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Abstract: During meiosis, the budding yeast polo-like kinase Cdc5 is a crucial driver of the prophase
I to meiosis I (G2/M) transition. The meiotic recombination checkpoint restrains cell cycle progres-
sion in response to defective recombination to ensure proper distribution of intact chromosomes
to the gametes. This checkpoint detects unrepaired DSBs and initiates a signaling cascade that
ultimately inhibits Ndt80, a transcription factor required for CDC5 gene expression. Previous work
revealed that overexpression of CDC5 partially alleviates the checkpoint-imposed meiotic delay
in the synaptonemal complex-defective zip1∆ mutant. Here, we show that overproduction of a
Cdc5 version (Cdc5-∆N70), lacking the N-terminal region required for targeted degradation of the
protein by the APC/C complex, fails to relieve the zip1∆-induced meiotic delay, despite being more
stable and reaching increased protein levels. However, precise mutation of the consensus motifs for
APC/C recognition (D-boxes and KEN) has no effect on Cdc5 stability or function during meiosis.
Compared to the zip1∆ single mutant, the zip1∆ cdc5-∆N70 double mutant exhibits an exacerbated
meiotic block and reduced levels of Ndt80 consistent with persistent checkpoint activity. Finally,
using a CDC5-inducible system, we demonstrate that the N-terminal region of Cdc5 is essential for
its checkpoint erasing function. Thus, our results unveil an additional layer of regulation of polo-like
kinase function in meiotic cell cycle control.
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1. Introduction

Evolutionarily conserved Polo-like kinases (PLKs) are essential regulators of both
mitotic and meiotic cell cycles. In addition to the kinase domain, PLKs are characterized
by the presence of the polo-box domain (Figure 1A) that mediates the localization and
recognition of their substrates, often primed by previous phosphorylation, providing an
exquisite spatiotemporal mechanism for their regulation [1]. Unlike other organisms, such
as worms and mammals, in the budding yeast Saccharomyces cerevisiae there is a single
member of this PLK family, the Cdc5 protein. Cdc5 is involved in multiple processes during
the mitotic cell cycle, including entry into mitosis, cohesion cleavage, mitotic exit, and
cytokinesis. In addition, Cdc5 also participates in the DNA damage response [2].

During the specialized meiotic cell cycle, a series of highly regulated events must be
accomplished to ensure the distribution of exactly half of the chromosome complement to
the gametes. These requirements include the establishment of physical connections between
homologous chromosomes via pairing, synapsis, and recombination during prophase I,
sequential release of sister-chromatid cohesion at chromosome arms, and centromeric
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regions during meiosis I and II, respectively, and mono-orientation of sister kinetochores
during the first meiotic segregation [3–5]. Cdc5 performs paramount roles in all these
processes, highlighting the relevance of PLKs also during meiosis [6]. Cdc5 is required for
exit from prophase I, triggering synaptonemal complex (SC) destruction and resolution of
recombination intermediates [7–9]. Next, Cdc5 is also essential for meiotic chromosome
segregation promoting removal of centromeric cohesion by Rec8 phosphorylation and
establishing coorientation of sister kinetochores by triggering the nucleolar release of
Lsr4/Csm1 and monopolin association to kinetochores [10–13].
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pressing CDC5 or cdc5-ΔN70, as indicated. The plate was incubated at permissive (24 °C) or restrictive (37 °C) temperature. 

The cdc5-ΔN70 allele is able to complement the growth defect of cdc5-1 at 37 °C. (D) Western blot analysis of Cdc5/ Cdc5-

ΔN70/Cdc5-db7A and Ndt80 production throughout meiosis in the same strains analyzed in (B). The Cdc5 protein was 
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Figure 1. Unlike wild-type Cdc5 and Cdc5-db7A, overproduction of Cdc5-∆N70 does not accelerate meiotic progression
in zip1∆. (A) Schematic representation of the polo-like kinase Cdc5, as well as the Cdc5-∆N70 and Cdc5-db7A mutant
versions, indicating the main functional domains: D-box, kinase, and polo-box. The sequence of the first 70 amino acids
of Cdc5 is also presented. The consensus motifs RXXL and KEN for APC/C recognition are shown in red, as well as the
corresponding mutations to generate cdc5-db7A. The reported CDK-dependent phosphorylation sites and the corresponding
phosphomutants analyzed are shown in blue. (B) Time-course analysis of meiotic nuclear divisions; the percentage of cells
containing two or more nuclei is represented. Error bars: SD; n = 6. At least 600 cells were scored for each strain at every time
point. (C) The thermosensitive cdc5-1 mutant was transformed with empty vector or high-copy plasmids expressing CDC5
or cdc5-∆N70, as indicated. The plate was incubated at permissive (24 ◦C) or restrictive (37 ◦C) temperature. The cdc5-∆N70
allele is able to complement the growth defect of cdc5-1 at 37 ◦C. (D) Western blot analysis of Cdc5/ Cdc5-∆N70/Cdc5-db7A
and Ndt80 production throughout meiosis in the same strains analyzed in (B). The Cdc5 protein was detected with an
anti-Cdc5 antibody. Pgk1 was used as a loading control.
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Like in mitosis, cell-cycle surveillance mechanisms or checkpoints also operate during
meiosis to ensure accuracy in the completion of critical events. In particular, the meiotic
recombination checkpoint blocks or delays the prophase I to meiosis I transition in re-
sponse to unrepaired DNA double-strand breaks (DSBs) arising from defects in synapsis
or recombination [14]. Briefly, unrepaired resected DSBs are initially detected by the Mec1-
Ddc2 complex [15], followed by the phosphorylation of Hop1, a component of the lateral
elements (LEs) of the SC, by the activated Mec1 kinase. Red1, another component of the
LEs is an essential mediator of this phosphorylation event. Among the different residues
of Hop1 that can be potentially targeted by Mec1, phosphorylation of Hop1-T318 is critical
for the checkpoint response [16–19]. The action of the Pch2 ATPase is also critical to sustain
adequate levels of Hop1-T318 phosphorylation and Hop1 localization to axes [20–22], thus
relaying the checkpoint signal through the activation of the Mek1 effector kinase [23].
Different targets of Mek1 have been identified, including Hed1-T40 and Rad54-T132 that
contribute to preventing intersister recombination by different mechanisms [24,25]. Mek1
also phosphorylates threonine 11 of histone H3 (H3-T11ph) [26]. Although the biological
relevance of this phosphorylation remains elusive, it is a useful readout for checkpoint-
induced Mek1 activity [27]. Finally, Mek1 also phosphorylates and inhibits Ndt80, which
constitutes a crucial downstream target of the meiotic checkpoint signaling pathway [28].
Ndt80 is a transcription factor that activates the expression of a number of genes including
those encoding factors required to execute the prophase I to meiosis I transition, such
as the cyclin Clb1 and the polo-like kinase Cdc5. The inhibition of CLB1 transcription
upon checkpoint-dependent inactivation of Ndt80 by Mek1 is thought to contribute to
meiotic cell cycle arrest together with the inhibitory phosphorylation of CDK1 (Cdc28)
by Swe1 [29,30]. Cdc5, in turn, is involved in a feed-forward mechanism that results
in checkpoint inactivation by promoting Red1 degradation [31], thus enabling exit from
prophase I when DSBs are repaired and the checkpoint is satisfied.

