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Abstract
Canonical correlation analysis (CCA) has been widely used in the detection of the steady-

state visual evoked potentials (SSVEPs) in brain-computer interfaces (BCIs). The standard

CCA method, which uses sinusoidal signals as reference signals, was first proposed for

SSVEP detection without calibration. However, the detection performance can be deterio-

rated by the interference from the spontaneous EEG activities. Recently, various extended

methods have been developed to incorporate individual EEG calibration data in CCA to

improve the detection performance. Although advantages of the extended CCA methods

have been demonstrated in separate studies, a comprehensive comparison between these

methods is still missing. This study performed a comparison of the existing CCA-based

SSVEP detection methods using a 12-class SSVEP dataset recorded from 10 subjects in a

simulated online BCI experiment. Classification accuracy and information transfer rate

(ITR) were used for performance evaluation. The results suggest that individual calibration

data can significantly improve the detection performance. Furthermore, the results showed

that the combination method based on the standard CCA and the individual template based

CCA (IT-CCA) achieved the highest performance.

Introduction
Brain-computer interfaces (BCIs) provide humans with a new communication channel
between their brains and external devices [1]. However, current applications of the electro-
encephalogram (EEG)-based BCIs have been hindered by low communication speed [2].
Recently, steady-state visual evoked potentials (SSVEPs)-based BCIs, which show advan-
tages of high information transfer rate (ITR) and little user training, have received increasing
attention [3, 4]. In SSVEP-based BCIs, users gaze at one of multiple visual flickers tagged by
frequency or phase, resulting in SSVEPs that exhibit the same properties as the target
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stimulus. The target stimulus therefore can be identified through analyzing the SSVEPs by
target identification algorithms. Performance of the SSVEP BCIs depends on the following
three major factors: stimulus presentation, multiple target coding, and target identification
algorithm [5]. Although the number of frequencies that can be presented on a computer
monitor is limited by the refresh rate, recent progresses of the stimulus presentation meth-
ods succeeded in presenting a large number of visual flickers on the computer monitor [6–
11]. For example, sequential encoding approaches such as the multiple frequencies sequen-
tial coding (MFSC) [7] and the frequency shift keying (FSK) [8] methods have been
employed to increase the number of BCI commands using the limited number of available
frequencies. In several other studies, the frequency approximation approaches were pro-
posed to generate robust flickering stimuli at flexible frequencies [9–11]. More recently, the
efficiency of hybrid frequency and phase coding methods has been demonstrated in our
recent studies [5, 12]. Among the three factors, this study focused on the target identification
algorithms used in SSVEP detection.

Various target identification methods have been developed for detecting SSVEPs in BCIs
[2–4]. The power spectrum density analysis (PSDA)-based methods such as fast Fourier trans-
form (FFT) were widely used for frequency detection with single-channel EEGs [13, 14]. With
advances in EEG signal processing, spatial filtering techniques, which can improve the signal-
to-noise ratio (SNR) of SSVEPs by removing background EEG activities, have been applied to
the development of more efficient target identification methods. The widely used spatial filter-
ing methods in SSVEP-based BCIs include canonical correlation analysis (CCA) [15], mini-
mum energy combination (MEC) [16], and common spatial pattern (CSP) [17]. These
methods have been proved more efficient than the PSDA-based methods. Recently, new feature
extraction methods such as multivariate synchronization index (MSI) [18], common feature
analysis (CFA) [19] and likelihood ratio test (LRT) [20] have also been proposed and demon-
strated as efficient as the spatial filtering methods. Among these methods, CCA is one of the
most widely used methods in SSVEP-based BCIs due to its high efficiency, robustness, and
simple implementation [10, 11, 15, 21–23]. This study only focused on a comparison of the
existing target identification methods based on CCA.

The first CCA-based method was developed for the frequency detection of SSVEPs in
2007 [15], which is referred to as a standard CCA method in this article. The standard CCA
method performs canonical correlation analysis between multi-channel EEG signals and
predefined sinusoidal reference signals at stimulation frequencies and then identifies the tar-
get frequency based on the canonical correlation values. Because it is highly efficient, easy to
implement, and does not require calibration, the standard CCA method has been widely
used in online BCIs in recent years [9, 10, 24, 25]. It has also been extended to realize an
asynchronous control [26] and to optimize the target detection time adaptively for each trial
[27]. Poryzala et al. proposed the method, which is called the cluster analysis of CCA coeffi-
cient (CACC), to realize an asynchronous BCI system [26]. Although the standard CCA
method has been proved robust in detecting SSVEPs, its performance is often affected by the
interference from the spontaneous EEG activities [28]. To reduce the misclassification rate
caused by the spontaneous EEG signals, individual SSVEP calibration data, which can better
characterize the temporal features of SSVEPs (e.g., phase and latency), have been incorpo-
rated in CCA-based VEP detection. Pan et al. [29] proposed a phase constrained CCA
(PCCA) method, in which the phases of the sinusoidal reference signals were fixed according
to the visual latency estimated from the calibration data. In a code modulated VEP-based
BCI study, Bin et al. [30] developed an individual template-based CCA (IT-CCA) method, in
which the reference signals were VEP templates obtained by averaging across multiple EEG
trials in the calibration data from each individual. In a different way, Zhang et al. [31]
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proposed a multi-way CCA (MwayCCA) method to find appropriate reference signals for
SSVEP detection based on multiple standard CCA processes with the calibration data. An
L1-regularized multi-way CCA (L1-MCCA) method was further developed for optimizing
the reference signals in SSVEP recognition [32]. The multi-set CCA (MsetCCA) method has
recently been applied to optimize the reference signals from common features in multiple
calibration trials [33]. In our recent studies, we proposed to combine the standard CCA
method and the IT-CCA method to detect SSVEPs with more advanced target coding meth-
ods [5, 12, 28]. In the combination method, after the CCA processes, a separate procedure of
correlation analysis (between testing data and individual templates) was used to enable the
discrimination between different phases [28]. Consistently, all calibration-data-based meth-
ods showed significantly higher detection accuracy than the standard CCA method. How-
ever, due to the lack of a comprehensive comparison between these methods, it still remains
unclear which method is more efficient and feasible for SSVEP detection in real-time BCIs.

This study aimed to perform a quantitative comparison of the CCA-based methods for
detecting SSVEPs. The comparison included seven aforementioned CCA-based SSVEP detec-
tion methods: (1) standard CCA, (2) CACC, (3) MwayCCA, (4) L1-MCCA, (5) MsetCCA, (6)
IT-CCA, and (7) the combination method based on standard CCA and IT-CCA [28]. Because
the comparison study in [33] found that the performance of PCCA was lower than MwayCCA
and MsetCCA, for simplicity, the PCCA method was not included in this study. A 12-class
SSVEP dataset recorded from 10 subjects in a simulated online BCI experiment were used for
performance evaluation. The 12 stimuli were designed using a joint frequency and phase cod-
ing method (frequencies: 9.25–14.75Hz with an interval of 0.5Hz; phases: started from 0 with
an interval of 0.5π) [12]. To explore the efficiency and feasibility of these methods for a practi-
cal BCI, detection accuracy, simulated ITR [34], r-square values of features [1], and computa-
tional time were estimated separately for each method.

