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Abstract

Background: To perform a three-dimensional (3-D) reconstruction of electron cryomicroscopy (cryo-EM) images of
viruses, it is necessary to determine the similarity of image blocks of the two-dimensional (2-D) projections of the
virus. The projections containing high resolution information are typically very noisy. Instead of the traditional Euler
metric, this paper proposes a new method, based on the geodesic metric, to measure the similarity of blocks.

Results: Our method is a 2-D image denoising approach. A data set of 2243 cytoplasmic polyhedrosis virus (CPV)
capsid particle images in different orientations was used to test the proposed method. Relative to Block-matching
and three-dimensional filtering (BM3D), Stein’s unbiased risk estimator (SURE), Bayes shrink and K-means singular
value decomposition (K-SVD), the experimental results show that the proposed method can achieve a peak signal-to-
noise ratio (PSNR) of 45.65. The method can remove the noise from the cryo-EM image and improve the accuracy of
particle picking.

Conclusions: The main contribution of the proposed model is to apply the geodesic distance to measure the similarity
of image blocks. We conclude that manifold learning methods can effectively eliminate the noise of the cryo-EM
image and improve the accuracy of particle picking.

Keywords: Electron cryomicroscopy, Geodesic distance, Similar block, Image denoising, Particle picking,
Manifold learning

Background
The theory of three-dimensional (3-D) reconstruction of
electron cryomicroscopy (cryo-EM) was defined in the
1960s when Aron Klug and his research group recon-
structed the lower-solution 3-D structure of a biological
macromolecule by means of Transmission Electron Mi-
croscopy (TEM) [1]. Aaron Klug won the Nobel Prize
for Chemistry in 1982 for his groundbreaking work. The
use of cryo-EM images is considered to be the most effi-
cient method for obtaining a 3-D density map of a com-
plex biological structure [2]. A cryo-EM image is a
projection of a biological sample taken by the electron
microscope. Environmental factors typically produce
noise, and Gaussian noise is generated in the process of
digitalizing images. Denoising can eliminate cryo-EM
image noise originating from the processes of collection,

transmission, and storage of images [3] and can also im-
prove the signal-to-noise ratio of cryo-EM images and
the quality of single particles. The high-quality particle
picking are used for 3-D reconstruction to obtain the
3-D structure of the biological samples in real space.
Therefore, cryo-EM image denoising has great signifi-
cance for 3-D reconstruction [4, 5].
The noise in cryo-EM images will affects the proced-

ure of adjustment and single particle extraction in 3-D
reconstruction [4]. In image processing, since most of
the noise comes from interference from electronic de-
vices and the like, the Gaussian and Poisson noise
models are often used in actual modeling. At present,
most of the denoising algorithms are designed to process
white Gaussian noise in images. The probability density
function has a normal distribution, and the power spec-
tral density function is a constant [5].
In recent years, with the development of structural

biology, cryo-EM images have become increasingly more
important. A large amount of multidimensional data
generated by standard biomedical imaging modalities,

* Correspondence: oyjq@xtu.edu.cn
1Key Laboratory of Intelligent Computing and Information Processing,
Ministry of Education, College of Information Engineering, Xiangtan
University, Xiangtan 411105, China
Full list of author information is available at the end of the article

© The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Ouyang et al. BMC Structural Biology           (2018) 18:18 
https://doi.org/10.1186/s12900-018-0094-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12900-018-0094-3&domain=pdf
mailto:oyjq@xtu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


such as electron microscope images and denoising nu-
clear magnetic resonance image processing, has been
used to analyze the distribution of noise in cryo-EM im-
ages [6, 7], explore methods for electron microscope
image denoising, to reduce noise in images and provide
high-quality images for subsequent image processing.
The image block matching algorithm, which is based on

the redundancy and correlation of the image information,
finds the reference block class to which the candidate
block belongs by calculating the distance between the can-
didate block set X and the reference block set R [8]. The
image is segmented according to the noise level in the
image [9]. Because images in the image block can be used
as a reference block several image blocks are randomly se-
lected as reference blocks. For each image block, the simi-
larity to the reference block is calculated separately, which
involves calculating the distance from the reference block.
Image blocks that are less than a certain threshold dis-
tance from the reference block are considered similar
blocks and are classified accordingly until all the image
blocks find the corresponding similar block group [10].
Noise type, noise intensity, and image block size are the

key factors that affect the performance of denoising in the
design of the denoising algorithm based on the image
block [8]. Therefore, taking into account the effect of
noise on the effective information of the image block, the
process analyzes the noise sources of the cryo-EM image
and sets the image block size according to the noise stand-
ard deviation. The primary methods for cryo-EM image
denoising are as follows: two-dimensional (2-D) projection
image classification, which focuses on denoising in the
transform domain but encounters challenges distinguish-
ing single particles and background noises, and the Taneli
Mielikäinen method [11], which introduces the radon
transform for image denoising of the single particles but
relies on the accurate determination of the common-line
of single-particle projection and which cannot extract a
single particle from the original cryo-EM image success-
fully due to the noise. WANG [12] proposed to combine
the Zernike matrix and nonlocal means for cryo-EM
image denoising, but this method is not suitable for bio-
logical macromolecules with nonicosahedral symmetry
structure. A nonparametric denoising method combines
the contourlet transform and Bayesian estimation, but this
method does not take into account the structural charac-
teristics of identical particles in the cryo-EM image.
The denoising method above is based essentially on a

Euler metric. Prompted by the increasingly wide use of
manifold learning, we introduce the geodesic metric to
improve the picture quality effectively. Related research
has shown that the structure feature of image blocks can
be used to improve the performance of image processing
[9]. However, as mentioned, cryo-EM image denoising
methods are not integrated into the structure of the image

block, so there is still some room for improvement to
denoise images [8, 13, 14]. The present paper presents a
new method to denoise cryo-EM images by using image
blocks. First, blocks that are similar to reference blocks
are searched for in the entire image through nonlocal
self-similarity prior learning and a similar block-based
matching algorithm based on geodesic distance. Second,
images are processed with additional Gaussian noise
through prior learning; then, image blocks with sparse
representation and nonlocal means are denoised. Finally,
all the denoised images are reconstructed to obtain the
denoised cryo-EM image.