The levels of the Cdc5 protein during the mitotic cell cycle are exquisitely regulated.
After exiting from mitosis, Cdc5 is degraded during G1 by the action of the APC/C-Cdh1
complex [32,33]. Deletion of the first 70 amino acids of Cdc5 containing the regulatory
motifs, D-boxes, recognized by APC/C greatly stabilizes the protein [33]. Failure to
degrade Cdc5 in the mutant lacking the N-terminal region (hereafter, cdc5-∆N70) has
detrimental consequences for the cell cycle, including impaired control of Cdc14 nucleolar
release [34]. During meiosis, Cdc5 protein stability is also controlled by APC/C, but in this
case, associated with the meiosis-specific activator Ama1 [35]. Ama1-dependent control
of the levels of Cdc5 and other factors enables the extension of meiotic prophase I length
compared to the mitotic G2 phase [36].

In this work, we examine the relevance of the N-terminal domain of Cdc5 for the
regulation of the activity of the meiotic recombination checkpoint. We show that the N-
terminal region comprising the first 70 amino acids of Cdc5 encompassing the destruction
box is required for the ability of the polo kinase to override meiotic checkpoint signaling.
Unexpectedly, we found that this requirement is independent of the consensus motifs
recognized by APC/C, which are also dispensable for controlling Cdc5 protein stability
during meiosis. Likewise, the regulation of the checkpoint by the N-terminal domain of
Cdc5 does not require known sites of CDK-dependent phosphorylation. Thus, our results
uncover potentially unrecognized aspects of Cdc5 function and regulation that impinge on
the control of meiotic checkpoint activity.

2. Materials and Methods
2.1. Plasmids

Plasmids used in this work are listed in Table S1. Plasmid pJC29 containing wild-
type CDC5 with an HA epitope at the start codon in the high-copy vector pRS426 was
described in [37] and kindly provided by David Morgan and Sue Jaspersen. The pSS122
plasmid overexpressing cdc5-∆N70 was constructed as follows. A DNA fragment lacking
the sequence encoding the first 70 amino acids of Cdc5 was generated by fusion PCR of
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two fragments with overlapping sequences amplified using pJC29 as a template. The
fusion fragment was digested with ClaI and used to replace the ClaI-ClaI fragment of pJC29.
Plasmid pSS360 overexpressing cdc5-db7A contains an XhoI-BamHI fragment from pSS359
(see below) in pRS426.

Plasmids pSS308, pSS309, pSS310, and pSS311, containing cdc5-T23A, cdc5-T70A, cdc5-
S18A, and cdc5-T29A, respectively, were constructed by cloning a 2.7 kb EcoRI-BamHI
fragment from pEM130, pEM131, pEM137, and pEM138, respectively, into the same sites
of pRS426. Plasmids pEM130, pEM131, pEM137, and pEM138 have been described in [38],
and they were kindly provided by D. Kellog.

Plasmids pSS252 and pSS253 contain an XhoI-SacI fragment from pJC29 or pSS122
harboring CDC5 or cdc5-∆N70, respectively, flanked by promoter and terminator regions,
cloned into the same sites of pBluescript SK+. The natMX4 marker was then inserted at
the unique XbaI site located in the 3′UTR of CDC5 and cdc5-∆N70 in pSS252 and pSS253 to
generate pSS254 and pSS255, respectively. Plasmid pSS359 was generated by replacing the
EcoRI-NsiI fragment in pSS254 with a synthetic fragment (gBlock, IDT) containing the cdc5-
db7A mutations. pSS254, pSS255, and pSS359 were used for targeting CDC5, cdc5-∆N70,
and cdc5-db7A, respectively, to the genome after XhoI-SacI digestion.

Plasmid pMJ998 was kindly provided from M. Lichten and contains PGAL1-CDC5,
PGPD1-GAL4(1-848-ER), and the natMX4 marker that can be targeted to the CDC5 genomic
locus after NsiI digestion. Plasmid pSS425 derives from pMJ998 by deleting the sequence
corresponding to the first 70 amino acids of Cdc5 in PGAL1-CDC5.

