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Abstract

Rapidly developing sequencing technologies and declining costs have made it possible

to collect genome-scale data from population-level samples in nonmodel systems.

Inferential tools for historical demography given these data sets are, at present, under-

developed. In particular, approximate Bayesian computation (ABC) has yet to be

widely embraced by researchers generating these data. Here, we demonstrate the prom-

ise of ABC for analysis of the large data sets that are now attainable from nonmodel

taxa through current genomic sequencing technologies. We develop and test an ABC

framework for model selection and parameter estimation, given histories of three-pop-

ulation divergence with admixture. We then explore different sampling regimes to

illustrate how sampling more loci, longer loci or more individuals affects the quality

of model selection and parameter estimation in this ABC framework. Our results show

that inferences improved substantially with increases in the number and/or length of

sequenced loci, while less benefit was gained by sampling large numbers of individu-

als. Optimal sampling strategies given our inferential models included at least 2000

loci, each approximately 2 kb in length, sampled from five diploid individuals per

population, although specific strategies are model and question dependent. We tested

our ABC approach through simulation-based cross-validations and illustrate its appli-

cation using previously analysed data from the oak gall wasp, Biorhiza pallida.
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Introduction

Approximate Bayesian computation (ABC) has enjoyed

increasing popularity as a method for model compari-

son and parameter estimation in population genetics

since its introduction by Tavar�e et al. (1997). Published

reviews cover both a general introduction to ABC

(Csill�ery et al. 2010; Sunn�aker et al. 2013) and technical

aspects of its implementation (Marin et al. 2011; Blum

et al. 2012). Briefly, ABC provides an approximation of

the posterior distribution of model probabilities and/or

parameter values by simulating data with parameters

drawn from specified prior distributions and retaining

values that produce data sets similar to the observed

data. The similarity between observed and simulated

data sets is measured by comparing summary statistics

calculated from both types of data. Given sufficient

summary statistics (i.e. statistics that capture all informa-

tion in the data for a given parameter or model) and infi-

nite simulations, the ABC posterior distribution should

approach the true posterior in the limit of zero difference

between summary statistics for observed and simulated

data. Free from having to evaluate the likelihood func-

tion, ABC allows Bayesian inference while accommodat-
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ing complex demographic models (Beaumont et al.

2002; Csill�ery et al. 2010; Prado-Martinez et al. 2013).

Recent developments and applications include hierar-

chical Bayesian analyses (Hickerson et al. 2006a, b; Ba-

zin et al. 2010; Huang et al. 2011), machine learning

regression techniques (Blum & Franc�ois 2010) and

empirical assessments of highly complex models in nat-

ural systems (Ilves et al. 2010; Singhal & Moritz 2012;

He et al. 2013; Robinson et al. 2013).

Major challenges in ABC include the selection of suf-

ficient summary statistics (which may not be available

for the parameters or models considered; Csill�ery et al.

2010; Aeschbacher et al. 2012) and the high computa-

tional cost of simulating the model-specific data to

which observed values are compared. This cost is par-

ticularly significant for genome-scale data (Sousa & Hey

2013), which are nevertheless highly attractive for

demographic inference because relevant parameters are

best estimated from samples of many genes (Felsenstein

2006; Li & Jakobsson 2012). Because outbred diploid

genomes comprise recombining segments of DNA

inherited from many ancestors (Gronau et al. 2011), gen-

ome-level data sets for even small numbers of individu-

als should capture the diversity of coalescent histories

across loci that reflects population history (Lohse et al.

2011; Leach�e et al. 2013; Hearn et al. 2014). In fact, the

information content of genomic data allows inference

from the smallest possible samples of one haploid indi-

vidual per population, as specifically explored by Hearn

et al. (2014). Declining sequencing costs (Pool et al.

2010) and development of individual barcoding meth-

ods that allow population-level sampling (Baird et al.

2008; Peterson et al. 2012) increase the feasibility of gen-

ome-level sampling of nonmodel taxa.

The inherent loss of information associated with com-

pressing data into summary statistics makes full-likeli-

hood methods preferable to ABC (Robert et al. 2011), as

these generally produce narrower confidence intervals

and more accurate parameter estimates (Beaumont et al.

2002). Several analytical alternatives can handle geno-

mic data sets (Sousa & Hey 2013) including the sum-

mary statistic-based ABBA–BABA test (Durand et al.

