunov control function (26).

dqe1
dtq = 20(e1 − e2)(â− a)

dqe2
dtq = −20e2a

dqe3
dtq = −3e3a

dqe4
dtq = −e4a

(26)

where e = [e1, e2, e3, e4]
T , γ = â − a, and â is an estimate of parameter a. The adaptive law for

estimating the parameters is shown in the Equation (24).
According to Lemma 1, the derivative of the Lyapunov function (26) is

DqV ≤ e1 · Dqe1 + e2 · Dqe2 + e3 · Dqe3 + e4 · Dqe4 + Dq â · (â− a1)

= 20e1(e1 − e2)(â− a)− 20e2
2a− 3e3

2a− e4
2a + [−20e1

2 + 20e1e2 + λ(â− a)](â− a)
= −(20e2

2 + 3e3
2 + e4

2)a + λ(â− a)2
(27)

Since both the drive system (19) and the response system (20) are dissipative systems, it holds
that a > 0. Moreover, according to Lemma 2, there is an equilibrium e = 0 and a = â when DqV ≤ 0,
i.e., lim

t→∞
‖e(t)‖ = 0. The error system (22) is globally asymptotically stable, thus, the drive system (19)

and the response system (20) are globally and asymptotically synchronized. The proof is completed. �

4.3. Numerical Simulation

In order to demonstrate the effectiveness of the proposed method, a dynamic modeling simulation
was performed using MATLAB R2016a. The simulation parameters were set as follows: the total
simulation time is 300 s, an absolute tolerance and a relative tolerance of 10−3, λ = −1000, the solver
adopted ode23tb(stiff/TR-BDF2), the initial value of the adaptive law was â(0) = 0.5, a fractional
order q = 0.8. Figure 14 shows the error graphs corresponding to the Theorem 1 when a1 = 1 and
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a2 = 1.2. Figure 15 shows the error curves corresponding to Theorem 2 for a = a1 = a2 = 1. At t = 0,
the drive system and response system are set to have the same initial condition of (1, 2, 2, 3).
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Figure 14. The synchronization errors between system (5) and system (6) based on Theorem 1: (a) the
time response of e1; (b) the time response of e2; (c) the time response of e3; and (d) the time response
of e4.

During the period of 0 ≤ t ≤ 10 s, the controller is work. Figures 14 and 15 demonstrate that
the synchronization time is very short if the two systems have the same initial condition. When
10 ≤ t ≤ 20 s, the controller does not work. At t = 20 s, the drive system and the response system
are having arbitrary random values, and we let the controller work again. It can be observed that
when 20 ≤ t ≤ 300 s, in spite of having different initial conditions, the synchronization between the
drive system and the response system is also ideal. The error systems converge asymptotically to zero,
which means that the adaptive controller based on the fractional-order Mittag–Leffler stability theory
is reliable and very effective.
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Figure 15. The synchronization errors between system (20) and system (21) based on Theorem 2: (a)
the time response of e1; (b) the time response of e2; (c) the time response of e3; and (d) the time response
of e4.

5. Conclusions

Two novel fractional-order chaotic systems with one equilibrium state and an infinite number of
equilibria are proposed in this paper. The nonlinear dynamic behavior of the two systems was analyzed
from the perspectives of equilibrium, a time domain diagram, power density graphs, an attractor
phase diagram, bifurcation diagrams, and Poincaré maps. Moreover, by analyzing the Co entropy of
the two four-dimensional fractional-order chaotic systems, the complex and nonlinear dynamics of
the two systems were further verified. Therefore, if the two novel fractional-order chaotic systems
are applied in such fields as communication security and image encryption, the unpredictability
of the communication system can be enhanced, and the reliability and security of the system can
be improved.

In addition, based on the Mittag–Leffler stability control theory, a fractional-order adaptive
synchronization controller was designed, which could realize the decay of errors toward zero between
two different fractional-order chaotic systems. The synchronization controller was investigated
theoretically, and then dynamic modeling simulations were presented to verify the theoretical analysis.
The adaptive controller designed in this paper has the following advantages. Firstly, the object of
control that this method targets is a fractional-order chaotic system, which increases the complexity of
the chaotic system. Secondly, adaptive synchronization scheme for both the determined parameters
and the uncertain parameters is realized between different fractional-order chaotic systems, and an
ideal synchronization effect was achieved. Finally, to avoid the process of constructing complex
functions due to the use of the Lyapunov stability theory, the adaptive law was directly established
by applying the Mittag–Leffler fractional-order stability theory. This synchronization strategy greatly
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simplifies the synchronization method for fractional-order chaotic systems, and the process for the
proof of the method shows that the method is universal and practical. So, this paper provides a new
theoretical method for the synchronization of fractional-order chaotic systems.
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