Materials and Methods

Ethics Statement
The Human Research Protections Program of the University of California San Diego approved
the experiment. All participants were asked to read and sign a written informed consent form
before participating in this study.

Stimulus Design
In the conventional SSVEP-based BCIs that use a computer monitor to present visual stimuli,
alternating white and black frames flickering at a specified frequency and an initial phase are
used to elicit SSVEPs. To render a visual flicker at frequency f with an initial phase ;, a stimulus
sequence s(f, ;, i) can be generated by the following equation:

sðf ; ;; iÞ ¼ square 2pf i
RefreshRate= Þ þ ;� ð1Þð½

where square() generates a 50% duty cycle square wave with levels 0 and 1, and i indicates
the frame index. Theoretically, this approach can realize visual flickers at any frequency (up
to half of the refresh rate) and phase [9, 11]. Importantly, it has been demonstrated that the
frequency and phase of the SSVEPs elicited by this approach are stable. Therefore, hybrid fre-
quency and phase coding methods can be implemented to increase the differentiations of
SSVEPs at neighboring frequencies [5]. Specifically, this study used a joint frequency and
phase coding method, in which two adjacent targets are tagged with different frequencies
and phases at the same time, to design the visual stimulator [12]. Specifically, the stimulus
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sequence sn(i) of a target n can be defined as:

snðiÞ ¼ sðf0 þ ðn� 1ÞDf ; ;0 þ ðn� 1ÞD;; iÞ; n ¼ 1; 2; � � � ;Nf ð2Þ

Where f0 is the lowest stimulation frequency, ;0 is the initial phase of the stimulus at f0, Δf
and Δ; are the frequency and phase intervals between two adjacent frequencies, and Nf is the
total number of frequencies (e.g. the number of stimuli).

Data Acquisition
The 12-target visual stimuli (6×6 cm each) were presented on a 27-inch LCD monitor
(ASUS VG278) with a refresh rate of 60Hz and a resolution of 1280×800 pixels. As shown in
Fig 1, the stimuli were arranged in a 4×3 matrix as a virtual keypad of a phone [25], and
tagged with different frequencies (f0 = 9.25Hz, Δf = 0.5Hz) and phases (;0 = 0, Δ; = 0.5π).
The horizontal and vertical intervals between two neighboring stimuli were 5cm and 1.5cm,
respectively. The stimulation sequences were generated using Eq (2). The stimulation pro-
gram was developed under MATLAB (Mathworks, Inc.) using the Psychophysics
Toolbox extensions [35].

Ten healthy subjects (9 males and 1 female, mean age: 28 years) with normal or corrected-
to-normal vision participated in this study. EEG data were recorded with eight Ag/AgCl elec-
trodes covering the occipital area using a BioSemi ActiveTwo EEG system (Biosemi, Inc.).
EEG signals were amplified and digitized at a sampling rate of 2,048Hz, and all electrodes
were with reference to the CMS electrode close to Cz. Event triggers that indicate the onsets of
visual stimuli were sent from the parallel port of the computer to the EEG system and
recorded on an event channel synchronized to the EEG data. The subjects were seated in a
comfortable chair 60cm in front of the monitor in a dim room. This study performed a simu-
lated online BCI experiment [34] to record data for offline analysis. For each subject, the
experiment consisted of 15 blocks. In each block, subjects were asked to gaze at one of the
visual stimuli indicated by the stimulus program in a random order for 4s, and complete 12
trials corresponding to all 12 targets. At the beginning of each trial, a red square (see Fig 1A)
appeared for 1s at the position of the target stimulus. Subjects were asked to shift their gaze to
the target within the same 1s duration. After that, all stimuli started to flicker simultaneously
for 4s on the monitor. To reduce eye movement artifacts, subjects were asked to avoid eye
blinks during the stimulation period.

Data epochs comprising eight-channel SSVEPs were extracted according to event triggers
generated by the stimulus program. All data epochs were down-sampled to 256Hz and then
band-pass filtered from 6Hz to 80Hz with an infinite impulse response (IIR) filter. Zero-
phase forward and reverse IIR filtering was implemented using the filtfilt() function in
MATLAB. Considering a latency delay in the visual system, the data epochs were extracted
in [0.135 s 0.135+d s], where the time 0 indicated stimulus onset and d indicated data length
used in the offline analysis. The 135-ms delay was selected towards the highest classification
accuracy.

CCA-Based SSVEP Detection Method

Calibration data and single-trial test data are denoted by a four-way tensor X ¼ ðXÞnjkh 2
R

Nf�Nc�Ns�Nt and a two-way tensor X̂ 2 R
Nc�Ns , respectively. Here, n indicates the stimulus

index, Nf is the number of stimuli, j indicates the channel index, Nc is the number of chan-
nels, k indicates the index of sample points, Ns is the number of sampling point, h indicates
the index of training trials, and Nt is the number of training trials. The goal of the target
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identification is to take an input X̂ and assign it to one of Nf classes Cn where n = 1, 2,. . .,Nf.
Cn corresponds to the stimulation frequency fn 2 ff1; f2; � � � ; fNf

g. In all methods except for

CACC, feature values of Cn can be calculated with unsupervised and supervised methods as

rn ¼ f ðX̂; YnÞ and rn ¼ f ðX̂; X nÞ, respectively. Here, Yn is an artificially generated refer-
ence signal that models SSVEPs elicited by the n-th visual stimulus. Target class Cτ can be
identified by the following rule:

t ¼ argmaxnrn; n ¼ 1; 2; . . . ;Nf ð3Þ

In SSVEP-based BCIs, feature extraction aims to find better feature values ρn to optimize the
accuracy of target identification.

Standard CCA. CCA, which is a statistical way to measure the underlying correlation
between two sets of multidimensional variables, has been widely used to detect the frequency
of SSVEPs [15, 21]. Considering two multidimensional variable X, Y and their linear combina-
tions x = XTwx and y = YTwy, CCA finds the weight vectors, wx and wy, which maximize the
correlation between x and y by solving the following problem:

rðx; yÞ ¼ maxwx ;wy

E½xyT�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½xxT �E½yyT�p ¼ maxwx ;wy

E½wT
xXY

Twy�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½wT

xXX
Twx�E½wT

yYY
Twy�

q ð4Þ

The maximum of ρ with respect to wx and wy is the maximum canonical correlation. Projec-
tions onto wx and wy are called canonical variants. Here, X refers to the set of multi-channel
EEG signals and Y refers to the set of reference signals that have the same length as X. In

SSVEP detection, the reference signals Yn 2 R
2Nh�Ns are set as

Yn ¼

sinð2pfntÞ

cosð2pfntÞ

..