2011) to discriminate admixture from incomplete line-

age sorting (Pickrell & Pritchard 2012; Eaton & Ree

2013), composite likelihood methods that exploit the site

frequency spectrum (SFS; Gutenkunst et al. 2009; Luki�c

et al. 2011; Luki�c & Hey 2012; Excoffier et al. 2013) and

full-data genealogy sampling approaches that estimate

parameters of the widely used isolation with migration

(IM) model (Wang & Hey 2010). Similarly, the likeli-

hood-based methods of Lohse et al. (2011) and Yang

(2010) allow analysis of individual genomes collected

from each of up to three populations to compare mod-

els of divergence with gene flow. The Lohse et al.

method has been applied to study secondary contact

among refugial populations (Hearn et al. 2014) and

admixture between species (Lohse & Frantz 2014).

An important feature, though, of several likelihood-

based methods (e.g. Wang & Hey 2010; Yang 2010; Loh-

se et al. 2011) is that they currently require knowledge

of the ancestral state for variable sites to identify shared

derived alleles between pairs of populations. It is other-

wise impossible to distinguish shared high-frequency-

derived alleles from high-frequency ancestral-state

alleles, a distinction that can help discriminate models

of post-divergence gene flow from incomplete lineage

sorting (e.g. ABBA–BABA test; Durand et al. 2011) and

help estimation of the timing and magnitude of gene

flow between populations (e.g. Gutenkunst et al. 2009;

Luki�c & Hey 2012).

Further, despite their computational efficiency and

use of the full data set, methods such as Lohse et al.’s

are presently limited to analysis of haploid or phased

diploid genomes for small numbers of individuals.

Thus, for a triplet of populations, the Lohse et al. (2011)

method can currently only incorporate one individual

from each population (Hearn et al. 2014). Such minimal

sampling precludes estimation of population-level

parameters (e.g. effective population size; Lohse et al.

2012), limiting the complexity of the demographic mod-

els that can be considered. Alternatively, composite

likelihood methods that exploit the SFS (Gutenkunst

et al. 2009; Excoffier et al. 2013) assume the data com-

prise independent (i.e. unlinked) single nucleotide poly-

morphisms (SNPs), an unrealistic assumption for most

genomic data sets that prevents such methods from

exploiting information derived from linkage (e.g. Pool

& Nielsen 2009).

Given current limitations of alternatives, ABC

remains attractive for analysis of genome-scale data sets

due to its simplicity, flexibility and ability to accommo-

date complex models (Franc�ois et al. 2008; Wollstein

et al. 2010; Li & Jakobsson 2012; Nadachowska-Brzyska

et al. 2013; Prado-Martinez et al. 2013; Roux et al. 2013).

Here, we introduce and test an ABC method to study

population divergence and speciation that avoids these

limitations by allowing the analysis of unphased dip-

loid data sets for multiple individuals per population,

without the need for outgroup identification of ancestral

states. Our approach imposes no sampling limits on the

number of populations or individuals, allowing popula-

tion-level parameters (i.e. local Ne) to be incorporated

and estimated. We investigate the utility of ABC for

demographic inference from population genomic data,

using simulation-based validations to examine the influ-

ence of sampling attributes of the data set (number and

length of loci, number of individuals) on model selec-

tion and parameter estimation. We also apply our ABC
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framework to a population genomic data set (Hearn

et al. 2014) generated specifically for application of the

likelihood-based method of Lohse et al. (2011) and com-

pare the results of the two approaches. Our study dem-

onstrates the promise of ABC when applied to

population genomic data sets and provides sampling

strategy recommendations for future studies.

Materials and methods

Models

Our ABC approach uses data simulated under seven

multi-population divergence models with post-diver-

gence admixture between pairs of populations modelled

as a continuous process over a specified time window

(Fig. 1). Our models are limited to three populations,

but the approach is extendable to any number. The sim-

ulated models included up to six parameters: scaled

subpopulation diversity (hS = 4NelL, where l is the per

base pair rate of mutation and L is the length of the

locus), rate of gene flow during the period of admixture

(4Nm), the time in the past at which gene flow ceased

(Tgf), the duration of admixture (Tdur) and the timing of

population divergence events (T1 and T2).

Summary statistics

Coalescent simulations and per locus summary statistics

were simulated and calculated in msABC (Pavlidis et al.

2010). The statistics were based on the distributions

(across loci) of the four mutually exclusive categories of

segregating sites in two populations (Wakeley & Hey

1997): specifically, the proportion of segregating sites

categorized as fixed differences, shared polymorphisms

and private polymorphisms in each pairwise population

comparison. We also recorded the number of sites seg-

regating in each population individually and in the

total combined sample. The resulting 13 statistics per

locus are similar to those used successfully in recent

ABC analyses of population genomic data (Ross-Ibarra

et al. 2008, 2009; Roux et al. 2011, 2013; Nadachowska-

Brzyska et al. 2013; Prado-Martinez et al. 2013). Here,

we use the first four distribution moments for each sta-

tistic across loci, giving 52 summary statistics for ABC

model selection and parameter estimation. We chose

moments over quantiles because of expected colinearity

among quantiles calculated from the same distribution,

and the invariance across loci for 0th and 100th percen-

tiles of the distributions of percentage-based statistics.