Results
Experiment configuration
The image block, noise type, noise intensity, and image
block size are the key factors that affect the performance
of denoising in the associated algorithm design. There-
fore, taking into account the effect of noise on the effect-
ive information of the image block, the algorithm
analyzes the noise sources of the cryo-EM image and
sets the image block size according to the noise standard
deviation. Table 1 shows the value of the image block
size p and the noise standard deviation σ = 50.
We used real cryo-EM image data to test our method.

This data set contains 2243 images of CPV in total. Parti-
cles were randomly selected from the data set and divided
into five groups, whose number was different in each
group. The size of the images of the five data groups ranged
from 320 × 320 to 4096 × 4096. The increasing image size
scaled as 4, 9, 16 and 163.4 times that of the original. The
specific parameters are shown in Table 2. (Fig. 1).

Experiments on similar block selection
Two kinds of methods are widely used to extract image
blocks. One is nonrepetitive block extraction using the
‘blkproc’ function in MATLAB, and another is overlap-
ping extraction, which allows the existence of repeated
pixels in image blocks [6]. To improve the denoising ef-
fect, overlapping extraction is typically used in actual
image processing. As shown in Fig. 2, this technique is
similar to that of the partial block in Fig. 1(d).
The green box represents similar blocks located on the

edge of the particle, and the red box indicates similar
blocks whose middle point is at the center of the

Table 1 Value of the image block size p and the noise standard
deviation σ = 50

p σ

6 0 < σ < 20

7 20 < σ < 30

8 30 < σ < 50

9 50 < σ < 100
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particle. Because the identities of the CPV virus particles
used in the experiment are known, we ignore the noise
and other factors; the single particles in the cryo-EM
image have similar structure information.

Experiments on different image block matching
algorithms for Cryo-EM images
Results and analysis of Cryo-EM image Denoising based on
the geodesic distance
For four cryo-EM images with different sizes using
the Euclidean distance and geodesic distance to select
similar blocks, we demonstrate that the proposed
similar block matching algorithm based on the geo-
desic distance is efficient, and we analyze the influ-
ence of the image size and the number of blocks on
denoising. For denoising of four cryo-EM images,
through similar block matching, we use the Euclidean

distance and the measured distance to measure the
similarity blocks separately and then recorded the
PSNR and SSIM value and the time required for
denoising. The experimental parameters are set to p =
8 and σ = 50, and the experimental results are shown
in Table 3.
As the size of the image increases, the PSNR and

SSIM values are improved after denoising because
when the image block size is fixed, the larger the
image, the greater is the number of similar blocks
that can be used to learn, and the better the Gaussian
component obtained by prior learning can describe
the structural features of the image block. For the
same image, higher PSNR values and SSIM values
were achieved when using the geodesic distance to
measure the similarity between the image blocks.
Which indicates that accuracy of similar blocks is

Table 2 Parameter settings of real cryo-EM image data

Parameters Fig. 1. (a) Fig. 1. (b) Fig. 1. (c) Fig. 1. (d) Fig. 1. (e)

Image Name 10,033,201.mr c0.mrc 10,106,401.mr c0.mrc 10,039,602.mrc 0.mrc 100,112,801.mrc 0.mrc 1001.mrc

Image Size 320 × 320 640 × 640 960 × 960 1280 × 1280 4096 × 4096

Noise Power σ = 10,20,...,100

Block size 4 × 4 6 × 6 8 × 8 8 × 8 12 × 12

Dictionary size 64 × 25 128 × 50 256 × 100 256 × 100 576 × 144

Training iterations 20 50 100 200 300

Number of training blocks 6400 12,000 18,000 24,000 117,000

Fig. 1 Size of the images of five data sets, ranging from 320 × 320 to 4096 × 4096. With the increase of the size of images, the sizes of the larger
images are 4, 9, 16 and 163.4 times that of the original
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improved by using similar-block-based matching to
enhance the effect of denoising.
Table 4 shows that as the image size scales by 4 times, 9

times, and 16 times, the original denoising time scales by
the same amounts. Thus, as the image size becomes lar-
ger, the time consumption increases. For the same image,
the denoising time when using the geodesic distance is
slightly longer than that using the Euclidean distance be-
cause the Euclidean distance considers only the gray value
of the image. However, the proposed geodesic distance
takes into accounts both the gray value and gradient
values of the image. As before, the geodesic distance is
more accurate (albeit while increasing the denoising time),
and a comparison of PSNR and SSIM shows that using
the geodesic distance can effectively improve these
metrics.
In this paper, the geodesic distance is used to replace

the Euclidean distance to measure the similarity be-
tween image blocks. At the same time, the computation
time increases with increasing accuracy. Relative to
other methods, when the noise standard deviation is
the same, the proposed method can achieve a higher
PSNR value. In addition, the 3-D reconstruction of sin-
gle particle cryo-EM image is a computationally inten-
sive task; in the complete data processing of obtaining
biological macromolecules, denoising represents only a
small proportion of data processing. The denoising of
cryo-EM images effectively improves the image quality
and is helpful to obtain the high-resolution 3-D struc-
ture of biological macromolecules.

Experiments on different noise standard deviations for
Cryo-EM images
The proposed method was applied to the denoising of
the image shown in Figs. 1(b), and 3(b)-(f ) shows the ex-
perimental results under different noise standard devia-
tions. The image size is 640 × 640, and the experimental
parameters are set as shown in Table 1.
When the electron microscope produces real im-

aging data, noise is generated during the process; how-
ever, as shown in Fig. 3(c), the effect of real data
denoising is very effective. With increasing noise in
the image, the visual effect of the image is reduced
after denoising. Table 5 shows the specific PSNR value
and denoising time, where ΔPSNR is the difference be-
tween the final PSNR value and the initial PSNR value.
As shown in Table 5, with the noise standard differ-

ential increases, the initial image PSNR value begins to
decrease, the PSNR of the denoised image declines
gradually, and ΔPSNR values increases significantly,
which indicates that the proposed method can effect-
ively remove the noise. Furthermore, with increasing
noise in the image, the denoising time becomes longer,
which indicates that the noise intensity is related to the
denoising time.