.

sinð2pNhfntÞ
cosð2pNhfntÞ

2
66666666664

3
77777777775
; t ¼ 1

fs
;
2

fs
; � � � ;Ns

fs

� �
ð5Þ

Fig 1. Stimulus design of the 12-target BCI system. (A) The user interface of a virtual keypad for a phone-dialing program. (B) Frequency and phase
values specified for each target. The red square in (A) is the visual cue indicating a target symbol ‘5’ in the experiment.

doi:10.1371/journal.pone.0140703.g001
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Where fn is the stimulation frequency, fs is the sampling frequency, and Nh is the number of
harmonics. To recognize the frequency of the SSVEPs, CCA calculates the canonical correla-

tion ρn between the multi-channel EEG signals X̂ and the reference signals at each stimulus fre-
quency Yn. The frequency of the reference signals with the maximal correlation was selected as
the frequency of the SSVEPs (see Eq (3)).

Cluster analysis of CCA coefficients. The approach, which is called the cluster analysis
of CCA coefficients (CACC), was proposed to realize an asynchronous SSVEP-based BCI by
employing k-means cluster analysis for identifying detection and idle states [26]. The opera-
tion of this method is divided into calibration and working mode. In the calibration mode,
the three-dimensional feature space is built for each stimulation frequency based on the
three highest valued canonical correlation coefficients (rn = [rn1, rn2, rn3]

T, rn1 � rn2 � rn3),
and k-means cluster analysis (k = 2) is performed with the feature points rn to identify the
location of centroids of detection and idle classes. The calibration mode ends when the
mutual distance of centroids between two classes �r1 and �r2 meats a threshold β. In this study,
the threshold β was set to 0.35 according to [26]. In the working mode, new feature values r̂n
calculated from test set X̂ are classified into detection or idle classes by the nearest neighbor
method. If none of the classifiers corresponding to all stimulus frequencies identifies the
detection class, the feature values are classified as an idle state. If exactly one feature value r̂t
is classified as belonging to a detection class, the target class Cτ is identified. If more than one
classifier detects the detection class, the target class Cτ is determined as τ-th feature space
that maximize the distance between feature point r̂t and the middle point of two centroids of
detection and idle classes.

Multi-way CCA. The multi-way CCA approach was proposed to improve the target iden-
tification accuracy of CCA-based approach by optimizing reference signals through collabora-
tively maximizing correlation between a training set of individual EEG data and artificially

generated sine-cosine signals [31]. Considering X n 2 R
Nc�Ns�Nt , which is the training set of

EEG signals belonging to class Cn, an original reference signal Yn 2 R
2Nh�Ns constructed as Eq

(5), and their linear combination zn ¼ X n�1w
T
1�3w

T
3 and yn = vTYn, the multi-way CCA seeks

the weight vectors, w1 2 R
Nc ; w3 2 R

Nt and v 2 R
2Nh to maximize the correlation between zn

and yn as

~wn;1; ~wn;3; ~vn ¼ argmaxw1 ;w3 ;v

E½znyT
n �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½znzTn �E½yny
T
n �

p : ð6Þ

Where X�nw
T denotes the n-mode product of a tensor X 2 R

I1�I2�����IN with a vector w 2 R
In :

ðX�nw
TÞi1 ���in�1 inþ1���iN ¼

XIn

in¼1
xi1 i2���iNoin

: ð7Þ

The optimization problem in Eq (6) can be solved by the iterations of alternating CCAs so
that w1, w3 and v satisfy the stop criterion, ||w(m) − w(m − 1)||2 < 10−5, wherem denotes the
number of iteration steps, and w is the weight coefficient to be learned [32]. After obtaining the
optimal weight ~wn;1 and ~wn;3, the optimized reference signal is given by ~zn ¼ X n�1 ~w

T
n;1�3 ~w

T
n;3.

A feature value ρn can be calculated as correlation between test data X̂ and the optimized refer-
ence signal ~zn through multiple linear regression [31] or CCA [32].

L1-reguralized multi-way CCA. In the multi-way CCA, the optimized reference signals
are constructed by sine-cosine signals and EEG tensors from multiple trials where some trials
may have artifacts. To remove these trials and further optimize the reference signals, the penal-
ized multi-way CCA with L1-regularization was proposed in [32].
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Since the scale of the denominator in Eq (6) does not affect the correlation maximization,
Eq (6) can be reformulated into the following least-squares optimization problem:

~wn;1; ~wn;3; ~vn ¼ argmin
w1 ; w3 ;v

1

2
jjX n�1w

T
1�3w

T
3 � vTYnjj22

subject to jjw1jj2 ¼ jjw3jj2 ¼ jjvjj2 ¼ 1:

ð8Þ

With the L1-regularization, a penalized version of the multi-way CCA is defined as

~wn;1; ~wn;3; ~vn ¼ argmin
w1 ; w3 ;v

1

2
jjX n�1w

T
1�3w

T
3 � vTYnjj22 þ l1jjw1jj1 þ l2jjvjj1 þ l3jjw3jj1

subject to jjw1jj2 ¼ jjw3jj2 ¼ jjvjj2 ¼ 1;

ð9Þ

Where λ1, λ2 and λ3 are regularization parameters to control the sparsity of w1, v and w3,
respectively. Regularization on w1, v and w3 provide automatic selection of channels, harmon-
ics and trials, respectively, for the reference signal optimization. Although this problem in Eq
(9) can be solved by alternatingly applying least absolute shrinkage selection operator
(LASSO), only the trial selection w3 is solved by the LASSO (i.e. λ1 = λ2 = 0) since the channel
and harmonic configuration can be decided according to the knowledge of conventional stud-
ies [32]. Therefore, w1 and v can be learned simply by the ordinary CCAs. The regularization
parameter λ3 was set to 0.5 according to [32].

Multi-set CCA. The reference signals in the multi-way CCA approaches are optimized
based on preliminary generated sine-cosine waves. The reference signals that are optimized
completely based on the training sets of EEG signals might provide better results. To further
enhance the classification accuracy of SSVEPs, the multi-set CCA, which employs the joint spa-
tial filtering of multiple training sets of EEG signals, has been proposed in [33].

Suppose that X n; h 2 R
Nc�Ns , which is the h-th training trial of EEG signals belonging to

class Cn, and w1; � � � ;wNt
, which are joint spatial filters to extract common features contained

in the multiple sets of EEG signals, the objective function for maximizing the overall correla-
tion among multiple sets of training data is defined as

~wn;1; � � � ; ~wn;Nt
¼ argmax

w1 ;���;wNt

XNt

h1 6¼h2

wT
h1
X n;h1

X T
n;h2

wh2

subject to
1

Nt

XNt

h1¼1
wT

h1
X n;h1

X T
n;h1

wh1
¼ 1

ð10Þ

This optimization problem with the Lagrange multipliers can be solved as the following gener-
alized eigenvalue problem:

ðRn � SnÞw ¼ rSnw; ð11Þ
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Where

Rn ¼

X n;1X
T
n;1 � � � X n;1X

T
n;Nt

..

. . .
. ..

.