Low numbers of segregating sites per locus also

resulted in particularly strong correlations among quan-

tiles for distributions of these statistics (data not

shown).

Summary statistics were calculated in R (R Develop-

ment Core Team 2008) using core functions and the

‘psych’ package (Revelle 2013). To reduce the dimen-

sionality of our 52 summary statistics (Blum et al. 2012),

we applied the neural network method of Blum &

Franc�ois (2010) for parameter estimation in both simu-

Fig. 1 Candidate set of simulated mod-

els. Model parameters included the sub-

population scaled mutation rate (h), the

split times between populations (T1 and

T2), the magnitude of gene flow during

admixture (4Nm), the timing of gene flow

(Tgf) and its duration (Tdur).
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lated and empirical data sets. We further examined the

influence of the number of summary statistics used by

testing the performance of ABC-based model selection

and parameter estimation using only the distribution

means and not the higher moments, for two of the sim-

ulated sampling schemes.

Simulation study

We used ‘pseudo-observed data set’ (PODS) experi-

ments to assess the influence of alternative sampling

schemes on parameter estimation and correct model

identification. This is essential to identify how well an

ABC method approximates model posterior probabili-

ties given summary statistics that may be insufficient

for model comparisons (Robert et al. 2011). Such

approaches are often implemented a posteriori to assess

the robustness of ABC conclusions (Barr�es et al. 2012;

Roux et al. 2013); here, we apply them to assess our

ABC framework and to characterize the influences of

sampling attributes on the accuracy of model choice

and parameter estimation.

We simulated data under 14 sampling strategies,

varying in number of diploid individuals sampled per

population (1–50), locus number (200–10 000) and locus

length (200 bp – 5 kb) (Table S1, Supporting informa-

tion). We did not examine all possible combinations of

sampling attributes; the origin of the axes we did

explore centred around data sets comprising 1000 loci,

each 500 bp long, for one diploid individual in each of

three populations. We note that varying locus length

across simulations equates to varying mutation rates or

effective population sizes, as these parameters all con-

tribute to the scaled population mutation rate parameter

(h). Our alternative sampling schemes differed in the

total number of SNPs in the data set (Table S1), which

increased when sampling more loci, longer loci or more

individuals.

Our simulations assumed uniform mutation and

introgression rates across the genome, no recombination

within or linkage between loci, and equal and constant

effective population sizes. While ignoring recombina-

tion within loci is common in population genetics (e.g.

Beerli & Felsenstein 1999; Nielsen & Wakeley 2001), this

practice can lead to estimator bias. Hearn et al. (2014)

used simulations with varying recombination rates to

show that, while biases in parameter estimates were

introduced as the recombination rate surpassed the

mutation rate, the correct model of population history

was still recovered by their likelihood-based analysis.

Further, analyses of data sets with loci trimmed to 2 kb,

1 kb and 500 bp all supported the same model and pro-

duced similar parameter estimates, indicating that

undetected recombination within loci of these lengths

did not severely bias their parameter estimates. Our

simulated sequence lengths span the range used by

Hearn et al. and extend to 5 kb. Although results at this

upper limit may be unreliable for organisms with high

recombination rates, researchers should be able to

choose sequencing strategies that provide locus lengths

and numbers that minimize impacts of recombination

and linkage for their target organism(s).

Our PODS cross-validation experiments simulated

200,000 random prior draws from each of the seven

models in Fig. 1 (1.4 million data sets per sampling

scheme, 19.6 million across all 14). Parameter prior dis-

tributions were identical across models (Table 1). Priors

for h assumed a mutation rate of 1.75 9 10�9, half that

estimated for Drosophila melanogaster (Keightley et al.

2009) to match Hearn et al. (2014), and include effective

population sizes from 2000 to 100,000. All analyses were

conducted using the ‘abc’ R package (Csill�ery et al.

2012). To assess model selection performance, we used

100 ‘leave one out’ cross-validation replicates per

model, wherein a single simulated data set was

removed from the reference table and used as observed

data. To estimate posterior model probabilities for these

PODS, we used the multinomial logistic regression

method (Beaumont 2008), with tolerance set to 0.1%

(1400 retained data sets). For each model and sampling

strategy combination, we recorded the mean posterior

probability across PODS and the proportion of repli-

cates where the true model received strong support (Ba-

yes factor >10 in pairwise comparisons with competing

models; Jeffreys 1961). Bayes factors for the latter mea-

sure of support were calculated as the posterior proba-

bility of the true model divided by that for the model

Table 1 Prior distributions used to simulate data sets for the

present study (U – uniform distribution, E – exponential distri-

bution). Theta is specified assuming a sequence locus of 500 bp

for the simulation study and 1000 bp for the Biorhiza pallida

analysis

Model

parameter

Prior distribution

(simulations)