2.2. Strains

Yeast strains and genotypes are listed in Table S2. All strains used in this work are
in the BR1919 background, except the cdc5-1 thermosensitive mutant used in Figure 1C,
which is W303. The zip1∆:LYS2 and ndt80∆:LEU2 gene deletions have been previously
described. To replace the endogenous CDC5 gene with the cdc5-∆N70 or cdc5-db7A mutant
versions, wild-type or zip1∆ strains were transformed with XhoI-SalI-digested pSS255
and pSS359 plasmids (see above) and selected for clonNAT resistance. As a control, the
pSS254 plasmid containing the original wild-type HA-CDC5 was also used. To generate
CDC5-IN, the zip1∆ ndt80∆ double mutant was transformed with pMJ998 cut with NsiI.
The integration of this construct results in a non-tandem duplication of CDC5 with the
following configuration: PCDC5-CDC5—PGPD1-GAL4(1-848)ER—natMX4—PGAL1-CDC5.
In the case of the cdc5-∆N70-IN strain, NsiI-digested pSS425 was used leading to this
genomic disposition: PCDC5-CDC5—PGPD1-GAL4(1-848)ER—natMX4—PGAL1-cdc5-∆N70.
All constructions and mutations were confirmed by PCR analysis and/or sequencing. The
sequences of all primers used in strain construction are available upon request. All strains
were made by direct transformation of haploid parents or by genetic crosses always in an
isogenic background. Diploids were made by mating the corresponding haploid parents
and isolation of zygotes by micromanipulation. The plasmids and strains used in each
figure are listed in Table S3.

2.3. Meiotic Time Courses, Sporulation Efficiency and Spore Viability

To induce meiosis and sporulation, BR strains were grown in 3.5 mL of synthetic com-
plete medium (2% glucose, 0.7% yeast nitrogen base without amino acids, 0.05% adenine,
and complete supplement mixture from Formedium at twice the particular concentration
indicated by the manufacturer) for 20–24 h, then transferred to 2.5 mL of YPDA (1% yeast
extract, 2% peptone, 2% glucose, and 0.02% adenine) and incubated to saturation for an ad-
ditional 8 h. Cells were harvested, washed with 2% potassium acetate (KAc), resuspended
into 2% KAc (10 mL), and incubated at 30 ◦C with vigorous shaking to induce meiosis.
Both YPDA and 2% KAc were supplemented with 20 mM adenine and 10 mM uracil. The
culture volumes were scaled up when needed. To induce CDC5 or cdc5-∆N70 from the
PGAL1 promoter in strains expressing GAL4-ER (CDC5-IN or cdc5-∆N70-IN strains), 1 µM
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β-estradiol (Sigma E2257, St. Louis, MO, USA) dissolved in ethanol was added to the
cultures 24 h after meiotic induction in prophase-arrested zip1∆ ndt80∆ cells (Figure S1).

To score meiotic nuclear divisions, samples from meiotic cultures were taken at
different time points, fixed in 70% ethanol, washed in phosphate-buffered saline (PBS),
and stained with 1 µg/µL 4′,6-diamidino-2-phenylindole (DAPI) for 15 min. At least
300 cells were counted at each time point. Meiotic time courses were repeated several
times. Averages and error bars from at least three counts are shown.

Sporulation efficiency was quantified by microscopic examination of asci formation
after 62 h on a liquid sporulation medium. Both mature and immature asci were scored.
Spore viability was determined by dissection of spores from asci and assessing the ability
to form colonies after 3 days of incubation at 30 ◦C on YPDA plates.

2.4. Microscopy

To analyze meiotic nuclear divisions in DAPI-stained cells, a Leica DMRXA fluores-
cence microscope equipped with a Hamamatsu Orca-AG CCD camera and a 63X 1.4 NA
objective was used. Bright-field microscopy images of asci were captured with a Nikon
Eclipse 90i microscope controlled with MetaMorph software and equipped with a Hama-
matsu Orca-AG CCD camera and a PlanApo VC 63X 1.4 NA objective.

2.5. Western Blotting

Total cell extracts for Western blot analysis were prepared by trichloroacetic acid (TCA)
precipitation from 5 mL aliquots of sporulation cultures, as previously described [39]. The
antibodies used are listed in Table S4. The ECL or ECL2 reagents (ThermoFisher Scientific,
Waltham, MA, USA) were used for detection. The signal was captured on films or with a
Fusion FX6 system (Vilber, Marne-la-Vallée, France) and quantified with the Evolution-Capt
software (Vilber).

3. Results
3.1. The N-Terminus of Cdc5 Is Required to Bypass the zip1∆-Induced Meiotic Checkpoint

We have previously reported that overexpression of CDC5 from a high-copy plasmid
partially suppresses the robust delay in meiotic progression of the zip1∆ mutant imposed
by the action of the meiotic recombination checkpoint ([39]; Figure 1B). Experiments using
a kinase-dead allele have revealed that Cdc5 kinase activity is required for its effect on
meiotic checkpoint bypass [39]. In order to gain additional insight into this meiotic function
of Cdc5, we searched for other domains of Cdc5 that could influence its impact on the
meiotic recombination checkpoint response.