Comparative experimental analysis
To reconstruct a high-resolution 3-D model, cryo-EM
images with a low signal-to-noise ratio (SNR) and a
complex particle structure must be processed effect-
ively. In this aspect of image processing, the block
denoising method represented by BM3D can effectively
aggregate similar blocks into a 3-D array and imple-
ment co-filtering in the transform domain, which has a
favorable effect on image denoising. Cryo-EM images
can be regarded as gray images, which can be processed
by the BM3D [15], SURE [16], Bayes shrink [17] and
K-SVD [18, 19] methods.

Fig. 2 Similar block diagram of the cryo-EM image

Table 3 Comparison of the experimental results of SSIM and PSNR

Image Name PSNR of Geodesic distance PSNR of Euclidean distance SSIM of Geodesic distance SSIM of Euclidean distance

Fig. 1(a) 44.92 42.46 0.92 0.90

Fig. 1(b) 44.94 42.47 0.95 0.90

Fig. 1(c) 45.38 43.17 0.89 0.79

Fig. 1(d) 45.65 43.10 0.96 0.89

Table 4 Comparison of the denoising time

Image Name Geodesic Distance Euclidean Distance

Fig. 1(a) 23.70s 21.83 s

Fig. 1(b) 99.97 s 94.58 s

Fig. 1(c) 223.89 s 218.33 s

Fig. 1(d) 417.68 s 401 s
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(a) BM3D [15]: This method is a denoising method
based on image blocks; it aggregates the similar
blocks into a 3-D array and executes collaborative
filtering in the transform domain.

(b) SURE [16]: Stein’s unbiased risk estimate
transforms the denoising process into solving the
linear equations in the wavelet domain by
minimizing the MSE, and the solutions can be
used to denoise the image.

(c) Bayes shrink [17]: The image is processed with the
wavelet transform, and the threshold value of each
sub-band is self-adaptively solved by Bayes estima-
tion. The wavelet coefficients are transformed using a
soft threshold function; finally, the noise is removed.

(d) K-SVD [18, 19]: This method is an effective and
complete method of training sparse signal
representation that can achieve image denoising
based on a dictionary.

The proposed method is first compared to BM3D, SURE,
Bayes shrink and K-SVD, and then all five methods are used
to denoise a cryo-EM image to verify the superiority of the

method proposed in this paper. In the experiment, the pa-
rameters are set to p ¼ 8 and σ ¼ 30 .
Figure 4 shows that the use of the proposed

denoising method results in better visual effects. The
method can change the original cryo-EM image limi-
tations with low contrast and single particles with a
clear outline and edge. The method also facilitates
the designs of automatic particle selection algorithms
[5], the accuracy of single selected particles, and the
resolution of 3-D reconstruction. Moreover, it re-
duces the total time of 3-D reconstruction.
Table 6 indicates that the proposed method exhibits

the highest PSNR value; this result arises because the
proposed method takes full advantage of the structural
features of the image blocks. The image block averaging
can effectively suppress the noise, and through the
prior learning of structural information of blocks and
sparse presentation, the method denoises image blocks
while accurately preserving the details of the image.
With increasing noise in the image, the PSNR value is
decreased, which indicates that the noise intensity af-
fects the denoising time.

(a) (b) (c)

(d) (e) (f)

Fig. 3 a Image of Fig. 1(b). b, c, d, e, and f represent the results of denoising by different noise standard deviations

Table 5 PSNR and denoising time comparison

Noise standard deviation Initial PSNR Final PSNR ΔPSNR Denoising time

σ 10 28.13 48.93 20.80 80.3

20 22.11 48.77 26.66 80.28

30 18.59 46.92 28.33 85.85

40 16.09 46.31 30.22 99.53

50 14.15 44.94 30.79 100.28
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Testing the method on an existing publicly available
benchmark data set
To test the validity of the proposed method, public data
sets—which are available on the 3-D Electron Micros-
copy Benchmark website—are used for experimental
evaluation. In the experiment, we selected the Ad2 ts 1
Data Set for comparison, in which the parameters were
set to p ¼ 8 and σ ¼ 40 , and the graphs made in
Ad2_ts1_Data Set_I_Test were used.
The experimental results are shown in Fig. 5. For the

different methods, the experimental results of the PSNR
and time consumed are displayed in Tables 7 and 8, re-
spectively. Figure 5 shows that the proposed denoising
method results in better visual effects.

Experimental results and analysis of 3-D reconstruction
Cryo-EM image Denoising
According to the method described in the paper, the
denoising experiment is carried out on 7000 CPV capsid
particle images of 4096 × 4096 in size on multiple servers;
the parameters are set to p ¼ 12 and σ ¼ 10 . The
partial results after the denoising experiment are shown in
Fig. 6. When the noise standard is different, the experi-
mental results of PSNR and SSIM are shown in Table 9.
Table 9 represents the experimental data showing the

PSNR and SSIM of the four images in Fig. 6 on different
noise levels. The PSNR and SSIM decrease dramatically,
and the noise increases and denoising effects worsen as the
noise standard deviation increases, which verifies that the
noise level strongly affects the performance of the denoising
method. For a constant noise standard deviation, the PSNR
values of the four images after denoising are similar, as are
those of the SSIM, which indicates that the proposed
method can remove noise from cryo-EM images effectively.
In Fig. 7, the horizontal coordinates represents the

noise standard deviation, and the vertical coordinates
represent the PSNR value of the denoised image. With
increasing noise standard deviation, the PSNR value de-
creases significantly. For a constant noise level, the four
images have similar PSNR values after denoising, which
again verifies that the proposed method can effectively
remove noise from cryo-EM images.