Model

parameter

Prior

distribution

(B. pallida)

h U(0.007–0.35) h U(0.01–1.4)
T1 U(0.4–1 | > Tgf) T1 U(0.1–4 | T1 >

Tgf)*

T2 U(1–4) T2 U(0.1–4 | T2 >
T1)*

Tgf U(0.1–0.5) Tgf U(0.1–2)

Tdur U(0.01–0.1) F U(0–1)

Nm E(0.1)

*Distribution given is for models with recent admixture (A, B,

D and E). For models of ancient admixture (C and F), T1 was

U(0.1–4), T2 was U(T1 – 4) and Tgf was U(T1 – T2).
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with the highest posterior probability from the remain-

ing candidates.

To assess the quality of parameter estimates resulting

from our ABC approach, we used ABC to estimate

parameter values for PODS simulated under four of the

competing models (‘A’, ‘C’, ‘D’ and ‘ISO’), recognizing

that our full set of models are inherently related in

pairs (e.g. model D and E differ only in the identity of

the population receiving migrants from population 1,

similar pairs are AB and CF; Fig. 1). Our approach

incorporates one model from each pair. For each sam-

pling scheme and model, we simulated 100 PODS by

randomly drawing parameter values from the prior dis-

tributions used to generate the ABC reference table

(Table 1). Parameter posterior distributions were esti-

mated using the neural network method in the ‘abc’ R

package (Csill�ery et al. 2012), with tolerance set to 0.5%

(1000 retained data sets). We then calculated the predic-

tion error (e) for each parameter under each sampling

scheme and compared the observed prediction error to

that expected based on its prior distribution (see

Appendix S1, Supporting information). For further

assessment of the quality of parameter estimates

obtained by our ABC approach, we assessed the cover-

age property (Prangle et al. 2014) and widths of 95%

highest probability density (HPD) intervals of the esti-

mated posterior distributions for each parameter.

Empirical application

As an empirical application of our approach, we analy-

sed genome-level data for an oak gallwasp (Biorhiza

pallida) (Hearn et al. 2013, 2014), sampled from three

regional populations (Iran, the Balkans and the Iberian

peninsula) spanning the Western Palaearctic (Rokas

et al. 2001). Previous work suggests that gallwasp com-

munities, along with their Quercus hosts, were restricted

to these southern refugia during Pleistocene glacial

maxima (Stone et al. 2002; Rokas et al. 2003). The full

data set of Hearn et al. (2014) comprised two haploid

males from each of the Balkans and Iberia and one male

from Iran (Fig. S1, Supporting information), each

sequenced to <2-fold coverage (see Hearn et al. for a

pipeline allowing generation of appropriate sequence

loci from de novo genome sequence). To facilitate com-

parisons between our ABC results and those using max-

imum likelihood in Hearn et al. (2014), we reduced

locus lengths to 1 kb, but instead of using a single indi-

vidual per refuge, as in Hearn et al. (2014), we included

all five individuals to make use of within-population

diversity information in our ABC analysis. This configu-

ration resulted in a total of 1203 alignable loci (from the

2231 loci analysed in Hearn et al. 2014). Pooling individ-

uals from separate sites within refugia is justified by

the demonstration by Hearn et al. that data sets for dif-

ferent individuals collected from the Iberian and Balkan

refugia supported the same model of population history

and produced similar parameter estimates.

Our ABC analysis also employed the best-supported

three-population topology identified by Hearn et al.

(2014). Although previous studies have favoured an

eastern origin for members of the oak gall community

(Rokas et al. 2003; Stone et al. 2007, 2009), the analysis

by Hearn et al. (2014) unexpectedly supported older

divergence of the Iberian population and more recent

divergence between Balkan and Iranian populations.

Despite substantial reduction in the number of aligned

sequence loci in our data set, the dominant class of

SNPs in the five-individual data set still grouped the

Balkan and Iranian populations together, to the exclu-

sion of the Iberian samples (Table S2, Supporting infor-

mation). We therefore limited our analysis by

comparing seven models, similar to those depicted in

Fig. 1, instead of all 21 possible model x topology com-

binations (as in Hearn et al. 2014). Models were modi-

fied slightly from those shown in Fig. 1 to facilitate

direct comparisons with the results obtained by Hearn

et al. (2014). Specifically, we simulated admixture as an

instantaneous event, thus replacing the duration (Tdur)

and rate (Nm) of gene flow with a single parameter, the

admixture proportion (F).