The N-terminus of Cdc5 has been previously described to be important for its function
during mitosis. This region harbors a so-called destruction box that contains motifs rec-
ognized by the APC/C complex targeting Cdc5 for degradation at the end of mitosis [33].
We decided to investigate whether this domain is important for Cdc5 meiotic checkpoint
function. We constructed a multicopy plasmid expressing a version of CDC5 lacking the se-
quence corresponding to the first 70 amino acids harboring the destruction box (cdc5-∆N70;
Figure 1A). We transformed a zip1∆ mutant strain with 2µ-based high-copy plasmids ex-
pressing full-length CDC5, the cdc5-∆N70 version, or the empty vector, and monitored the
kinetics of meiotic progression by DAPI staining of nuclei. A wild-type strain transformed
with an empty vector was also included as a reference for normal meiotic progression.
As expected, the zip1∆ mutant transformed with vector alone displayed a strong meiotic
arrest, undergoing meiotic divisions inefficiently and only after prolonged incubation
under sporulation conditions (Figure 1B) [29]. Overexpression of CDC5 in zip1∆ resulted in
an earlier onset of meiotic nuclear divisions and more efficient meiotic progression, though
below wild-type levels, as described ([39]; Figure 1B). In contrast, overexpression of cdc5-
∆N70 in the zip1∆ strain had no effect on the delayed and inefficient meiotic progression of
zip1∆ (Figure 1B). The fact that cdc5-∆N70 overexpression does not suppress zip1∆ meiotic
delay is not due to a lack of Cdc5 kinase activity of this truncated construct because, like
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the plasmid expressing the wild-type version, it was able to complement the growth defect
conferred by the thermosensitive cdc5-1 allele at the restrictive temperature (Figure 1C).
We also monitored by Western blot the levels of Cdc5 and Ndt80 in these meiotic cultures.
As expected, and consistent with the kinetics or meiotic divisions, the production of Ndt80
and Cdc5 was significantly delayed in zip1∆ compared to the wild type (Figure 1D). Ac-
cording to previous observations [39], in the zip1∆ mutant transformed with the multicopy
plasmid expressing wild-type CDC5, the presence of the Cdc5 protein was detected at
earlier time points, leading to an accelerated induction of Ndt80 production (at t = 20 h)
in comparison with the zip1∆ strain transformed with an empty vector (at t = 38 h). In
contrast, although overexpression of the cdc5-∆N70 version led to sustained levels of this
truncated form, it did not alter the deferred onset of Ndt80 induction characteristic of
zip1∆ (t = 38 h). Notably, the delayed appearance of Ndt80 paralleled the late induction of
the endogenous full-length Cdc5 protein expressed from the genomic locus (Figure 1D).
Collectively, these results indicate that this Cdc5 N-terminal protein domain (1–70 amino
acids) is essential for the ability of Cdc5 to suppress the checkpoint-induced meiotic delay
of zip1∆ when overproduced.

3.2. The Meiotic Checkpoint Function of Cdc5 N-Terminal Domain Is Independent of the
Consensus Motifs for Targeted Degradation via APC/C

The 1–70 N-terminal domain of Cdc5 contains two RXXL “D-box” motifs and a
“KEN” motif (Figure 1A). These signaling sequences are present in proteins whose APC/C-
dependent degradation is tightly orchestrated at specific cell-cycle stages [40,41]; in the
case of Cdc5, it is targeted for degradation by the APC/CCdh1 complex at the end of
mitosis [32,33]. Indeed, at least the KEN motif in the N-terminal domain of Cdc5 has been
shown to be functionally relevant to control the stability of a chimeric Cdc5N1−80-GFP
protein in mitotic cells [42]. Since we observed that deletion of the 1–70 N-terminal of
Cdc5 prevented its capacity to suppress the zip1∆-induced meiotic checkpoint response,
we examined whether this outcome was due to the lack of signaling from the D-box and
KEN motifs, which are absent in the cdc5-∆N70 construct. To address this possibility, we
used site-directed mutagenesis to create a CDC5 allele (cdc5-db7A) in which all conserved
amino acids in both RXXL and KEN consensus motifs were mutated to alanine (Figure 1A).
Surprisingly, unlike cdc5-∆N70, a high-copy plasmid containing cdc5-db7A resulted in
similar dynamics of Cdc5-db7A production during meiosis to that conferred by wild-type
CDC5 overexpression in zip1∆ cells; moreover, the timing of Ndt80 induction was also
similar in both conditions (Figure 1D). Accordingly, overexpression of cdc5-db7A partially
suppressed the delayed meiotic progression of zip1∆ to the same extent as the wild-type
CDC5 did (Figure 1B). We conclude that the functional contribution of the 1–70 N-terminal
domain of Cdc5 to the control of the meiotic recombination checkpoint response does not
rely on its regulation via the consensus D-box and KEN motifs.