X n;Nt
X T

n;1 � � � X n;Nt
X T

n;Nt

2
666664

3
777775;

Sn ¼

X n;1X
T
n;1 � � � 0

..

. . .
. ..

.

0 � � � X n;Nt
X T

n;Nt

2
666664

3
777775;

w ¼

w1

..

.

wNt

2
66664

3
77775

After obtaining the optimal joint spatial filters ~wn;h, the optimized reference signals, which have

some common features shared among multiple training trials, are given by ~zn;h ¼ ~wT
n;hX n;h. The

optimized reference signal set for the target Cn is constructed as

Zn ¼ ~zTn;1; ~z
T
n;2; � � � ~zTn;Nt

h iT
ð12Þ

Then, a feature value ρn can be calculated as a canonical correlation between the test data X̂
and the optimized reference signal set Zn.

Individual Template Based CCA. The IT-CCA approach was first proposed to detect
temporal features of EEG signals using a canonical correlation between test data and individual
template signals in the research of a code modulated VEP based BCI [30]. This approach is also

applicable for SSVEP detection. For each target, the individual template �X n 2 R
Nc�Nt can be

obtained by averaging multiple training trials as �X njk ¼ 1
Nt

PNt
h¼1 X njkh. In this case, reference

signals Yn of the standard CCA can be replaced by the individual template �X n and then the
CCA process in IT-CCA can be described as follows:

rn ¼ maxwx ; w�x

E½wT
xX

�X T
nw�x �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½wT
xXX

Twx�E½wT
�xX n

�X T
nw�x �

q ð13Þ

A combination method of CCA and IT-CCA. Our recent studies proposed an extended
CCA-based method, which combines the standard CCA and the IT-CCA approaches [5, 28].

Correlation coefficients between projections of a test set X̂ and an individual template �X n

using CCA-based spatial filters are used as features for target identification. Specifically, the fol-
lowing three weight vectors are used as spatial filters to enhance the SNR of SSVEPs: (1)

WxðX̂ �X nÞ between the test set X̂ and the individual template �X n, (2)WxðX̂YnÞ between the

test set X̂ and sine-cosine reference signals Yn, (3)Wxð �X nYnÞ between the individual template

CCA-Based Methods for Detecting SSVEPs
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�X n and sine-cosine reference signals Yn. A correlation vector rn is defined as follows:

rn ¼

rn;1

rn;2

rn;3

rn;4

2
66664

3
77775 ¼

rðX̂TWxðX̂YnÞ;YTWyðX̂YnÞÞ
rðX̂TWxðX̂ �X nÞ; �X T

nWxðX̂ �X nÞÞ
rðX̂TWxðX̂YnÞ; �X T

nWxðX̂YnÞÞ
rðX̂TWxð �X nYnÞ; �X T

nWxð �X nYnÞÞ

2
666664

3
777775 ð14Þ

Where r(a, b) indicates the Pearson’s correlation coefficient between two one-dimensional sig-
nals a and b. An ensemble classifier can be used to combine the four features. In practice, the
following weighted correlation coefficient ρn is used as the final feature in target identification:

rn ¼
X4

l¼1
signðrn;lÞ � r2n;l ð15Þ

where sign() is used to retain discriminative information from negative correlation coefficients

between test set X̂ and individual template �X n. The individual template that maximizes the
weight correlation value is selected as the reference signal corresponding to the target.

Performance Evaluation
The recorded EEG epochs were classified by the CCA-based methods described in the previous
sections. The classification accuracy was estimated using a leave-one-out cross validation. In
each of 15 rounds, cross-validation was performed using 14 blocks for training and 1 block for
testing. In addition to classification accuracy, BCI performance was also evaluated by ITR [1]:

ITR ¼ log2Nf þ Plog2P þ ð1� PÞlog2
1� P
Nf � 1

" # !
� 60

T

� �
ð16Þ

where P is the classification accuracy, and T (seconds/selection) is the average time for a selec-
tion. This study calculated classification performance using different T (Target gazing time: 0.5
s to 4.0 s with an interval of 0.5s; Gaze shifting time: 1 s). This study also evaluated the feature
values for each method using r-square value (i.e., the proportion of the variance of the signal
feature that is accounted for by the user’s intent) [1]. In this study, the r-square value was calcu-
lated with feature values corresponding to target stimulus (i.e., ρτ) and the maximal feature val-
ues corresponding to non-target stimuli (i.e., ρn6¼τ). Furthermore, to evaluate the feasibility of
the methods in online BCIs, this study also estimated the computational time for single-trial
analysis. The computational time indicated the time spent in preprocessing, CCA-based feature
extraction, and classification. In addition, to explore the impact of the size of the training data,
this study further compared the classification accuracy with different numbers of training
trials.

Results

Classification Accuracy
Fig 2A shows the averaged accuracy across all subjects with different data lengths from 0.5 s to
4 s. The number of harmonics in the reference signals (i.e., Nh in Eq (5)), the number of train-
ing trials (i.e., Nt) and the number of channels (i.e.,Nc) were set to 3, 14 and 8, respectively. In
general, the methods based on individual calibration data all outperformed the standard CCA
method. The comparison between MwayCCA, L1-MCCA and MsetCCA indicated that the
performance of L1-MCCA was better than MwayCCA while MsetCCA outperformed
L1-MCCA. These findings were consistent with previous studies by Zhang et al. [31–33].
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Interestingly, IT-CCA achieved higher performance than MsetCCA. The combination method
of CCA and IT-CCA achieved the highest performance. Since the dataset used in this study
was designed for a synchronous paradigm where resting data are not available, the perfor-
mance of CACC, which has been proposed for an asynchronous BCI, didn’t outperform the
standard CCA. The difference of classification accuracy between these methods was more sig-
nificant with shorter data lengths. One-way repeated measures analysis of variance (ANOVA)
showed there was significant difference of the classification accuracy between these methods
under all data lengths (d = 0.5 s: F(6,54) = 76.84, p<0.05; d = 1 s: F(6,54) = 29.93, p<0.05;
d = 1.5 s: F(6,54) = 11.33, p<0.05; d = 2 s: F(6,54) = 6.97, p<0.05; d = 2.5 s: F(6,54) = 5.84,
p<0.05; d = 3 s: F(6,54) = 4.15, p<0.05; d = 3.5 s: F(6,54) = 3.96, p<0.05; d = 4 s: F(6,54) =
3.50, p<0.05). Post-hoc paired t-tests showed there were significant differences between all
pairs of the seven methods with 0.5s data length (CCA: 21.06±6.25%, CACC: 13.83±5.82%,
MwayCCA: 33.00±13.54%, L1-MCCA: 36.33±15.31%, MsetCCA: 45.94±23.74%, IT-CCA:
53.67±19.87%, Combination Method: 79.56±13.99%). With the data length of 1 s, there were
no significant difference between MwayCCA, L1-MCCA, and MsetCCA (MwayCCA: 68.39
±23.56%, L1-MCCA: 70.28±23.74%, MsetCCA: 73.61±25.89%). Meanwhile, IT-CCA and the
combination method obtained accuracy of 81.17±18.84% and 92.78±10.22% respectively,
which were significantly higher than that of the other three methods (p<0.05). These findings
imply that the individual VEP templates obtained by the averaging process can significantly
enhance the SNR of SSVEPs. Table 1 lists the classification accuracy for all subjects with 1s
data length. Consistently, the combination method achieved the highest accuracy for all
subjects.