Because our summary statistic strategy required

more than one sequence per locus per population, our

empirical analysis of the B. pallida data set employed

fewer summary statistics calculated using the single

haploid individual sampled from Iran (the putative

Eastern refuge). Specifically, our empirical application

employed a total of 40 summary statistics (Table S3,

Supporting information), due to the lack of information

on segregating sites in, and shared polymorphisms

with, the Iranian population. Simulations for the

empirical application in B. pallida were conducted

using a modified version of msABC (Pavlidis et al.

2010). Using these 40 summary statistics, we obtained

the approximate posterior probabilities of the seven

models and posterior distributions for parameters of

the most probable model. The prior distributions for

this analysis (Table 1) are based on biological knowl-

edge of the system and span the likelihood estimates

of Hearn et al. (2014). To better report uncertainty in

the model posterior probabilities, we conducted model

comparisons using a range of tolerances that accepted

between 1000 and 10 000 data sets from the simulation

reference table. We used both simple rejection and

multinomial logistic regression (Beaumont 2008) meth-

ods for model selection, and the neural network

method for parameter estimation (with a tolerance of

0.1%, 2000 retained simulations). To more fully explore
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posterior distributions, we simulated two million data

sets per model.

Prior to model selection and parameter estimation,

we used a principal components analysis (PCA) of sum-

mary statistics for 50 000 simulations per model to

check that model priors were properly specified and

could generate summary statistics similar to those cal-

culated from the observed data. We used the ‘prcomp’

function in R (R Development Core Team 2008) to

graphically verify that observed summary statistics

clustered with the reference table entries for the simu-

lated data sets. Following model selection, we used

PCA with 1001 posterior predictive simulations (Gel-

man et al. 2003), with the same combinations of models

and parameter values used to simulate accepted data

sets, to compare the fit of the models receiving posterior

support.

Results and discussion

As expected, both locus length and number influenced

ABC performance in model selection and parameter

estimation. In contrast, inference accuracy showed rela-

tively minor improvement when sampling more indi-

viduals. These results match previous studies showing

improvements in parameter estimation with larger

numbers of loci (e.g. Felsenstein 2006; Li & Jakobsson

2012). Our consideration of locus length, number and

number of sampled individuals provides general sam-

pling guidance for those seeking to apply ABC to com-

pare models of post-divergence gene flow.

Our ABC approach is extremely flexible, requiring no

ancestral-state information or phasing of alleles. Fur-

thermore, in principle, it is extendable to more than

three populations and greater model complexity,

including variation in local Ne among populations, pop-

ulation expansion after divergence or multiple periods

of admixture. However, further simulation-based vali-

dations beyond the scope of this study are necessary to

assess performance of this framework for more parame-

ter-rich models. We focused deliberately on simpler

models for which likelihood-based analytical methods

are already available (Lohse et al. 2011), allowing us to

compare likelihood-based (Hearn et al. 2014) and ABC-

based results for the same system. Below, we discuss

our findings in terms of the two separate goals of

model selection and parameter estimation and summa-

rize results of our empirical analysis of genomic data

for Western Palaearctic populations of B. pallida.

Model selection

Mean posterior probability of the true model and the

number of replicates strongly supporting the true

model increased with increasing locus size, locus num-

ber and the number of diploid individuals sampled

(Fig. 2). However, these sampling aspects varied in

their impact on model selection. The mean posterior

probability of the true model increased sharply as locus

number increased from 200 to 2000, and as locus size

increased from 500 bp to 2 kb, but more modestly with

increasing numbers of individuals (Fig. 2). Most of the

gain in posterior probability for the simulated model

was realized with samples as small as five diploid indi-

viduals (Fig. 2). The increase in confidence associated

with sampling five versus one diploid individual per

population was sometimes substantial; mean posterior

probabilities of the true model were 0.036–0.113 higher

for samples of five vs. one individual. The proportion

of the 100 cross-validation replicates strongly support-

ing the true model showed a similar relationship

(Fig. 2). Comparing simulations for the smallest and

largest values of each sampling parameter, the average

(across models) number of data sets strongly support-

ing the simulated model increased by 22.5% (individu-

als), 92.2% (locus length) and 148.9% (locus number)

(Fig. 2).

Cross-validation revealed inherent differences in the

identifiability of the seven simulated models. Models D

and E were consistently the easiest to identify, and

models C and F the most difficult. These results are

intuitive, as models D and E include migration from

the more diverged population into one of the two more

closely related populations. Such migration does not

homogenize the diverged population with both sister

populations. In contrast, for models A and B, migration

in the opposite direction reduces genetic divergence

between the diverged population and both derived sis-

ter populations due to the latters’ shared ancestry,

reducing the signal available for model discrimination.

Models C and F are only distinguished by a difference

in the direction of admixture predating the divergence

of the sister populations (Fig. 1). Misclassification errors

for these models were typically with respect to the

direction of admixture while being correct about its tim-

ing: that is, model C data sets that were misclassified

were mostly ascribed to model F and vice versa (see

Fig. 3 for an example).