(a) (b) (c)

(d) (e) (f)

Fig. 4 Denoising results under different methods. a Trained dictionary of 100,112,801.mrc0.mrc (Fig. 1)d with a block size of 8 × 8. As a contrast
experiment, b, c, d, e, and (f) represent the results of denoising by Bayes shrink, SURE, BM3D, K-SVD, and the proposed method, respectively

Table 6 Comparison of the experimental results of PSNR with
different denoising methods

Denoising Method 100,112,801.mrc0.mrc (Fig.4 d)

σ

10 20 30 40 50

BM3D 35.28 33.82 33.17 32.69 32.55

SURE 35.51 34.0 33.43 33.13 32.93

BayesShrink 35.05 33.70 32.99 32.35 31.67

K-SVD 30.89 26.28 24.21 23.13 22.54

The Proposed 49.44 48.52 47.65 45.94 45.65
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The results and analysis of the extraction experiment of
single particles
The fundamental principle of selecting single particles
[5] in their 3-D reconstruction under cryo-EM is that
the particles selected must be fine and isolated particles
that are unaffected by ice crystals. The use of images
with a higher PSNR and contrast obtained after the
denoising of the cryo-EM images (as discussed in
Cryo-EM image Denoising section) contributes to quick
and accurate particle selection. Over the many years of
development of electron cryomicroscopy, multiple auto-
matic particle selection algorithms have been proposed.
EMAN [20] is an example of an automatic particle selec-
tion algorithm. However, due to the limitation of these
algorithms and larger deviation of automatic selection,
automatic selection is inefficient. However, manual par-
ticle selection can achieve satisfactorily accurate per-
formance only when the number of particles is small.

With an increasing number of particles, the large con-
sumption of labor becomes prohibitive, and omission
and other mistakes can easily occur because of the com-
plex distribution of particles when manual particle selec-
tion is selected. Therefore, the false positive rate (FPR)
and true negative rate (TNR) are used to judge the qual-
ity of single-particle selection, the true positive rate
(TPR) is adopted to indicate whether the selection algo-
rithms can accurately recognize all particles, and the
time consumed during selection is used to show the
time complexity of the selective methods. Table 10 dis-
plays the results of the selection of single particles on a
CPV virus image by using different methods.
The TPR of the manual selection is the highest, but

this method also consumes the highest time. In the ac-
tual application, the images are automatically selected at
first, and then partial particles are manually adjusted
when the number of particles is large; thus, more

(a)

(d) (e) (f)

(b) (c)

Fig. 5 Testing the method on existing publicly available benchmark datasets. Denoising results with different methods. a shows the Ad2 ts1
dataset. As a contrast experiment, b, c, d, e, and f represent the results of denoising by Bayes shrink, SURE, BM3D, K-SVD, and the proposed
method, respectively

Table 7 Comparison of the experimental results of existing publicly available benchmark datasets

Denoising Method Ad2_ts1_Dataset_I_Test_0001
σ

10 20 30 40 50 60 70 80

BM3D 29.47 26.32 23.49 20.92 20.19 19.58 19.22 18.99

SURE 29.18 24.65 22.51 21.25 20.42 19.64 19.04 18.32

Bayes Shrink 28.24 25.35 23.72 21.29 19.89 18.79 17.42 16.46

K-SVD 18.93 17.68 15.82 15.46 14.89 14.41 13.12 12.97

The Proposed Method 30.87 28.48 25.74 24.56 22.89 21.56 20.65 19.83
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particles can be recognized to the largest extent in less
time. Figure 8 shows a projection image of the CPV
virus used for particle selection.
Some particles at the edges of the image are incom-

plete, some particles in the purple frames are affected by
ice crystals, impurities are mixed with particles in the
red frame while freezing samples, and the blue frames in
the image indicate that these particles would influence
the final results of reconstruction. These are all sources
of large deviations in the experiment of extracting single
particles. To increase the accuracy of single-particle ex-
traction, the above mentioned particles are abandoned at
the stage of selecting particles, and only homogeneously
distributed and isolated particles remarked with green
frames (only partial particles are marked) in the image
are selected to carry out 3-D reconstruction. Figure 9
shows a schematic diagram of the manual selection of
partial particles.
The distributive rules of mutually selected particles are

reviewed. Each single particle can accurately falls into a

square frame, in which the selected particles can be
stored. Figure 10 shows the schematic diagram of the stor-
age results of 40 single particles through manual selection.
Parts of single particles in the figure are used in 3-D re-

construction. To obtain the precise structure of the CPV
virus, more than thousands of single particles are needed.
After the selection of particles, the center and orientation
of each particle need to be measured. However, the data
of different projections are different and depend on the
properties of samples and the resolution requirements of
the reconstruction. For the 3-D reconstruction with low
resolution, hundreds of icosahedral particles are sufficient.
However, 3-D reconstruction with high resolution re-
quires additional particles, and 3-D reconstruction with
subnanometer resolution requires thousands of particles.
To obtain a structure with near-atomic resolution, ap-
proximately 50,000 to 100,000 icosahedral virus particles
need to be imaged. In the experiment, a data set of 7000
CPV capsid particle images are used for reconstruction,
on which superimposed averaging was performed in the

Table 8 Comparison of experimental results of time with an existing publicly available benchmark datasets

Denoising Method Ad2_ts1_Dataset_I_Test_0001.tif
σ

10 20 30 40 50 60 70 80

BM3D 389.85 406.79 458.79 491.20 578.46 679.80 625.74 702.20

SURE 226.59 162.80 155.72 382.27 264.26 189.78 206.47 246.57

Bayes Shrink 150.46 168.43 169.78 193.48 209.94 217.23 228.78 249.47

K-SVD 205.79 237.94 178.59 484.55 384.69 445.23 368.75 376.54

The Proposed Method 278.56 204.98 246.49 384.15 496.31 581.32 479.23 379.23

(a)

(c) (d) (g) (h)

(b) (e) (f)