Fig 3A shows the classification accuracy of 1s-long SSVEPs for each method with different
numbers of harmonics (i.e., Nh in Eq (5)) in the sinusoidal reference signals. The number of
training trials (i.e., Nt) and the number of channels (i.e., Nc) were set to 14 and 8, respectively.
Except for MsetCCA and IT-CCA, the other methods (i.e., standard CCA, CACC, MwayCCA,
L1-MCCA, and the combination method) use sine-cosine reference signals in CCA processes.
Overall, there was very little difference between different numbers of harmonics (i.e., from 1 to
3). Note that, the number of harmonics in CACC was set from 2 to 3, because it required at

Fig 2. Performance comparison of seven CCA-based SSVEP detectionmethods. (A) Averaged classification accuracy and (B) simulated ITRs across
subject using different data lengths. Error bars indicate standard errors. The asterisks indicate significant difference between different methods (*p<0.05).

doi:10.1371/journal.pone.0140703.g002
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least 2 harmonics to calculate three canonical correlation coefficients. For each method, one-
way repeated measures ANOVA showed there was no significant difference between different
numbers of harmonics. These results were consistent to the previous study that reported the
numbers of harmonics in the standard CCA method was not a crucial parameter for the classi-
fication performance [21]. Fig 3B shows the classification accuracy of 1s-long SSVEPs for each
method with different numbers of channels (i.e., Nc). The number of harmonics (i.e., Nh in Eq
(5)) in the sinusoidal reference signals and the number of training trials (i.e., Nt) were set to 3
and 14, respectively. For all methods, the classification accuracy tended to increase when the
number of channels increased. One-way repeated measures ANOVA showed significant differ-
ence between different numbers of channels for all methods except for MwayCCA, L1-MCCA
and IT-CCA (CCA: F(2,18) = 5.24, p<0.05; CACC: F(2,18) = 4.60, p<0.05; MwayCCA: F

Table 1. Classification accuracy (%) for each subject with 1s data length.

Subject CCA CACC MwayCCA L1-MCCA MsetCCA IT-CCA Combination Method

S1 23.89 18.89 32.22 30.00 30.00 51.11 78.89

S2 23.33 18.33 35.56 43.33 27.78 47.22 71.67

S3 28.89 33.33 41.67 45.00 79.44 84.44 94.44

S4 70.00 61.67 86.67 88.89 92.22 93.89 99.44

S5 68.33 71.67 85.56 87.78 94.44 91.11 100.00

S6 72.78 71.11 82.78 90.56 91.67 97.78 99.44

S7 59.44 55.00 72.22 67.22 70.56 88.33 98.33

S8 90.56 83.33 98.33 99.44 96.67 96.67 100.00

S9 62.78 65.56 80.56 82.78 89.44 92.78 98.89

S10 50.00 31.11 68.33 67.78 63.89 68.33 86.67

Mean±STD 55.00±22.95 51.00±23.63 68.39±23.56 70.28±23.74 73.61±25.89 81.17±18.84 92.78±10.22

doi:10.1371/journal.pone.0140703.t001

Fig 3. Comparison of accuracy with different parameters. Averaged classification accuracy for each method using (A) different numbers of harmonics
(Nh in Eq (5)) and (B) different number of channels (Nc) across subjects. Error bars indicate standard errors.

doi:10.1371/journal.pone.0140703.g003
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(2,18) = 2.39, p = 0.12; L1-MCCA: F(2,18) = 0.78, p = 0.22; MsetCCA: F(2,18) = 7.28, p<0.05;
IT-CCA: F(2,18) = 3.32, p = 0.06; Combination Method: F(2,18) = 4.11, p<0.05). These results
suggest that locating large number of electrodes in the occipital area leads to high classification
accuracy.

Simulated Online BCI Performance
Fig 2B shows the averaged stimulated ITR across all subjects with different data lengths. As
shown in Fig 2B, the difference of ITRs between these methods was consistent to classification
accuracy. The data length corresponding to the highest ITR was different (CCA: 2 s; CACC:
1.5s; MwayCCA: 1.5 s; L1-MCCA: 1.5 s; MsetCCA: 1.5 s; IT-CCA: 1 s; Combination Method: 1
s). The highest ITR obtained by the combination method was 91.68±20.32 bits/min. The ITRs
for the other training based methods (MwayCCA: 64.15±23.35 bits/min, L1-MCCA: 65.06
±22.97 bits/min, MsetCCA: 66.22±25.87 bits/min, IT-CCA: 71.37±28.72 bits/min) were signifi-
cantly higher than the standard CCA method (50.40±21.03 bits/min) and CACC (52.44±25.22
bits/min). The present ITR from the combination method is close to the results obtained in the
studies of high-speed BCI spellers (e.g., 105 bits/min for a 45-target speller [10]). The BCI per-
formance can be further improved by optimizing parameters such as the number of visual sti-
muli and the time duration for gaze shifting.

Discussions

Benefits from Incorporating Individual Calibration Data
Previous studies of VEP-based BCIs have suggested the effectiveness of incorporating individ-
ual calibration data in CCA-based detection to reduce misclassification rate caused by the
spontaneous EEG signals [5, 12, 28, 30–33]. Individual calibration data are required to main-
tain the phase information of SSVEPs in the reference signals. Fig 4 depicts examples of the

Fig 4. The waveforms of the training data of SSVEPs and sinusoidal reference signals at 12.25Hz after spatial filtering based on CCA for each
subject.

doi:10.1371/journal.pone.0140703.g004
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waveforms of the calibration data of SSVEPs (i.e., x in Eq (4)) and sinusoidal reference signals
(i.e., y in Eq (4)) at 12.25Hz after CCA-based spatial filtering for all ten subjects. The wave-
forms of individual calibration data and sinusoidal reference signals show consistent frequency
components. However, the phase and amplitude of the fundamental and harmonic compo-
nents are different from each subject. Therefore, SSVEP reference signals can be well character-
ized by individual training data. A more detailed analysis about the effects of incorporating
individual calibration data and the comparison of the feature values of each CCA-based
method using statistical analysis will be described in the following paragraph.