Parameter estimation

Prediction errors for parameter estimation declined

with increasing locus number and length (Figs 4 and

S6–S13, Supporting information), while the number of

individuals sampled had relatively little effect (Figs 4

and S2–S5, Supporting information). Most of the

improvement occurred as locus number or size

increased from the smallest to intermediate values.
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Thus, as for model selection, improvements with

increasing sample size were subject to diminishing

returns. Across the simulated models and their parame-

ters, there was little decrease in parameter prediction

error for samples of more than 2000 loci (locus length

held constant at 500 bp). Similarly, locus lengths above

2 kb rarely led to large decreases in prediction error

(Fig. 4).
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Fig. 2 Results for model selection analyses. Plots in the left-hand column give the mean posterior probability of the true model for
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The coverage of the 95% HPD intervals was greater

than 80% across all parameters, simulated models and

sampling schemes considered (Table S4, Supporting

information). However, in cases where no information is

available for parameter estimation, the posterior matches

the prior distribution, and coverage of the HPD intervals

would be 95%. Therefore, we also examined the widths

of the 95% HPD intervals to determine whether the confi-

dence in a given parameter estimate increased with

changes in the sampling strategy. Generally, 95% HPD

interval widths declined with increasing locus length

and number, but not with increasing numbers of individ-

uals (Figs S14–S16, Supporting information). Several

model parameters showed no improvement in HPD

interval width with increased sampling, and these

parameters were specific to particular models. For

instance, duration of gene flow (Tdur) in models A and D

consistently produced 95% HPD intervals that were

nearly as wide as the prior distribution. The splitting

time between populations 1 and 2 (T2) in model C had

similarly wide 95% HPD intervals. Both parameters (Tdur

and T2 in model C) show prediction errors centred on

that expected based on the prior distribution (Fig. 4).

Most of the reduction in the interval width was achieved

by sampling ≥1000 loci ≥1 kb in length. However, further

improvement in HPD intervals for the split times (T1 and

T2) was apparent in data sets of 5000 or more loci (Fig.

S15, Supporting information). For the largest sample

sizes, many parameters had 95% HPD intervals that were

~¼ the width of the prior distribution. Further improve-

ment in parameter estimates might be possible if locus

number and length were increased simultaneously. For

instance, samples of 2000 loci, each 2 kb in length, might

yield better estimates of parameters and/or tighter HPD

intervals than any of these sampling schemes.

The relative accuracies of parameter estimates were

also model dependent (Fig. 4). As noted above, predic-

tion error for T2 was largest in model C, where little

information was available for parameter estimation due

to admixture between T1 and T2. With this exception,

prediction errors for h, T1 and T2 were generally small

for large sample sizes. In contrast, parameters associ-

ated with admixture were difficult to estimate, with all

three parameters (Tgf, Tdur and Nm) showing high pre-

diction error (Fig. 4). These results agree with previous

work showing that the SFS alone is insufficient to accu-

rately infer timing of admixture between populations

(Sousa et al. 2011; Strasburg & Rieseberg 2011). In future

work, estimates of geneflow timing may be improved

by accounting for recombination and linkage disequilib-

rium, perhaps using information on the sizes of migrant

sequence blocks (Pool & Nielsen 2009) or of regions of

identity-by-descent surrounding shared derived SNP

alleles (Theunert et al. 2012).

Impacts of summary statistic reduction on model
choice and parameter estimates

For two sampling schemes (1000 and 10 000 loci, each

500 bp long, sampled from 1 diploid individual per
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population), we assessed the performance of ABC

model selection and parameter estimation using only

the means of the distributions of statistics (13 total sta-

tistics). Mean posterior probabilities for the true model,

and the number of strongly supported replicates, were

highly concordant with those obtained using the full set

of 52 summary statistics (Figs S17 and S18, Supporting

information). This suggests that, for these models, the

statistic means contain most of the available information

for model selection. Prediction errors for parameters

were also generally comparable between analyses using

all 52 statistics and the reduced set of 13 statistics.

However, all parameters of the isolation model and

model D in the larger simulated data sets (10 000 loci)

had substantially lower prediction errors when using

the reduced set of 13 statistics (Figs S19–S22, Support-

ing information). Thus, in some cases, alternative sets of

summary statistics may provide more robust inference

under our analytical framework.