3.3. CDK Sites in the N-Terminal Domain of Cdc5 Are not Required for Its Meiotic
Checkpoint Function

In addition to the APC/C recognition motifs, the 1–70 N-terminal domain of Cdc5 pos-
sesses several sites identified as targets of CDK phosphorylation in mitotic cells (Figure 1A; [38]).
A function for some of these sites in the regulation of Cdc5 protein function or stability
during the mitotic cell cycle has been reported [43–45]. In order to assess whether the in-
ability of cdc5-∆N70 overexpression to accelerate the meiotic progression of zip1∆ was due
to the absence of a particular CDK phosphorylation event in the 1–70 N-terminal region,
we generated high-copy plasmids carrying cdc5-S18A, cdc5-T23A, cdc5-T29A, or cdc5-T70A
phosphomutants, in which individual CDK target sites have been changed to alanine
(Figure 1A). Overexpression of either cdc5-S18A, cdc5-T29A, or cdc5-T70A increased the
efficiency of meiotic divisions in zip1∆ to comparable levels as overexpression of wild-type
CDC5 did (Figure 2A). Likewise, induction of Ndt80 production was similarly accelerated
upon overexpression of the S18A, T29A, and T70A mutants (Figure 2B, green arrowheads),
paralleling the increased levels of Cdc5 protein achieved at earlier time points (Figure 2B,
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green asterisks). These results suggest that phosphorylation of S18, T29, and T70 is not
required for the ability of Cdc5 overproduction to override the meiotic recombination
checkpoint. On the other hand, the high-copy plasmid containing cdc5-T23A transformed
into zip1∆ conferred little or no effect on meiotic divisions (Figure 2A) and Ndt80 pro-
duction (Figure 2B, red arrowheads), displaying similar levels and kinetics to those of
to the zip1∆ strain transformed with empty vector. However, we note that, in contrast
with the other phosphomutants analyzed, the multicopy plasmid expressing cdc5-T23A
does not generate higher levels of the Cdc5-T23A protein (Figure 2B, red asterisks), thus
explaining its incapability to alleviate zip1∆ meiotic delay. Indeed, this result is consis-
tent with the observation that the stability of the Cdc5-T23A protein is compromised [44].
Since, unlike cdc5-T23A, overexpression of cdc5-∆N70 leads to high steady-state levels
of the Cdc5-∆N70 protein (Figure 1D), we conclude that the inability of Cdc5-∆N70 to
suppress the checkpoint-dependent block of zip1∆ does not stem from the absence of CDK
phosphorylation events in the known target sites of the Cdc5 N-terminal region.
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and arrowheads mark Cdc5 and Ndt80 production, respectively, at the 24 h time point. See text for details.

3.4. The N-Terminal Domain of Cdc5, but Not the APC/C Recognition Motifs, Is Required for
Efficient Meiotic Progression and Sporulation

We next generated diploid strains in which we replaced the endogenous wild-type
CDC5 gene by either the cdc5-∆N70 or cdc5-db7A versions at its own genomic locus to further
investigate the relevance of the N-terminal domain of Cdc5 for meiotic development. We
found that higher levels of the Cdc5-∆N70 protein were detected throughout the whole
meiotic time course (Figure 3A) suggestive of increased stability of the protein lacking the
N-terminal domain. The peak of Cdc5-∆N70 (t = 20–24 h) was coincident with the induction
of Ndt80 indicating that its gene expression is also normally controlled by Ndt80-dependent
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transcriptional regulation. In contrast, the dynamics and levels of Cdc5-db7A production
were similar to those of the wild type, indicating again that Cdc5 stability during meiosis
is not significantly regulated by canonical APC/C signaling via the known consensus
motifs. Furthermore, analysis of the kinetics of meiotic nuclear divisions revealed that
meiotic progression was slightly, but reproducibly, slower, and less efficient in the cdc5-
∆N70 mutant (Figure 3B). However, meiotic progression was not altered in cdc5-db7A
(Figure 3B). We also monitored the formation of spores by microscopic examination of
asci. The cdc5-∆N70 mutant, but not cdc5-db7A, showed decreased sporulation efficiency
(Figure 3C) with a marked reduction in the formation of mature 4-spored asci. In particular,
cdc5-∆N70 exhibited a preponderance of dyads compared to the wild type or the cdc5-
db7A mutant (Figure 3D and 3E). The immaturity of cdc5-∆N70 asci largely impeded their
micromanipulation to assess spore viability, and it was impossible to dissect full 4-spore
tetrads. In any case, the subset of spores that could be dissected from the cdc5-∆N70 mutant
showed reduced viability (Figure 3F). We conclude that the 1–70 N-terminal domain of
Cdc5 contains regulatory features different from the RXXL and KEN boxes that contribute
to the normal development of meiotic nuclear divisions and spore formation.
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Figure 3. Meiotic progression, sporulation, and spore viability are affected in the cdc5-∆N70 mutant, but
not in cdc5-db7A. (A) Western blot analysis of Cdc5 and Ndt80 production throughout meiosis. The Cdc5
protein was detected with an anti-Cdc5 antibody. Pgk1 was used as a loading control. Quantification of
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relative Cdc5 and Ndt80 levels is presented in the graphs. Protein levels were normalized with
Pgk1 and relativized to the maximum value in the experiment set to 1. (B) Time course analysis of
meiotic nuclear divisions; the percentage of cells containing two or more nuclei is represented. Error
bars: SD; n = 3. At least 300 cells were scored for each strain at every time point. (C) Sporulation
efficiency after 62 h in meiosis. Error bars: range; n = 2. At least 300 cells were scored for each strain.
(D) Percentage of asci containing 1, 2, and 3–4 spores, as indicated, after 3 days on sporulation plates.
(E) Representative bright-field microscopy images of asci from samples analyzed in (D). Scale bar,
2 µm. (F) Spore viability analyzed by tetrad/triad dissection. In the case of cdc5-∆N70, only 3-spore
asci were dissected.

3.5. Persistent Checkpoint Activity in the Absence of Cdc5 N-Terminal Domain

To gain further insight into the impact of the Cdc5 N-terminal domain in meiotic
recombination checkpoint function, we also examined meiotic progression in zip1∆, zip1∆
cdc5-∆N70, and zip1∆ cdc5-db7A mutants by DAPI staining of nuclei. In addition, check-
point function was monitored by following the levels of the Ndt80 transcription fac-
tor, whose production is inhibited when the checkpoint is active [46]. As expected, the
zip1∆ single mutant exhibited a marked meiotic arrest, although a fraction of the cells
resumed meiotic nuclear divisions at late time points (Figure 4A); accordingly, induction
of the Ndt80/Cdc5 module was also significantly delayed compared to the wild type
(Figures 3A and 4B). The zip1∆ cdc5-∆N70 double mutant displayed an even more pro-
nounced meiotic delay than that of zip1∆ (Figure 4A) that was accompanied by reduced
production of Ndt80, despite the presence of higher levels of Cdc5-∆N70 (Figure 4B). These
observations are suggestive of more persistent zip1∆-induced checkpoint activity when the
N-terminal domain of Cdc5 is deleted. On the contrary, in zip1∆ cdc5-db7A, the kinetics of
meiotic progression and Cdc5/Ndt80 production were comparable to those of the zip1∆
single mutant (Figure 4A and 4B), further corroborating that the role of the N-terminal
region of Cdc5 in meiotic checkpoint control is independent of the consensus motifs for
APC/C-dependent regulation.