Fig 5 shows an example of averaged feature values for SSVEPs at 12.25Hz across all subjects.
The range of the feature values for standard CCA, MwayCCA, L1-MCCA, MsetCCA and
IT-CCA was from 0 to 1 because they were calculated as canonical correlation between the test
data and the reference signals. By using correlation coefficient between the test data and indi-
vidual templates instead of canonical correlation (see Eq (14)), the combination method
included negative feature values, leading to higher discriminability between target and non-tar-
get frequencies [12]. Since the feature value for CACC doesn’t follow the (Eq (3)), CACC was
excluded in this comparison. In this study, the stimulus sequences were designed with the joint
frequency and phase coding method, which aimed to make the SSVEPs at the neighboring fre-
quencies negatively correlated with the SSVEPs at the target frequency. The feature values
showed significantly improved discriminability between the target frequency and the neighbor-
ing frequencies. In the standard CCA method, the nearest neighbors of the target had higher
values than other non-target frequencies, resulting in higher misclassification rate caused by
spontaneous EEG activities. By using calibration data, the other methods are capable of
decreasing the feature values at the nearest neighbors. For example, compared with standard
CCA, MsetCCA and IT-CCA showed lower values at the nearest-neighboring frequencies and
similar values at the target frequency. R-square values obtained from 1s-long SSVEPs at
12.25Hz was shown in Fig 5B. The pattern of r-square values was consistent to the accuracy
and the simulated ITRs for all methods (CCA: 0.55±0.13, MwayCCA: 0.62±0.16, L1-MCCA:
0.64±0.13, MsetCCA: 0.65±0.17, IT-CCA: 0.67±0.14, Combination Method: 0.87±0.06). One-

Fig 5. Examples of feature values and r-square values for eachmethod. (A) Averaged feature values and (B) r-square values for SSVEPs at 12.25Hz.
The dotted line in (A) indicates the stimulus frequency. Error bars in each subfigure indicate standard errors. The asterisks indicate significant difference
between two different methods.

doi:10.1371/journal.pone.0140703.g005

CCA-Based Methods for Detecting SSVEPs

PLOSONE | DOI:10.1371/journal.pone.0140703 October 19, 2015 13 / 18



way repeated measures ANOVA showed a significant difference between these methods (F
(5,45) = 10.92, p<0.05), and post-hoc paired t-tests showed there were significant differences
between the combination method and the other methods. In summary, the following three fac-
tors in the combination method contribute to the improvement of discriminability between
target and non-target SSVEPs, which are coded using the joint frequency and phase coding
method: (1) CCA-based spatial filtering, (2) individual templates obtained through averaging
the training data, and (3) negative correlation calculated by correlation analysis.

Online Implementation
Compared with the standard CCA method, additional efforts for collecting calibration data are
required for the training based methods before system operation. MsetCCA needs at least two
training trials for each target, and the other methods require at least one training trial. In
CACC, the number of training data is determined in the calibration mode. Fig 6 shows the tar-
get identification accuracy with different numbers of training trials. Overall, the accuracy
increased when the size of training data increased. However, one-way repeated measures
ANOVA showed there was no significant difference between the numbers of training trials for
each method. Even with few training trials (e.g., Nt = 2 for MwayCCA, L1-MCCA, MsetCCA,
and IT-CCA; Nt = 1 for Combination Method), the accuracy of the training-based methods
was significantly improved over the standard CCAmethod. However, there was a large individ-
ual difference in the effect of training data size. For example, for the combination method, the
accuracy improvement between 1 and 14 trials for subjects S1 and S3 were 28.89% (50.00% to
78.89%) and 2.78% (91.67% to 94.44%) respectively. Zhang et al. [33] reported the number of
training trials required for MsetCCA was around 10. Nakanishi et al. [5] suggested 5 trials for a
32-target BCI system for the combination method. Given a trial length of 2 s (Target gazing
time: 1 s, Gaze shifting time: 1 s) in this study, the training data with 5 trials and 10 trials for
each target can be collected within 2 and 4 minutes, respectively.

Table 2 lists the averaged computational time required in single-trial analysis for each
method using different data lengths. The computational time was estimated using MATLAB

Fig 6. Averaged classification accuracy across subjects with different numbers of training trials for
eachmethod. Error bars indicate standard errors.

doi:10.1371/journal.pone.0140703.g006
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R2014a on Microsoft Windows 7 (with an Intel Xeon 3.7G processor). Note that the processing
of the calibration data (e.g., optimized reference signals) was completed before the estimation.
As shown in Table 2, CACC and the combination method required the longest computational
time (~20 ms) and the other methods required much shorter computational time (<5 ms).
The computational time depends on the dimension of reference signals and the length of data.
For example, MwayCCA and L1-MCCA, which used 1-dimensional reference signal, required
the shortest computational time. The dimension of reference signals in standard CCA,
MsetCCA, and IT-CCA were equal to the double of the number of harmonics (i.e., 2Nh = 6),
the number of training trials (i.e., Nt = 14), and the number of channels (i.e., Nc = 8) respec-
tively. CACC requires additional computational cost to the process of CCA for the nearest
neighbor classification. These results suggest that the calibration data based CCA methods are
feasible for online implementation.

Characteristics of CCA-based SSVEP Detection Methods
Table 3 summarizes the characteristics of the existing CCA-based SSVEP detection methods.
Except for the standard CCA method, all the other methods use individual calibration data to
optimize the reference signals for the CCA process. Sinusoidal reference signals are not
required in MsetCCA and IT-CCA. These two methods only employ individual calibration
data to find the reference signals for target identification. As discussed, the dimensions of the
reference signals for these methods are different, leading to slightly different computational

Table 2. Averaged computational time (ms) ± standard deviation for single-trial analysis across subjects.

Method Data length

d = 1 s d = 2 s d = 3 s d = 4 s

CCA 2.24±0.02 2.63±0.10 2.92±0.10 3.18±0.16

CACC 14.95±0.23 16.70±0.76 16.77±0.33 17.04±0.57

MwayCCA 1.70±0.02 1.97±0.05 2.14±0.05 2.36±0.09

L1-MCCA 1.69±0.01 2.00±0.05 2.14±0.04 2.30±0.04

MsetCCA 2.69±0.05 3.03±0.05 3.32±0.06 3.67±0.07

IT-CCA 2.32±0.02 2.74±0.03 2.97±0.09 3.22±0.07

Combination Method 14.64±0.10 17.25±0.45 18.11±0.20 19.29±0.49

doi:10.1371/journal.pone.0140703.t002

Table 3. Summary of CCA-based SSVEP Detection Methods.

Methods Calibration
data

Reference signals Dimension of reference
signals

Feature extraction References

CCA Not required Sinusoidal signals 2Nh × Ns Canonical correlation [15]

CACC Required Sinusoidal signals 2Nh × Ns Canonical correlation; Nearest
neighbor

[26]

PCCA Required Sinusoidal signals Nh × Ns Canonical correlation [29]

MwayCCA Required Sinusoidal signals; SSVEP
reference signal

2Nh × Ns; 1 × Ns Multiple linear regression [31]

L1-MCCA Required Sinusoidal signals; SSVEP
reference signal

2Nh × Ns; 1 × Ns Canonical correlation [32]

MsetCCA Required SSVEP reference signals Nt × Ns Canonical correlation [33]

IT-CCA Required Averaged SSVEP templates Nc × Ns Canonical correlation [30]

Combination
Method

Required Sinusoidal signals; Averaged
SSVEP templates

2Nh × Ns; Nc × Ns Canonical correlation; correlation
coefficient

[5]

doi:10.1371/journal.pone.0140703.t003
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costs (see Table 2). In addition, feature extraction methods obtain different features by calculat-
ing canonical correlation, multiple linear regression, and correlation coefficient. More details
for each method can be found in the corresponding references [5, 15, 29–33].

