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Face recognition (FR) with single sample per person (SSPP) is a challenge in computer vision. Since there is only one sample to be
trained, it makes facial variation such as pose, illumination, and disguise difficult to be predicted. To overcome this problem, this paper
proposes a scheme combined traditional and deep learning (TDL) method to process the task. First, it proposes an expanding sample
method based on traditional approach. Compared with other expanding sample methods, the method can be used easily and
conveniently. Besides, it can generate samples such as disguise, expression, and mixed variation. Second, it uses transfer learning and
introduces a well-trained deep convolutional neural network (DCNN)model and then selects some expanding samples to fine-tune the
DCNNmodel.0ird, the fine-tunedmodel is used to implement experiment. Experimental results on AR face database, Extend Yale B
face database, FERET face database, and LFW database demonstrate that TDL achieves the state-of-the-art performance in SSPP FR.

1. Introduction

As artificial intelligence (AI) becomes more and more
popular, computer vision (CV) also has been proved to be
a very hot topic in academic such as face recognition [1],
facial expression recognition [2], and object recognition [3].
It is well known that the basic and important foundation in
CV is that there are an amount of training samples. But in
actual scenarios such as immigration management, fugitive
tracing, and video surveillance, there may be only one
sample, which leads to single sample per person (SSPP)
problem such as gait recognition [4], face recognition (FR)
[5, 6], and low-resolution face recognition [7] in CV.
However, as the widely use of second-generation ID card
which is convenient to be collected, SSPP FR becomes one of
the most popular topics no matter in academic or in
industry.

Beymer and Poggio [8] proposed one example view
problem in 1996. In [8], it was researched that how to
perform face recognition (FR) using one example view.
Firstly, it exploited prior knowledge to generate multiple
virtual views. 0en, the example view and these multiple

virtual views were used as example views in a view-based,
pose-invariant face recognizer. Later, SSPP FR became
a popular research topic at the beginning of the 21st century.

Recently, many methods have been proposed. Generally
speaking, these methods can be summarized in five basic
methods: direct method, generic learning method, patch-
based method, expanding sample method, and deep learning
(DL) method. Direct method does experiment based on the
SSPP directly by using an algorithm. Generic learning
method is the way that using an auxiliary dataset to build
a generic dataset from which some variation information
can be learned by single sample. Patch-based method par-
titions single sample into several patches first, then extracts
features on these patches, respectively, and does classifica-
tion finally. 0e expanding sample method is with some
special means such as perturbation-based method [9, 10],
photometric transforms, and geometric distortion [11] to
increase sample so that abundant training samples can be
used to process this task. 0e DL method uses the DL model
to perform the research.

Attracted by the good performance of DCNN, inspired
by [12] and driven by AI, in this paper, a scheme combined
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traditional and DL (TDL) method is proposed. 0e
framework of TDL is illuminated in Figure 1. First, an
expanding sample method is proposed to increase the
sample to overcome the shortage of sample in SSPP FR.
Second, a learned DCNN model is brought in, and then
some expanding samples are selected to fine-tune the model.
Finally, the fine-tuned model is used to perform experiment.

0is is an extended version of our conference papers
[13, 14]. 0e contributions of this paper are shown as
follows:

(i) We propose a novel expanding sample method.
Compared with other expanding sample methods, it
is more easier and convenient to be used. Besides,
the expanding sample method can generate ex-
pression, disguise, and mixed variation which other
expanding sample methods cannot achieve.

(ii) We use DCNN to perform SSPP FR. Here, we
propose bringing transfer learning into SSPP FR to
avoid the requirement of training DCNN that needs
abundant samples.

(iii) We propose TDL, that is, combined traditional and
DL method to do this task. Firstly, we select images
from expanding samples to fine-tune the DCNN
model.0en, the fine-tuned DCNNmodel is used to
implement experiment.

(iv) We construct an intraclass variation set which can
be used anywhere to expand facial sample.

0e remaining parts of the paper are structured as
follows. Session 2 introduces related works. Session 3
presents the expanding sample method. Session 4 presents
the deep learning method. Session 5 implements experi-
ments. Session 6 concludes the paper and indicates the
future work.

2. Related Works

In recent years, many scholars in the world devoted
themselves to SSPP FR, and some good performances were
obtained. Deng et al. [15] proposed extended sparse
representation-based classifier (ESRC) method to classify
query sample and gallery sample. With the help of an
auxiliary training set, it used variations of the auxiliary
training set to represent those that lack variations of the
gallery set. Lu et al. [16] proposed a novel discriminative
multimanifold analysis (DMMA) method. It obtained
patches of training sample by segmenting image, and then
these patches were used to learn discriminative features.
Mohammadzade and Hatzinakos [17] learned expression
invariant subspace to keep expression invariant. It pointed
out that the same expression has the same expression
subspace, and it can generate a new image by projecting an
expression image to expression subspace. Yang et al. [18]
proposed sparse variation dictionary learning (SVDL)
method. It connected generic set and gallery set adaptively
by jointly learning a projection, rebuilding a sparse dic-
tionary including adequate variations, and performing SSPP