3.6. The N-Terminal Domain of Cdc5 Is Required for Efficient Checkpoint Downregulation

Previous work has demonstrated that, when meiotic DSBs are repaired, Cdc5 is nec-
essary and sufficient to silence checkpoint signaling triggering degradation of Red1, a
component of the Red1-Hop1-Mek1 (RHM) complex, which is required for Mek1 activa-
tion [31]. To assess whether the more persistent checkpoint activity in the zip1∆ cdc5-∆N70
mutant was due to the inability of Cdc5∆N70 to turn the checkpoint off, we took advantage
of the use of a CDC5 version controlled by the GAL1 promoter (hereafter, CDC5-IN) that
can be induced by the addition of estradiol in strains harboring the Gal4 transcriptional
regulator fused to the estradiol receptor (Figure S1; [47]). Thus, estradiol triggers CDC5-IN
expression independent of its normal activator, Ndt80, allowing us to explore exclusively
the effect of Cdc5 or Cdc5∆N70 on checkpoint inactivation. For this purpose, we moni-
tored the levels of Red1 and Mek1 proteins as well as phosphorylation of Hop1-T318 and
H3-T11 as readouts of Mec1 and Mek1 checkpoint kinases, respectively. We generated
zip1∆ ndt80∆ strains containing either the wild-type CDC5-IN allele or the version lacking
the sequence corresponding to the 1–70 N-terminal region, cdc5-∆N70-IN. In this system,
the checkpoint is initially activated by the lack of Zip1, but the cells remain arrested in
prophase I throughout the time course, due to NDT80 deletion, regardless of the status of
checkpoint activity. This allows us to evaluate the impact of Cdc5 on the levels of check-
point markers without interference from cell cycle progression. Twenty-four hours after
meiotic induction, when ndt80∆ cells of the BR strain background are arrested in prophase
I, estradiol was added to half of the culture, and samples were collected at successive time
points for Western blot analysis. In the absence of estradiol, the checkpoint was activated
in both CDC5-IN and cdc5-∆N70-IN strains, as manifested by the accumulation of Red1
and Mek1 and high levels of Hop1-T318 and H3-T11 phosphorylation (Figure 5A, dark
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green and blue bars). Induction of wild-type Cdc5 resulted in the drastic disappearance
of the Red1 protein and also a strong reduction in Mek1. Likewise, phosphorylation of
Hop1-T318 of H3-T11 was severely decreased (Figure 5A, light green bars). In contrast,
upon induction of Cdc5-∆N70, the Red1 and Mek1 proteins displayed more stability and
did not completely disappear; also, higher levels of Hop1-T318 of H3-T11 phosphorylation
persisted (Figure 5A, light blue bars). The ratio of protein levels in the presence versus
the absence of estradiol clearly exhibited a more rapid decrease in all checkpoint markers
after induction of CDC5-IN compared to cdc5-∆N70-IN (Figure 5B). Collectively, our results
indicate that the N-terminal domain of Cdc5 is critical for dampening meiotic checkpoint
signaling via downregulation of the RHM complex to facilitate the resumption of meiotic
cell cycle progression. Furthermore, this novel function of the N-terminal domain of Cdc5
is independent of the canonical motifs for APC/C regulation present in this domain and
does not appear to require phosphorylation of individual CDK sites.
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Figure 4. Persistent checkpoint activity in the zip1∆ cdc5-∆N70 mutant. (A) Time-course analysis of
meiotic nuclear divisions; the percentage of cells containing two or more nuclei is represented. Error
bars: SD; n = 3. At least 300 cells were scored for each strain at every time point. A wild-type strain
was also included as a reference for the zip1∆-induced delay. (B) Western blot analysis of Cdc5 and
Ndt80 production throughout meiosis. The Cdc5 protein was detected with an anti-Cdc5 antibody.
Pgk1 was used as a loading control. Quantification of relative Cdc5 and Ndt80 levels is presented in
the graphs. Protein levels were normalized with Pgk1 and relativized to the maximum value in the
experiment set to 1.
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Figure 5. The role of Cdc5 in meiotic checkpoint termination requires its N-terminal domain.
(A) Western blot analysis of Cdc5, Red1, and Mek1 production, as well as Hop1-T318 and H3-
T11 phosphorylation (ph) as markers of checkpoint activity. Pgk1 was used as a loading control.
Estradiol (ES) was added to meiotic cultures of the indicated strains 24 h after induction of meiosis.
At this time, the cultures were split in two (-ES and +ES) and samples were taken at successive time
points from 27 to 36 h (see Figure S1). The red arrowhead in the Red1 panel points to a putative lower
mobility form of Red1 appearing upon Cdc5 (but not Cdc5-∆N70) induction. Quantification of rela-
tive levels of the proteins and checkpoint markers analyzed is presented in the graphs. Protein levels
were normalized with Pgk1 and relativized to the maximum value in the experiment set to 1. (B) The
graphs represent the ratio of relative abundance of Red1, Mek1, Hop1-T318ph, and H3-T11ph in the
presence and absence of estradiol; that is, with and without Cdc5 or Cdc5-∆N70 induction. Note that
at the latest time points (33–36 h) checkpoint activity slightly resumes in CDC5-IN coincident with a
drop in wild-type Cdc5 levels (panel A, light green bars), likely reflecting an inherent instability of
wild-type Cdc5 (but not Cdc5-∆N70) during meiotic prophase I.
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4. Discussion