Conclusions
This study performed a quantitative comparison between the CCA-based target identification
methods for SSVEP-based BCIs. Seven methods, which were demonstrated separately in previ-
ous studies, were applied to the same 12-class SSVEP dataset were evaluated in terms of detec-
tion accuracy and simulated ITR. The standard CCA method, which does not require any
calibration data, showed the lowest detection performance. The other five methods, which
incorporated individual calibration data in SSVEP detection, all showed significantly improved
performance. Specifically, the employment of individual SSVEP templates in CCA (i.e.,
IT-CCA) was highly efficient for target detection. Furthermore, the combination method of
CCA and IT-CCA obtained the highest performance. The analysis of r-square values revealed
that the individual training data, which exhibit distincted temporal characteristics, could
enhance the discriminability of SSVEPs from background EEG activities, and thereby facilitate
the target identification. The analysis of different numbers of training trials showed that, com-
pared with the standard CCAmethod, these training methods only required very few trials
(e.g.,> = 1) to achieve performance improvement (see Fig 6). In addition, the short computa-
tional time for single-trial analysis (<20 ms, see Table 2) ensured that these methods are feasi-
ble for online BCI applications. In summary, this study suggests that individual calibration
data are highly efficient for the detection of SSVEPs, while the combination method of CCA
and IT-CCA is especially promising for high-speed SSVEP-based BCIs. Note that these meth-
ods can be further combined with each other. Since the goal of this study is to perform a com-
prehensive comparison of the existing methods, the combinations that can further improve the
performance of BCIs will be investigated in our future work.

Author Contributions
Conceived and designed the experiments: MN YW Y-TW. Performed the experiments: MN Y-
TW YW. Analyzed the data: MN YW.Wrote the paper: MN YW T-PJ.

References
1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM, Brain-computer interfaces for

communication and control. Clin Neurophysiol. 2002; 113: 767–791. PMID: 12048038

2. Gao S, Wang Y, Gao X, Hong B, Visual and auditory brain computer interfaces. IEEE Trans Biomed
Eng. 2014; 61: 1436–1447. doi: 10.1109/TBME.2014.2300164 PMID: 24759277

3. Wang Y, Gao X, Hong B, Jia C, Gao S, Brain-computer interfaces based on visual evoked potentials:
feasibility of practical system design. IEEE EMBMag. 2008; 27: 64–71.

4. Vialatte FB, Maurice M, Dauwels J, Cichocki A, Steady-state visually evoked potentials: Focus on
essential paradigms and future perspectives. Prog Neurobiol. 2010; 90: 418–438. doi: 10.1016/j.
pneurobio.2009.11.005 PMID: 19963032

5. Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP, A high-speed brain speller using steady-state
visual evoked potentials. Int J Neural Syst. 2014; 24: 1450019. doi: 10.1142/S0129065714500191
PMID: 25081427

6. Zhu D, Bieger J, Molina GG, Aarts RM, A survey of stimulation methods used in SSVEP-based BCIs.
Comput Intell Neurosci. 2010; 2010: 702357.

7. Zhang Y, Xu P, Liu T, Hu J, Zhang R, Yao D, Multiple frequencies sequential coding for SSVEP-based
brain-computer interface. PLoS ONE. 2012; 7: e29519. doi: 10.1371/journal.pone.0029519 PMID:
22412829

CCA-Based Methods for Detecting SSVEPs

PLOSONE | DOI:10.1371/journal.pone.0140703 October 19, 2015 16 / 18

http://www.ncbi.nlm.nih.gov/pubmed/12048038
http://dx.doi.org/10.1109/TBME.2014.2300164
http://www.ncbi.nlm.nih.gov/pubmed/24759277
http://dx.doi.org/10.1016/j.pneurobio.2009.11.005
http://dx.doi.org/10.1016/j.pneurobio.2009.11.005
http://www.ncbi.nlm.nih.gov/pubmed/19963032
http://dx.doi.org/10.1142/S0129065714500191
http://www.ncbi.nlm.nih.gov/pubmed/25081427
http://dx.doi.org/10.1371/journal.pone.0029519
http://www.ncbi.nlm.nih.gov/pubmed/22412829


8. Kimura Y, Tanaka T, Higashi H, Morikawa N, SSVEP-based brain-computer interface using FSK-mod-
ulated visual stimuli. IEEE Trans Biomed Eng. 2013; 60: 2831–2838. doi: 10.1109/TBME.2013.
2265260 PMID: 23739780

9. Wang Y, Wang YT, Jung TP, Visual stimulus design for high-rate SSVEP. Electron Lett, 2010; 46:
1057–1058.

10. Chen X, Chen Z, Gao S, Gao X, A high-ITR SSVEP based BCI speller. Brain Comput Interfaces. 2014;
1: 181–191.

11. Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP, Generating visual flickers for eliciting robust
steady-state visual evoked potentials at flexible frequencies using monitor refresh rate. PLoS ONE.
2014; 9: e99235. doi: 10.1371/journal.pone.0099235 PMID: 24918435

12. Chen X, Wang Y, Nakanishi M, Jung TP, Gao X, Hybrid frequency and phase coding for a high-speed
SSVEP-based BCI speller. In: Proc 36th Ann Int Conf IEEE Eng Med Biol Soc. 2014. pp. 3993–3996.

13. Cheng M, Gao X, Gao S, Xu D, Design and implementation of a brain-computer interface with high
transfer rate. IEEE Trans Biomed Eng. 2002; 49: 1181–1186. PMID: 12374343

14. Wang Y, Wang R, Gao X, Hong B, Gao S, A practical VEP-based brain-computer interface. IEEE Trans
Neural Syst Rehabil Eng. 2006; 14: 234–239. PMID: 16792302

15. Lin Z, Zhang C, WuW, Gao X, Frequency recognition based on canonical correlation analysis for
SSVEP-based BCIs. IEEE Trans Biomed Eng. 2007; 54: 1172–1176. PMID: 17549911

16. Friman O, Volosyak I, Graser A, Multiple channel detection of steady-state visual evoked potentials for
brain-computer interfaces. IEEE Trans Biomed Eng. 2007; 54: 742–750. PMID: 17405382

17. Parini S, Maggi L, Turconi AC, Andreoni G, A robust and self-paced BCI system based on a four class
SSVEP paradigm: Algorithms and protocols for a high-transfer-rate direct brain communication. Com-
put Intell Neurosci. 2009; 2009: 864564.