Fig. 6 a, c, e, g Projections from different directions of the CPV virus with the size of 4096 × 4096. In the experiment, the noise standard
deviation is 50. These results verify the validity of the proposed denoising method. The four images are denoised by the proposed method, and
the results are shown in (b), (d), (f), and (h)
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Fourier transform domain. After eliminating parts of par-
ticles from which no easily detectable rings could be ob-
tained through the superimposition, 6500 fine particles
are used for reconstruction eventually, corresponding to
92.86% of all single particles. The same number of single
particles selected from nondenoised cryo-EM images are
used to conduct the experiment, from which only approxi-
mately 6000 single particles are found that can be used for
the reconstruction calculation, accounting for 85.8% of
the total number of selected particles, and almost 500 sin-
gle particles are eliminated, corresponding to a decrease
of 7.06%. The extracted single particles are reconstructed
by using the central section theorem to obtain the struc-
ture of the CPV virus, as shown in Fig. 11. The experi-
mental data show that the extraction accuracy and overall
quality of single particles can be improved by first denois-
ing the cryo-EM images and then conducting semiauto-
matic selection of single particles; in this way, the 3-D
reconstruction resolution can be enhanced.

Discussion
We evaluate the competing methods from four aspects:
PSNR, contrast, time and visual quality.

PSNR
The results are presented in Table 6. We have compared
the PSNR of five methods on five noise levels: Δ = 10, 20,
30, 40, and 50. The K-SVD method performs worst;
BM3D, SURE and Bayes shrink obtain results similar to
those of PSNR, and the method we proposed performs
better than PSNR, with an improvement of approximately
14 dB relative to BM3D, SURE and Bayes shrink. These
results validate that the proposed method has a significant
ability to denoise images.

Contrast
The proposed method of denoising can significantly im-
prove the PSNR of the image, which is indicated from
the visual effect of the image; the contrast of the
cryo-EM image is improved, and a better visual effect is
obtained because high similarity exists among each sin-
gle particle in the cryo-EM image used in the experi-
ment. The substitution of the geodesic distance in place
of the Euclidean distance improves the accuracy of
searching similar blocks when similar blocks are
matched and when the denoising effect is implemented
through prior learning.

Time
The method proposed in this paper requires a longer time
to denoise the cryo-EM images because the data type of the
cryo-EM image is 32-bit floating point numbers; conse-
quently, as the image size increases, the time taken to read
the images increases, and the time required to calculate the
distance between image blocks with the increase of the
numbers of image blocks, which need to be denoised dur-
ing the matching of image blocks. Additionally, in this
paper, the prior learning is first performed on similar
blocks, and then the groups of image blocks are denoised;
therefore, the denoising time is longer than that of the
other four methods.

Table 9 PSNR and SSIM values with different noise levels for images (a), (c), (e), and (g) in Fig. 6

Image name PSNR SSIM
σ σ

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

1001.mrc 48.61 47.01 46.79 45.54 44.12 42.79 41.28 40.86 0.95 0.94 0.93 0.92 0.90 0.86 0.84 0.80

1002.mrc 48.19 47.23 46.82 45.58 44.99 42.71 41.20 40.49 0.94 0.94 0.93 0.92 0.90 0.86 0.85 0.80

1003.mrc 48.51 47.02 46.56 45.01 44.01 42.99 41.06 40.93 0.95 0.94 0.93 0.91 0.90 0.87 0.86 0.79

1004.mrc 48.42 47.16 46.63 45.81 44.06 42.88 41.14 40.95 0.96 0.95 0.94 0.92 0.90 0.86 0.84 0.80

Fig. 7 Influences of different noise standard deviations

Table 10 Comparison of various particle-selection methods

Methods FPR TNR TPR Time Consumed

Manual selection 0.018 0.005 0.967 150 s

EMAN automatic Selection 0.082 0.204 0.714 28 s

Semi automatic selection 0.040 0.034 0.926 82 s
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Table 11 shows that with increasing noise in the
image, the denoising time also shows an increasing
trend. The time required for SURE and Bayes shrink is
relatively low, and the time required for the Bayes shrink
is approximately 1.7 times that of SURE. When the noise
level is the same, SURE requires a slightly longer denois-
ing time than Bayes shrink. Relative to SURE and Bayes
shrink, the BM3D algorithm takes significantly more
time. The proposed method takes the longest time, ap-
proximately 10 times that of the BM3D algorithm.

Efficiency is another factor to evaluate the methods.
We have compared the speed of the 5 methods under
the same environment as presented in Table 2. In
Table 11, we show the runtime results on the five noise
levels Δ = 10, 20, 30, 40, and 50. Considering the appli-
cation of parallel computing and the high-speed devel-
opment of computation modules, the runtime makes up
a smaller proportion of evaluation than before.

Visual quality
The visual quality plays an important role in the evalu-
ation of any denoising method because human beings
are the ultimate judge of image quality. Figure 4 shows
the images denoised by the five method. The image
processed by the K-SVD remains fuzzy. In the images
processed by SURE and BM3D, the edges cannot be
clearly distinguished. Comparing the two images associ-
ated with Bayes shrink and the proposed method, we
find that higher contrast is achieved by the latter. In
general, the proposed method demonstrates a strong
ability to denoise images.

Conclusions
A similar block matching algorithm based on the geo-
desic distance has been proposed in the paper and ap-
plied to the design of a denoising algorithm based on
image blocks. The method is based on similar block
matching, using the geodesic distance to measure the
similarity of image blocks. The method searches for the
similar blocks in the whole image field, enhancing the
performance of denoising by improving the accuracy of

Fig. 8 Projection in the cryo-EM image of the CPV virus used for
particle selection

Fig. 9 Schematic diagram of extracting single particles of the cryo-EM image
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similar blocks and denoising each group of similar
blocks separately.
Similar blocks with additional Gaussian noise were

treated by prior learning. Finally, the entire denoised image
block was used to reconstruct the denoised cryo-EM image.
The experiments show that the proposed method can ef-
fectively eliminate noise in the cryo-EM image.

Methods
State of the art on image Denoising based on image
blocks
Dictionary learning has broad applications, including
image recognition, denoising and restoration [18, 19].