Multiple events in the mitotic and meiotic cell cycles are controlled by polo-like kinases.
During meiosis in budding yeast, the Ndt80 transcription factor and the polo kinase Cdc5
participate in a feed-forward autoregulatory loop that triggers exit from meiotic prophase
I and entry into metaphase I when DSBs are repaired and the meiotic recombination
checkpoint is satisfied. A key step in this transition is the destruction of the synaptonemal
complex promoted by Ndt80-dependent induction of Cdc5. Although the direct target(s)
of Cdc5 in this process remains to be identified, the degradation of several SC components
upon Cdc5 induction, including Red1 and Zip1, has been observed [7,8,31]. Red1 is a
component of the LEs of the SC that is also crucial for checkpoint activity. In this work, we
show that when the checkpoint is activated by deletion of ZIP1, Ndt80-independent ectopic
expression of CDC5 is sufficient to silence checkpoint signaling and we demonstrate that
the N-terminal region of Cdc5 is critically required for this function.

In mitotically cycling cells, Cdc5 is degraded at the end of mitosis by APC/C-Cdh1,
but deletion of the 1–70 N-terminal region protects the protein from degradation [32–34].
We show here that Cdc5-∆N70 also appears to be more stable during meiosis because
it can be detected throughout the whole meiotic program. In contrast, wild-type Cdc5
appears upon exit from prophase I and disappears after meiotic divisions are completed
(Figure 3A). Unexpectedly, mutation of the motifs recognized by APC/C-Cdh1 has no
effect on either Cdc5 levels or function, implying that additional regulatory elements must
be present in the N-terminal domain of Cdc5 controlling its stability at least during the
meiotic program. The relevance of the two RXXL D-boxes and the KEN motif present in
Cdc5 (Figure 1A) has been also analyzed in mitotic cells using chimeric proteins in which
the first 80 amino acids of Cdc5 were fused to GFP [42]. In this system, the KEN motif and
the RXXL-2 D-box appeared to be important for the regulation of Cdc5 stability and nuclear
localization. Thus, the control of Cdc5 levels during meiosis differs from the canonical
APC/C-Cdh1-dependent regulation described in mitotic cells. Since during meiosis Cdc5
degradation is triggered by APC/C bound to the meiosis-specific regulator Ama1, instead
of Cdh1 [36], we speculate that, perhaps, APC/C-Ama1 can recognize different elements
of the Cdc5 N-terminal domain.

The amount of Cdc5 during the mitotic cell cycle is also controlled by CDK phospho-
rylation of T23 independent of APC/C. The cdc5-T23A mutation generates a degron that
results in barely detectable levels of Cdc5 [44]. Our results indicate that this mechanism
likely operates also during meiosis because a zip1∆ strain transformed with a high-copy
plasmid expressing cdc5-T23A does not exhibit an increased amount of Cdc5, consistent
with the fact that the Cdc5-T23A protein is highly unstable. Thus, the zip1∆ strain with
the multicopy cdc5-T23A plasmid does not accumulate sufficient levels of the protein to
alleviate the meiotic delay imposed by the checkpoint. Therefore, the inability of Cdc5-
∆N70 to suppress the checkpoint when overproduced cannot be attributed to the absence
of this T23 CDK phosphorylation site. On the other hand, like deletion of the 1–70 terminal
region, the T29A mutation, eliminating also a CDK phosphorylation site [38], appears
to stabilize Cdc5 in mitotic cells [45]. However, unlike Cdc5-∆N70, we show here that
overexpression of cdc5-T29A in zip1∆ meiotic cells alleviates the nuclear divisions delay
to the same extent as overexpression of wild-type CDC5 does. This observation indicates
that phosphorylation of T29 is not required for the checkpoint function of Cdc5. Moreover,
although we do not detect a notable increase of Cdc5-T29A protein levels compared to
wild-type Cdc5 in strains overexpressing these genes, our results are consistent with the no-
tion that stabilization of Cdc5 per se does not cause impaired checkpoint silencing. On the
other hand, phosphorylation of Cdc5 by Cdc28 at T70 in mitotic cells is important for MEN
(mitotic exit network) function [43]. We observe that, like wild-type CDC5, overexpression
of cdc5-T70A is capable of partially overriding the meiotic delay in zip1∆ cells, suggesting
that this meiotic function of Cdc5 is independent of the MEN pathway. Although we have
not detected a clear meiotic effect of the single mutants on CDK sites, we cannot rule out a
possible effect of combined mutations.
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Using strains in which we have integrated cdc5-∆N70 at its genomic locus, we also
report here that in an otherwise unperturbed meiosis (that is, in ZIP1 cells), the cdc5-∆N70
mutant exhibits a slight delay in meiotic progression, defective sporulation, and reduced
viability of the meiotic products. These relatively mild phenotypes may arise from the
inability of the truncated Cdc5 protein to properly perform some of the meiotic roles of the
polo kinase, perhaps by impairing its interaction with a particular substrate. Alternatively,
cdc5-∆N70 phenotypes could be also the consequence of the unscheduled regulation of
Cdc5 levels throughout the meiotic and sporulation program having a deleterious effect.
In line with this possibility, it has been shown that overexpression of CDC5 from the CUP1
promoter during meiosis leads to reduced electrophoretic mobility and premature degrada-
tion of Spo13 [48]. Spo13 is a critical regulator of centromeric cohesion and it is required for
proper chromosome segregation at meiosis I [49]; in fact, SPO13-deficient cells undergo a
single round of meiotic nuclear division and generate dyads [50]. The reduced spore viabil-
ity and impaired formation of asci containing 4 spores observed in the cdc5-∆N70 mutant
(Figure 3) may be a consequence of altered Spo13 and/or cohesin function. Alternatively,
or in addition, altered Cdc5 function or levels in cdc5-∆N70 may also cause problems in
SPB duplication [51], leading to sporulation defects because spore morphogenesis is linked
to SPB dynamics and maturation [52]. Future experiments will address these possibilities.
Interestingly, defective centrosome maturation during meiosis (the mammalian equivalent
of yeast SPB) has been also reported in PLK1-deficient male mice [53].