18. Zhang Y, Xu P, Cheng K, Yao D, Multivariate synchronization index for frequency recognition of
SSVEP-based brain-computer interface. J Neurosci Methods. 2014; 221: 32–40. doi: 10.1016/j.
jneumeth.2013.07.018 PMID: 23928153

19. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A, SSVEP recognition using common feature analysis in
brain–computer interface. J Neurosci Methods. 2015; 244: 8–15. doi: 10.1016/j.jneumeth.2014.03.012
PMID: 24727656

20. Zhang Y, Li D, Zhang R, Yao D, Zhang Y. Xu P, An efficient frequency recognition method based on
likelihood ratio test for SSVEP-based BCI. Comput Meth Methods Med. 2014; 2014: 908719.

21. Bin G, Gao X, Yan Z, Hong B, Gao S, An online multi-channel SSVEP-based brain-computer interface
using a canonical correlation analysis method. J Neural Eng. 2009; 6: 046002. doi: 10.1088/1741-
2560/6/4/046002 PMID: 19494422

22. NanW,Wang CM,Wang B, Wan F, Mak PU, Mak PI, et al., A comparison of minimum energy combina-
tion and canonical correlation analysis for SSVEP detection. In: Proc 5th Int IEEE EMBS Neural Eng
Conf. 2011. pp. 469–472.

23. Tello RMG, Muller SMT, Bastos-Filho T, Ferreira A, A comparison of techniques and technologies for
SSVEP classification. In: Proc 5th ISSNIP-IEEE Biosig Biorobot Conf Biosig and Robot Better Safer
Living. 2014. pp. 1–6.

24. Bin G, Gao X, Wang Y, Hong B, Gao S, Research frontier: VEP-based brain-computer interface: time,
frequency, and code modulations. IEEE Comput Intell Mag. 2009; 4: 22–26.

25. Wang YT, Wang Y, Jung TP, A cell-phone-based brain-computer interface for communication in daily
life. J Neural Eng. 2011; 8: 025018. doi: 10.1088/1741-2560/8/2/025018 PMID: 21436517

26. Poryzala P, Materka A, Cluster analysis of CCA coefficients for robust detection of the asynchronous
SSVEPs in brain-computer interfaces. Biomed Sig Proc Cont. 2014; 10: 201–208.

27. Cao L, Ju Z, Li J, Jian R, Jiang C, Sequence detection analysis based on canonical correlation for
steady-state visual evoked potential brain computer interfaces. J Neurosci Methods. 2015; 253: 10–17.
doi: 10.1016/j.jneumeth.2015.05.014 PMID: 26014663

28. Wang Y, Nakanishi M, Wang YT, Jung TP, Enhancing detection of steady-state visual evoked poten-
tials using individual training data. In: Proc 36th Ann Int Conf IEEE Eng Med Biol Soc. 2014. pp. 3037–
3040.

29. Pan J, Gao X, Duan F, Yan Z, Gao S, Enhancing the classification accuracy of steady-state visual
evoked potential-based brain-computer interfaces using phase constrained canonical correlation anal-
ysis. J Neural Eng. 2011; 8: 036027. doi: 10.1088/1741-2560/8/3/036027 PMID: 21566275

30. Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S, A high-speed BCI based on code modulation VEP. J Neu-
ral Eng. 2011; 8: 025015. doi: 10.1088/1741-2560/8/2/025015 PMID: 21436527

CCA-Based Methods for Detecting SSVEPs

PLOSONE | DOI:10.1371/journal.pone.0140703 October 19, 2015 17 / 18

http://dx.doi.org/10.1109/TBME.2013.2265260
http://dx.doi.org/10.1109/TBME.2013.2265260
http://www.ncbi.nlm.nih.gov/pubmed/23739780
http://dx.doi.org/10.1371/journal.pone.0099235
http://www.ncbi.nlm.nih.gov/pubmed/24918435
http://www.ncbi.nlm.nih.gov/pubmed/12374343
http://www.ncbi.nlm.nih.gov/pubmed/16792302
http://www.ncbi.nlm.nih.gov/pubmed/17549911
http://www.ncbi.nlm.nih.gov/pubmed/17405382
http://dx.doi.org/10.1016/j.jneumeth.2013.07.018
http://dx.doi.org/10.1016/j.jneumeth.2013.07.018
http://www.ncbi.nlm.nih.gov/pubmed/23928153
http://dx.doi.org/10.1016/j.jneumeth.2014.03.012
http://www.ncbi.nlm.nih.gov/pubmed/24727656
http://dx.doi.org/10.1088/1741-2560/6/4/046002
http://dx.doi.org/10.1088/1741-2560/6/4/046002
http://www.ncbi.nlm.nih.gov/pubmed/19494422
http://dx.doi.org/10.1088/1741-2560/8/2/025018
http://www.ncbi.nlm.nih.gov/pubmed/21436517
http://dx.doi.org/10.1016/j.jneumeth.2015.05.014
http://www.ncbi.nlm.nih.gov/pubmed/26014663
http://dx.doi.org/10.1088/1741-2560/8/3/036027
http://www.ncbi.nlm.nih.gov/pubmed/21566275
http://dx.doi.org/10.1088/1741-2560/8/2/025015
http://www.ncbi.nlm.nih.gov/pubmed/21436527


31. Zhang Y, Zhou G, Zhao Q, Onishi A, Jin J, Wang X, et al., Multiway canonical correlation analysis for
frequency components recognition in SSVEP-based BCIs. In: Proc 18th Int Conf Neural Inform Pro-
cess. 2011. pp. 287–295.

32. Zhang Y, Zhou G, Jin J, Wang M,Wang X, Cichocki A, L1-Regularized multiway canonical correlation
analysis for SSVEP-based BCI. IEEE Trans Neural Syst Rehabil Eng. 2013; 21: 887–896. doi: 10.
1109/TNSRE.2013.2279680 PMID: 24122565

33. Zhang Y, Zhou G, Jin J, Wang X, Cichocki A, Frequency recognition in SSVEP-based BCI using multi-
set canonical correlation analysis. Int J Neural Syst. 2014; 24: 1450013. doi: 10.1142/
S0129065714500130 PMID: 24694168

34. Jia C, Gao X, Hong B, Gao S, Frequency and phase mixed coding in SSVEP-based brain-computer
interface. IEEE Trans Biomed Eng. 2011; 58: 200–206. doi: 10.1109/TBME.2010.2068571 PMID:
20729160

35. Brainard DH, The psychophysics toolbox. Spat Vis. 1997; 10: 433–436. PMID: 9176952

CCA-Based Methods for Detecting SSVEPs

PLOSONE | DOI:10.1371/journal.pone.0140703 October 19, 2015 18 / 18

http://dx.doi.org/10.1109/TNSRE.2013.2279680
http://dx.doi.org/10.1109/TNSRE.2013.2279680
http://www.ncbi.nlm.nih.gov/pubmed/24122565
http://dx.doi.org/10.1142/S0129065714500130
http://dx.doi.org/10.1142/S0129065714500130
http://www.ncbi.nlm.nih.gov/pubmed/24694168
http://dx.doi.org/10.1109/TBME.2010.2068571
http://www.ncbi.nlm.nih.gov/pubmed/20729160
http://www.ncbi.nlm.nih.gov/pubmed/9176952