Sampling strategies

Our results suggest that an effective and cost-efficient

population genomic data set for comparing models of

secondary contact and admixture would include many

loci (~2000) of intermediate length (~2 kb) sampled

from relatively few individuals (~5). We stress that

these recommendations are specific to the models com-

pared, and the time frame of divergence and admixture

modelled here. However, the models we examine are

general, and many species exposed to cyclical climatic

changes in the Pleistocene (e.g. Pleistocene ‘breathing’

models; Jesus et al. 2006) may have experienced admix-

ture on time frames matching our simulations. Further-

more, Li & Jakobsson (2012) found that similar numbers

of much larger loci (1000–2000 loci, each 100 kb long)

were sufficient for accurate parameter estimates in two-

population divergence models, suggesting that our

results may apply more broadly.

As a post hoc assessment of our recommended sam-

pling strategy, we conducted additional PODS simula-

tions with data sets composed of 2000 loci, each 2 kb in

length, sampled from 5 diploid individuals per popula-

tion (a sampling strategy not explicitly considered in

our simulation study). The performance of these data

sets for both model selection and parameter estimation

was assessed as above. Model selection cross-valida-

tions support our recommended sampling scheme.

Results of these analyses were similar to those seen in

previous simulations, with models C and F showing the

lowest posterior probabilities and fewest replicates with

strong support (Table S5, Supporting information).

Nonetheless, both measures of model selection perfor-

mance (mean posterior probability and the number

of highly supported replicates) indicated that our

recommended sampling scheme performed as well as,

or better than, the largest data sets considered. Like-

wise, prediction errors for the parameters of models A,

C, D and ISO given our optimal sampling scheme were

similar to those calculated for data sets that included

10 000 loci (Table S6, Supporting information).

Empirical application

ABC analysis of the B. pallida data set gave results com-

parable to those obtained by Hearn et al. (2014). How-

ever, our ABC approach resulted in substantially more

uncertainty, particularly in model comparisons. Using

data sets simulated for the ABC reference table, we veri-

fied that our prior distributions were capable of generat-

ing data resembling those observed (Fig. S23, Supporting

information). Posterior probabilities from the ABC analy-

sis using simple rejection consistently supported models

A, B, C and F above the remaining models across the

range of tolerances examined (Table 2). In contrast, mul-

tinomial logistic regression (Beaumont 2008) returned

idiosyncratic model posterior probabilities that differed

substantially from those obtained with simple rejection

(Table 2). Given the consistency of rejection-based model

probabilities across tolerances, and the observation that

narrower tolerances led to increased support for the same

model (B) supported in Hearn et al. (2014) (Table 2), we

focus our parameter estimation analyses on the four

models (A, B, C and F) best supported by the simple

rejection method.

Despite uncertainty in model selection, parameter

posterior distributions estimated via ABC were surpris-

ingly consistent across models, suggesting that condi-

tional model averaging may be fruitful (Table 3 and

Fig. 5). Parameter estimates from all models suggest rel-

atively close correspondence between the timing of

gene flow (Tgf) and the divergence between the more

easterly populations (T1), consistent with Hearn et al.

(2014). Overall, posterior distributions for model B

parameters were also consistent with likelihood-based

estimates. Our posterior distributions suggest a slightly

lower h, higher T1 and lower T2, but agree closely with

likelihood-based estimates of Tgf (Fig. 5). In contrast, the

posterior distribution for F for model B resembles the

prior distribution, indicating that our statistics contain

little information for its estimation. It is notable that our

ABC assessment of phylogeographic history in B. pallida

required substantially more computational time than

the likelihood analysis of the same data in Hearn et al.

(see Appendix S1, Supporting information).

The B. pallida data set was outside of the specific sam-

pling designs we considered in our simulation study and

thereby highlights limitations of our approach when
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faced with minimal sampling. The single Iranian individ-

ual reduced the number of available summary statistics

for our analysis. We speculate that both the minor

discrepancies in parameter estimates between the two

analyses and the uncertainty in ABC model selection

reflect the combined effects of using a slightly different

data set (more individuals and fewer loci) and a reduced

set of summary statistics (specifically, inability to identify

shared polymorphisms between the Iranian refuge and

more westerly populations). Our simulation results sug-

gest that more accurate inferences might be gained from

larger numbers of longer loci sampled from multiple

Table 2 Posterior probabilities of the seven candidate models when compared in the Biorhiza pallida system. Results are presented

for a) the rejection method and b) the multinomial logistic regression method with between 1000 and 10 000 accepted data sets. Pos-

terior probabilities for the best model in each case are given in bold italics

Data sets accepted A B C D E F ISO

Rejection method

1001 0.2298 0.2977 0.1459 0.0220 0.0360 0.2028 0.0659

5000 0.2288 0.2370 0.1800 0.0416 0.0362 0.1880 0.0884

10 000 0.2577 0.2094 0.1759 0.0626 0.0310 0.1784 0.0850

Multinomial Logistic Regression

1001 0 0 0 0 1 0 0

5000 0.0012 0.0244 0.0994 0.0001 0.0059 0.8681 0.0009

10 000 0.0024 0.0202 0.0679 0.0003 0.0023 0.9034 0.0034

Table 3 Parameter estimates and associated 95% HPD intervals for Biorhiza pallida. Estimates are based on the neural network

method with a tolerance of 0.1% (2000 accepted simulations). Point estimates reported are the medians of the posterior distributions