The goal of dictionary learning is to find a sparse ap-
proximation solution to represent a class of signals
under an appropriate measure. Moreover, sparseness can
often be used to avoid overtraining. Current dictionary
learning algorithms focus on selecting the vector on the
Euclidean space. However, data points often modeled by
a Riemannian manifold are critical to applications in-
volving image denoising [20, 21].
In the paper, the image is divided into blocks according

to the noise level in the image. Any image block in the
image domain can be used as a reference block, and some
image blocks are randomly selected as the reference
blocks. For each candidate image, we calculate the

Fig. 10 Cryo-EM image of the extraction result of the CPV virus
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similarity of each block to that of the entire reference
block, that is, we calculate the distance between it and the
reference block. When the distance is less than a fixed
threshold value, we classify these two image blocks as
similar and place them in the same similar block group;
the process continues until all of the candidate image
blocks are placed into a corresponding block group.

Similar block matching algorithm based on the geodesic
distance
In the existing similar block matching algorithm [21],
the Euclidean distance between the candidate block Sx
and the reference block set fSxgKk¼1 is typically used to
calculate the similarity. However, the Euclidean distance
does not take into account the local connectivity. More-
over, the image block subspace is not entirely Euler
space. To overcome this limitation, in the paper, the Eu-
clidean distance is replaced by the geodesic distance [22]
to evaluate the similarity of image blocks. The geodesic

distance considers the intrinsic influence on the image
space, and its computation is not complex.
The image block is composed of pixels. For the two

given image blocks, SA and SB, their sizes are both p × p;
dRðSAi ; SBiÞ is used to represent the geodesic distance be-
tween the two image blocks in the i-th pixels.
Calculate the weight of the i-th pixel point weight1

and weight2:

weight1 ¼ 0:5� value Ai½ �−value Bi½ �ð Þ2; ð1Þ
where value [Ai] represents the gray values of the i-th
pixel point in an image block SA and value [i] represents
the gray values of the i-th pixel point in image block SB.

weight2 ¼ 0:5� tAiþ tBiþ tan α−βj jð Þ; ð2Þ
where tAi represents the gradient value of the i-th point
in the image block SA. tBi represents the gradient value
of the i-th point in the image block SB. α represents the
angle of the i-th point of the image block SA, which is
the angle between the direction of the maximum change
of the gray value and the minimum direction. β repre-
sents the angle of the i-th point of the image block SB,
which is the angle between the direction of the max-
imum change of the gray value and the minimum direc-
tion. Figure 12 shows a view of an angle.
Here, α ¼ 0; π4 ;

π
2 ;

3π
4 ;π , and eight pixels exist around

pixel Ai, j. The gray value changes are calculated to find the
direction of the maximum change in the guidance of the
maximum change and the direction of the smallest change,
and the angle is defined as α. In the same way, we know
that β ¼ 0; π4 ;

π
2 ;

3π
4 ;π. Consequently, the geodesic distance

between two points Ai and Bi, which are located at the
same position in different image blocks, is defined as

d SAi; SBið Þ ¼ weight1þ weight2: ð3Þ
Therefore, the geodesic distance between the image

blocks SA and SB is

d SA; SBð Þ ¼ 1
p�p

Xp�p
i¼1

d SAi ; SBið Þ ; ð4Þ

where i is the i-th pixel point of the image block and i =
1, 2, …, p × p. Comparing d(SA, SB) with the fixed thresh-
old T, if d(SA, SB) < T, we define the image blocks A and
B as similar blocks; otherwise, the image blocks A and B
are not similar. The value of the fixed threshold T is re-
lated to the size of the image blocks. The larger the
image block, the larger the value of T.
In the image domain, we can use a 2-D discrete func-

tion to represent the image, and the gradient direction is
the direction of the maximum change of the gray value,
so this paper uses the gradient value and the gray value

Table 11 Comparison of the experimental results of time with
different denoising methods

Denoising Method 100,112,801.mrc0.mrc (Fig.4 (d))

σ

10 20 30 40 50

BM3D 34.0 33.1 33.2 35.1 36.8

SURE 21.7 21.4 21.5 21.4 21.4

BayesShrink 41.3 38.2 37.6 37.3 37.1

K-SVD 205.21 69.03 36.59 27.60 25.11

The proposed Method 326.27 328.41 345.59 402.54 417.68

Fig. 11 3-D reconstruction of using the central section theorem to
obtain the structure of the CPV virus
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of the image to describe the geodesic distance. When
the distance between two image blocks is less than the
threshold, the two image blocks are considered to be
similar blocks. The value of the threshold is related to
the size of the selected image block. Figure 13 shows the
flow chart of using the geodesic distance to measure the
similarity of the image block.
In the paper, we use the proposed method to evaluate the

similarity of the image blocks; then, the geodesic distance is
used to select the similar block for the reference blocks.
The detailed similar-block-based matching algorithm based
on the geodesic distance is shown in Table 12.
The accuracy of similar blocks has a strong impact on

the accuracy of the subsequent learning of similar blocks
and affects the accuracy of the dictionary and sparse
coding of the similar blocks, which could affect the final
denoising result. The proposed block matching method
is based on the geodesic distance, which enhances the
accuracy of the similar block group and lays a founda-
tion for establishing a more precise denoising model.

Evaluation Indicator of the Denoising effect
A suitable denoising algorithm would remove the noise
to the maximum extent, maintaining the integrity of the
valid information of the original image while having rela-
tively low computational time complexity. It is typical to
evaluate the performance of denoising methods with ob-
jective evaluation indexes and visual effects of images.
When evaluating the denoising performance of a specific

algorithm, in addition to comparing the visual effect, indica-
tors such as the PSNR, mean square error (MSE), SNR and
execution time are used to measure the advantages and dis-

advantages of the algorithm. MSE ¼ 1
N2

P
i; j¼1

N ðXi; j−Xi; j

∧ Þ
2

,

where X is the original image with noise and X̂ is the esti-
mate of the original image X that is the denoised image.