Remarkably, the cdc5-∆N70 mutation has a more prominent impact when the meiotic
recombination checkpoint is triggered (that is, in zip1∆ cells). The zip1∆ cdc5-∆N70 double
mutant shows an exacerbated meiotic block, compared to zip1∆, concomitant with reduced
Ndt80 levels indicative of tighter or prolonged prophase I arrest. Curiously, the zip1∆ mu-
tant initially arrests in prophase I, but eventually, some cells undergo meiotic divisions. In
contrast, the zip1∆ rad51∆ double mutant displays a tight permanent block [21], suggesting
that, in the zip1∆ single mutant, a fraction of cells repair DSBs via a Rad51-dependent inter-
sister pathway, leading to checkpoint inactivation and resumption of cell cycle progression.
We propose that the ability of Cdc5 to downregulate checkpoint activity to promote exit
from prophase I is compromised in the absence of its N-terminal region, thus explaining the
prolonged meiotic block in zip1∆ cdc5-∆N70. To directly address whether Cdc5 N-terminal
domain is required for checkpoint inactivation, we used the CDC5-IN estradiol-inducible
system in zip1∆ ndt80∆ cells. Since the NDT80 deletion prevents exit from prophase, this ap-
proach allowed us to assess the status of the zip1∆-induced checkpoint without interference
from indirect effects that may arise from the impact of Cdc5 levels on meiotic cell progres-
sion and/or from additional targets of the Ndt80 transcription factor also induced during
prophase exit. Despite that high levels of both Cdc5 and Cdc5-∆N70 are achieved in this
inducible system, the Cdc5-∆N70 version fails to efficiently abrogate checkpoint activity in
prophase-arrested cells (Figure 5). As described, the Red1 protein rapidly disappears upon
wild-type Cdc5 induction (Figure 5A, t = 27 h). Interestingly, although eventually the Mek1
protein also drastically diminishes, it still persists at 27 h, but in a largely inactive form,
as revealed by the low levels of H3-T11 phosphorylation at this time point. Since Mek1
activation is achieved by consecutive trans and cis phosphorylation events that require
Hop1/Red1 [16,54,55], this observation suggests that checkpoint down-regulation initially
involves Mek1 dephosphorylation followed by progressive degradation of inactive Mek1.
It is likely that Cdc5-induced Red1 degradation is the initial trigger for Mek1 inactivation.
Red1 is subject to extensive phosphorylation at several sites, but its biological relevance
is under debate [56,57]. Whether Red1 is a direct target of Cdc5 phosphorylation remains
to be established. Curiously, as Red1 is degraded following Cdc5 induction, we observe
a faint slow-mobility band that could be indicative of Cdc5-dependent phosphorylation
(Figure 5A, red arrowhead).

Strikingly, induction of Cdc5-∆N70 fails to efficiently silence checkpoint activity, as
clearly manifested by the high levels of Hop1-T318 and H3-T11 phosphorylation that
persist in the cdc5-∆N70-IN mutant. Higher amounts of the Red1 and Mek1 proteins
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are also maintained in the absence of the N-terminal domain of Cdc5, explaining the
maintenance of checkpoint activity. Curiously, Mek1 is much more stabilized than Red1
in cdc5-∆N70-IN (Figure 5B). This finding suggests that relatively low amounts of Red1
are sufficient to sustain Mec1-dependent Hop1-T318 phosphorylation and the subsequent
Mek1 autophosphorylation to acquire substantial levels of kinase activity to phosphorylate
downstream Mek1 targets (i.e., H3-T11). This observation further supports the notion of
increased protein stability for active Mek1.

The recognition of Cdc5 known substrates is usually exerted by the interaction of the
polo box domain with the substrate previously primed by phosphorylation. Nevertheless,
non-canonical interactions of Cdc5 with certain substrates, such as Dbf4 or Exo1, are
recently emerging [58,59]. We hypothesize that, in addition to the presence of regulatory
sites controlling Cdc5 stability, the N-terminal region can also contribute to facilitating the
direct interaction of Cdc5 with its relevant target(s) to sustain checkpoint downregulation.
In the absence of this domain, the interaction of Cdc5-∆N70 with its substrate(s) may
be less stable resulting in an impaired action despite the presence of higher amounts of
the active kinase. Whether Red1 itself or other component(s) of the checkpoint signaling
pathway and/or recombination machinery are the direct targets of Cdc5 in this process,
will be a matter of future studies. In mice, PLK1 also drives SC disassembly promoting
dissociation of SCP3, which, like yeast Red1, is a LE component [60], suggesting that
the role of polo-like kinases in downregulating meiotic checkpoint activity could be also
conserved. Curiously, structure analysis of both yeast Cdc5 and human PLK1 proteins
using the AlphaFold Database [61] predicts well-structured kinase and polo-box domains,
but it is not capable of modeling the structure of the N-terminal domain in both proteins
suggesting a largely disorganized region (Figure S2). Although the amino acid sequences
of the N-terminal regions of yeast Cdc5 and human PLK1 do not show homology, it is
tempting to speculate that they may share a common regulatory function.
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