Parameter A B C F

h 0.6203 {0.5426–0.7198} 0.4391 {0.0708–1.2554} 0.6076 {0.4985–0.7203} 0.4474 {0.3746–0.5226}
Tgf 0.8164 {0.5045–1.1183} 0.5380 {0.1396–1.0557} 0.9220 {0.6466–1.1885} 1.0008 {0.7208–1.2561}
T1 1.0014 {0.8266–1.2156} 1.0187 {0.6447–1.5286} 0.8115 {0.5301–1.0040} 0.8523 {0.6870–0.9958}
T2 3.5226 {2.9361–3.9273} 2.2543 {1.0271–3.8996} 2.6666 {2.0141–3.6708} 2.8332 {2.2730–3.7182}
F 0.9496 {0.7496–0.9925} 0.6333 {0.1159–0.9819} 0.6452 {0.0909–0.9806} 0.8719 {0.1953–0.9966}
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Fig. 5 Parameter posterior distributions for data from Biorhiza pallida. Posteriors for the four best-supported models are plotted. Point

estimates obtained from the full-likelihood analysis of Hearn et al. (2014) are shown as vertical dashed lines. Priors were uniform,

except in the case of timing parameters (Tgf, T1 and T2), which were constrained as shown in Table 1.
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individuals per population. Importantly, the subset of

loci employed for our empirical analysis still has a major-

ity of informative SNPs supporting the topology

favoured in Hearn et al. (2014), where the Iranian indi-

vidual is more closely related to individuals sampled in

the Balkans (Table S2).

While we have not considered all possible models of

demographic history in B. pallida, the relatively simple

models we explore demonstrate the feasibility of the

ABC methodology for large genomic-scale data sets.

These data can now be collected for nonmodel taxa

within realistic budget constraints. The bioinformatics

pipeline for whole-genome shotgun sequencing intro-

duced in Hearn et al. (2014) outlines generation of suit-

able population genomic data in nonmodel systems.

Hearn et al. (2014) produced a meta-assembly from de

novo low-coverage genomic data of five gall wasp indi-

viduals and used it to generate alignments of >2000 or-

thologous loci, each longer than 2 kb. For another

example using reduced representation libraries (in

Sceloporus spiny lizards), see Leach�e et al. (2013).

A key feature of the ABC framework is that it allows

comparison of more complex models. As long as sum-

mary statistics exist that capture differences in such

models, this represents a major advantage over likeli-

hood-based analyses. For instance, several previous

studies have found evidence for variable introgression

rates among different regions of the genome, particu-

larly in situations involving admixture between closely

related species (Rieseberg et al. 1999; Carling & Brum-

field 2009; Roux et al. 2013; Fra€ısse et al. 2014).

Although methods are available to incorporate this vari-

ation in models of divergence with gene flow (Sousa

et al. 2013), our models assumed a constant rate of

introgression for all sampled loci. If the barrier to gene

flow has been stronger in some genome regions in the

B. pallida system, our analysis would result in biased

estimates for parameters associated with admixture.

However, this bias may be minimized by the relatively

shallow divergence between refugial populations of

B. pallida (<200 ky), as selection against introgression is

unlikely to be widespread in the genome given the

recent nature of divergence among these populations.

Conclusions

Our simulation study shows the potential of ABC for

inference of population history from genomic data for

small population samples. Quality of inference (for both

model selection and parameter estimation) improved

with increasing numbers and lengths of aligned sequence

loci, and to a lesser extent with increasing numbers of

individuals sampled per population. Advantages of this

ABC approach relative to existing likelihood frameworks

include (i) consideration of more complex models, (ii)

relaxation of assumptions concerning the relative muta-

tion/introgression rates across loci and the lack of recom-

bination, (iii) analysis of larger samples from each

population, and (iv) analysis of data without information

on phasing of alleles or ancestral state. Our empirical

application shows limitations of the ABC approach for

minimal population sampling of a single individual and

the importance of obtaining appropriate summary statis-

tics for robust inference. A natural extension of this work

is to consider models that include the possibility of selec-

tion, intralocus recombination, admixture that declines

with time after divergence (Heled et al. 2013), variation

across the genome in mutation or introgression rates

(Roux et al. 2013), dynamically changing effective popu-

lation sizes in refugial populations or multiple episodes

of admixture, as might be driven by cyclical climatic

oscillations during the Pleistocene (Jesus et al. 2006).
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