PSNR ¼ 10 log10 maxðx2Þ
MSE , where SNR ¼ 10 log10 Ps

Pn
, Ps

denotes the effective signal power, and Pn denotes the
noise power.
For image processing, apart from PSNR and MSE

used to evaluate an algorithm, the structural similarity

index measurement system (SSIM) is also a reliable
indicator that is based on the correlation of neighbor-
ing pixels in natural images. SSIM avoids tallying up
different kinds of errors to depict the image differ-
ences before and after denoising. The closer to one
the SSIM value between the noise image X and the
denoised image XΛ is, the more similar in structure
they are.

SSIMðX;X∧ Þ ¼ ð2μ1μ2 þ c1Þð2σ12 þ c2Þ
ðμ21 þ μ22 þ c1Þðσ2

1 þ σ22 þ c1Þ , where

μ1and μ2 denote the average, σ21 and σ22 denote the vari-
ance, σ12 denotes the covariance, and c1 and c2 are con-
stants close to 0. PSNR and MSE are based on the
statistical model of the image grayscale value, while
SSIM is based on differences of image structures. In
practical use, it is typical to combine subjective evalu-
ation and objective evaluation to evaluate an algorithm.
The CTF plays a significant role in the comparison

of cryo-EM data. To obtain a high-resolution 3-D
reconstruction of a virus by a cryo-EM image, it is
necessary to implement a CTF correction for the
micrographs. It is hard to distinguish the positions
of the CTF zeros accurately due to the low
signal-to-noise ratio of the cryo-EM image. To avoid
an inaccurate measure of the positions of the CTF
zero blurred by attenuation at high frequency, we
use a Gaussian curve to compensate for the attenu-
ation of the Fourier transform of the image at high
frequency; in this way, the amplitudes of the two
CTF zeros at the curve are the same value.

Proposed Cryo-EM image Denoising
The purpose of cryo-EM image denoising is to re-
move the noise in the image, improve the contrast
and the SNR of the picture, and provide sufficient
information for the following single-particle selec-
tion and 2-D projection image classification. Our
method implements prior learning of the image
block and sparse representation and then uses the
dictionary representation to denoise the image
block. We use the method of learning from similar

Fig. 12 View of an angle; value [Ai] represents the gray values of i-th pixel point in an image block SA. α represents the angle of the i-th
point of the image block SA, which is the angle between the direction of the maximum change of the gray value and the
minimum direction
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blocks to obtain the dictionary, which avoids the
limitation of using the discrete cosine transform
(DCT) dictionary [23, 24]. The dictionary denoising
theory is based on the ideal image having sparse
representation under the appropriate overcomplete

dictionary; the noise can destroy the sparse repre-
sentation. By choosing or designing appropriate dic-
tionaries, the sparse representation of natural
images in the dictionary can be achieved to reduce
or eliminate the noise.
A significant number of identical particles exist in the

cryo-EM images. The image block can effectively use the
characteristics of these identical particles and achieve
improved experimental results. In the paper, the similar
block matching method based on the geodesic distance
is combined with the nonlocal self-similarity (NSS) prior
knowledge of image blocks [9] to search the similar
blocks of the reference blocks in the whole image do-
main, followed by the process of prior learning with the
image blocks. The proposed method takes into account
the distance in the manifold space and uses the geodesic
distance to select similar blocks accurately. In addition,
the proposed method gives the prior internal knowledge
and the external prior knowledge of the similar blocks.
The hypothesis observation image is y, the free-noise

image is x, the noise is v, and y = x + v; here, PSNR ¼ 10

log10 2552
MSE . Thus, the cryo-EM image denoising problem

is transformed into obtaining an estimate x̂ of an image

x by observing the image y so that kx−^
xk2 the denoising

problem can be minimized. This process determines the
minimum MSE, which can be used to obtain the max-
imum PSNR value and optimal denoising result.
A cryo-EM image was decomposed into image

blocks; N reference blocks were chosen. In our
process, the geodesic distance is used to select the
similar blocks, and then all the similar blocks are
clustered into N similar blocks, each of which con-
tains M similar blocks. ym represents the image block
in the picture y, and xm represents the image block

in the picture x. According to the formula PSNR ¼ 1

0 log10 2552
MSE, to make the image PSNR as large as pos-

sible, the MSE must be as small as possible. There-
fore, the image denoising problem can be converted
to the minimum MSE problem, that is,

x
Λ
−x

��� ���2
� �
|{z}
MSE

¼ 1
N�M

XN
n¼1

XM
m¼1

xm
Λ
−xm

��� ���2
� �
|{z}

MSE

; ð5Þ

Here, hui ¼ 1
p�p

P
i¼1

p2

ui because the nonlocal means can

suppress the noise, and the dictionary can effectively
represent the nonnoise signal in the image. Therefore,
combined with the nonlocal mean and dictionary repre-
sentation, we can obtain the denoised image block. By
solving the dictionary D and sparse coding coefficient,
the purpose of denoising image blocks can be achieved,

Fig. 13 Evaluation flow chart of a similar block

Table 12 Image block matching algorithm

Alg. 1: Similar block matching algorithm based on geodesic distance

Input: candidate block Sx, reference block set fSngNn¼1
Output: Sx ∈ Sn

Step1. According to the Geodesic distance formula, calculate the
geodesic distance between A and B.

Step2. Compare the value of dn(n = 1, 2……N), select the minimum
value dn.

Step3. Determine candidate block Sx which is similar to the reference
block Sn

Step4. Repeat steps 1–3 until all image blocks are completed.
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and the image blocks can ultimately be used to recon-
struct the denoised cryo-EM image. The denoising flow
chart is shown in Fig. 14.

fymgMm¼1 refers to M similar blocks with size p × p in

the image y; here, ym∈R
p2�1 . The mean value of M image

blocks is expressed by μy, where μy ¼ 1
M

PM
m¼1ym; ym

¼ ym−μy , YΔfymg;m ¼ 1;…;M , and YΔfyn;mgMm¼1
; n

¼ 1; 2;…;N ;m ¼ 1;…;M.
The next step is to implement a priori learning of Yn

to calculate the K Gaussian distribution.
According to the sparse redundancy of images, the

probabilistic representation is calculated by fYng : PðYnÞ
¼

XK

k¼1
πk

YM

m¼1
Nðyn;mjμk;

X
k
Þ.

Therefore, the global target likelihood function can be

expressed as L ¼ QN
n¼1 PðYnÞ for the convenience of the

following calculation, namely, the logarithmic function
of the target likelihood

lnL ¼
XN

n¼1
ln

XK

k¼1
πk

YM

m¼1
N yn;mjμk;

X
k

� �� �
:

ð6Þ

Through GMM learning [25], we can obtain the K
Gaussian distribution, which can describe the structural

characteristic of the image block. In this context, the
maximum posterior probability of each block is obtained
by using the Bayesian method, and the most suitable
Gaussian component for each group of similar blocks is
obtained. Then, the dictionary of the similar block group
is obtained to denoise the image block. The algorithm is
described in Table 13.
According to the sparse representation of the image,

ym ¼ Dαþ v , where v is noise. Dictionary D is known.
By solving α, the sparse representation of the image
block can be obtained, and the image block’s denoising
can be realized. In the paper, the constraint conditions
of the sparse coding model are expressed as

min
α ym−Dα

�� ��2
2 þ WTα

�� ��
1
; ð7Þ

where α is the sparse coding coefficient and w is the
weight of the α vector. According to the method pro-
vided by PGPD [13, 25],

â ¼ sgn DTym
� 	

⨀ max DTym
�� ��−w=2; 0� 	

; ð8Þ

where wi ¼ c�2 ffiffi
2

p
σ2

λiþε and DTym ¼ z,

which is typically written in the following form:

Fig. 14 Proposed denoising flowchart

Ouyang et al. BMC Structural Biology           (2018) 18:18 Page 15 of 17



â ¼ sgnðziÞðjzij− wi
2 ; 0Þþ , where (a)+ =max(a, 0)and

sgn(∙) is a symbolic function. We define a function
SoftMAP:
SoftMAP(gi, τi) = sgn(gi)(| gi| −τi)+ is the sparse coding

of the similar block group

α̂ ¼ SoftMAP z;
w
2

� �
; ð9Þ

to minimize the impact of noise in the image blocks and
inaccurate similar blocks grouping in Gaussian mixture
models (GMMs). The proposed geodesic distance can
improve the accuracy of the similar block group. More-
over, this process uses a combination of the dictionary
D and weighted sparse coding α̂ to attain the denoised
image block x̂m:

x̂m ¼ μy þ Dα̂; ð10Þ

First, the estimated value of the image blocks in each
similar block group is obtained, and then the denoised
image x̂ is reconstructed by aggregating all the denoised
image blocks. When some estimated values appear in a
position of the image, the final estimate is obtained by

using the weighted average. Through the formula ðσðtÞÞ2

¼ η � ðσ2−ky−yðt−1Þk22Þ the noise is updated, and the
standard deviation for several iterations η is a constant.
The difference between the proposed algorithm and

PGPD [13, 25] is as follows: In this paper, the geodesic
distance is used to replace the Euclidean distance in the
PGPD algorithm to select the similar blocks and avoid
the limitations of the Euclidean distance. Moreover, the
proposed algorithm can search similar blocks in the
whole image domain, while PGPD search for similar
blocks in a slightly larger search window than the refer-
ence block. Here, the proposed algorithm is more accur-
ate. PGPD adds no noise to image blocks for prior
learning. In the proposed method, image blocks with

additional Gaussian noise are used for prior learning.
This technique gives full consideration to the noise af-
fecting the image block sufficient information and to
prior learning of additional noise image block directly.
By using the property of the similar block group means
value, the proposed method can reduce the noise in the
image block, and the image block sparse representation
can eliminate the noise signal; thus, the additional
Gaussian noise in the image block can be eradicated.

Prospects
Based on multi-layer neural network, deep learning with
the feature of self-learning, which is input with massive
data, has greater constructive and reasoning ability, thus,
it can handle a variety of complex intelligent problems
more effectively. In addition, deep learning also has
more powerful learning ability and efficient feature ex-
pression ability Its more important advantage is that it
can extract information layer by layer from pixel-level
raw data to abstract semantic concept [26, 27], which
makes it extracting the global features and context infor-
mation of images more powerful and brings new ideas
to solve traditional computer vision problems such as
image segmentation and key point detection.
Therefore, it is believed that the application of deep

learning in the 3-D reconstruction of cryo-EM images
can exhibit better effects than the traditional methods,
thereby it can enhance the resolution of biological mac-
romolecules in 3-D reconstruction process. The next
step is to use the parallel and deep learning method to
realize the denoising algorithm put forward in the
paper, which can reduce the time used to denoise the
cryo-EM image.
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Table 13 Bayesian approach seeking dictionary

Alg. 2: Use Bayesian method to find the dictionary D of similar block
group

Input: Similar block group Yn; n ¼ 1; 2; ::N, K Gaussian distribution
{N(μk, ∑k)}K = 1, 2, …, k through GMM leaning.

Output: Gaussian component of similar block group Yn corresponded
dictionary D.

Step1. initialization n = 1,k = 1.
Step2. Apply the formula lnPðkjY ¼Þ

XM
m¼1

lnNðymj0;
X

k
Þ− lnC to

calculate lnPðkjYÞ when taking the k-th Gaussian component.
Step3. Repeat step 2, total of K times for calculating lnPðkjYÞ values.
Step4. Compare lnPðkjYÞ; k ¼ 1; 2;…; k, get the maximum lnPðkjYÞ,

its corresponding Gaussian distribution can describe similar block
group
Yn, its covariance matrix is ∑k.

Step5. For SVD decomposition, get dictionary Dn of similar block
group Yn.

Step6. Repeat steps 2–5, a total of N times, until the output N is a
dictionary D.
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