FR by projecting variation dictionary to gallery set space. Li
et al. [19] developed linear discriminant analysis (LDA) to
process the SSPP FR problem and produced extrauseful
training samples in low-dimension subspace by using ran-
dom projection. Zhu et al. [6] proposed a framework based
on local generic representation to solve the SSPP FR
problem. It used the same way as ESRC to build intraclass
variation dictionary and proportioned the face image into
several patches to extract local information. Liu et al. [20]
proposed a fast FR method based on DMMA. First, it
clustered two groups of persons using a rectified K-means
method. Second, it partitioned the face image into several
nonoverlap patches, and then DMMA was applied on these
patches. 0ird, fast DMMA was obtained by repeating the
former two steps. Liu et al. [21] solved the SSPP FR problem
by using sparse representation-based classifier (SRC) and
local structure. It relieved the trouble that had high-
dimension data and few samples. Mokhayeri et al. [22]
expanded the training set by using an auxiliary set. Gao et al.
[23] presented a regularized patch-based representation
method. A collection of patches are used to represent each
image; meanwhile, under the gallery image patches and
intraclass variance dictionaries, their sparse representations
are sought. Song et al. [5] proposed a triple local feature-
based collaborative representation method to make full use
of the training sample. First, it extracted different types of
Gabor features including different scales and different di-
rections. Second, it partitioned each Gabor feature into
several local patches to obtain triple local features including
local scale, local direction, and local space. 0ird, it did local
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Figure 1: 0e framework of the proposed method.
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collaborative representation and classification based on
these triple local features. Zhang and Peng [24] used deep
autoencoder to generalise intraclass variations, and then
these intraclass variations were used to reconstruct new
samples. First, images in the gallery are used to train
a generalised deep autoencoder. Second, each person’s
single sample is used to fine-tune a class-specific deep
autoencoder (CDA). 0ird, the corresponding CDA is used
to reconstruct new samples. Finally, these reconstructing
new samples are used to do the classification task. Gu et al.
[25] proposed local robust sparse representation (LRSR)
method. It combined a local sparse representation model
and a patch-based generic variation dictionary learning
model to predict the possible facial intraclass variation of
the query images. Ding et al. [26] partitioned the aligned
face image into several nonoverlapping patches to form the
training set, then utilized a kernel principal component
analysis network to obtain filters and feature banks, and at
last, used weighted voting method to occur in the identi-
fication of the unlabeled probe. Based on a robust repre-
sentation and probabilistic graph model, Ji et al. [27]
proposed an algorithm to address this problem. 0ey used
label propagation to construct probabilistic labels for the
samples in the generic training set corresponding to those
in the gallery set. At the classification stage, a re-
construction-based classifier is used. Inspired by dis-
criminant manifold learning and binary encoding, Zhang
et al. [28] constructed local histogram-based facial image
descriptors. 0ey partitioned every image into several
nonoverlapping patches, found a matrix to project these
patches on to an optimal subspace to maximize manifold
margins of different people, reshaped each column of the
matrix to an image filter to process facial images, and
binarized the responses corresponding to these filters
according to thresholding. In classification, they computed
region-wise histograms of pixels’ binary codes and con-
catenated them to form the representation of tested image.
Dong et al. [29] proposed k nearest neighbor virtual image
set-based multimanifold discriminant learning method.
0ey put forward a virtual sample generating algorithm to
enrich intraclass variation information for training samples
inspired by the fact that similar faces have similar intraclass
variations. Otherwise, they come up with image set-based
multimanifold discriminant learning algorithm to use the
intraclass variation information.

However, most of these methods are traditional
methods, and there are few DL methods which are very
active in CV recently and have a good performance in CV
task. Gao et al. [12] proposed a DL method to solve the
SSPP FR problem via learning deep supervised autoen-
coders. Firstly, a supervised autoencoder enforced facial
variations to be mapped with canonical face of the same
person and enforced the features of the same person to be
similar. 0en, such supervised autoencoders were stacked
to obtain deep architecture. Finally, the supervised
autoencoder with deep architecture was used to extract
features. Recently, there is no DCNN method to process
this task, but due to its good performance in CV, it will
become a promising method.

3. Expanding Sample Method

In order to overcome the lack of the training sample in SSPP
FR, we propose an expanding samplemethod. It firstly learns
an intraclass variation set, and then the intraclass variation
set is added to single sample to expand sample. Its principle
diagram is illustrated in Figure 2.

0e details of generating intraclass variation set are as
follows.

First, generate intraclass variation images according to
images of an extrafrontal face dataset. Suppose that there are
m subjects in an extrafrontal face dataset, each subject has
(n− 1) variation images and one neutral image, so we can
use X to express the dataset; let Xij represent the ith person’s
jth variation image, where i ∈ [1, m], j ∈ [1, n], and let j � 1
represent the neutral face. We use variation image of the
database (Xij, j≠ 1) minus its corresponding neutral image
(Xi1); thus, we get variance of the variation image relative to
its neutral image, as follows:

εij � Xij −Xi1, j≠ 1, (1)

which represents the ith subject’s jth intraclass variation
image relating to its neutral image.

0en, find the average intraclass variation image that has
the same variation in these intraclass variation images to
decrease the error of intraclass variation image, as follows:

εj �
1
m



m

i�1
εij. (2)

Finally, construct an intraclass variation set according to
these learned average intraclass variation images in the
forward step. It is shown as follows:

ε � ε2, ε3, ..., εn( . (3)

0e specific steps of generating intraclass variation set
are summarized in Table 1.

0e framework of generating intraclass variation set is
illustrated in Figure 3.

Later, with the help of C++ andMATLAB, the face image
is detected and cropped from the new input face image, and
then the face image is resized to the same size with the
intraclass variation set. At last, the intraclass variation set is
added to the aligned face image for expanding image as
follows:

Dek � ε + Xk1, (4)

where Xk1 represents the neutral face image of the person k

and Dek represents the expanding samples of the person k.
According to the method, single sample is expanded to

many samples.
0e framework of expanding sample is shown in

Figure 4.

4. Deep Learning Method

AsDCNNneeds a large amount of samples to be trained, it is
difficult to be used in SSPP FR. In order to solve this
problem, firstly, we use transfer learning to introduce a well-
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trained DCNN. 0en, we select some expanding samples to
fine-tune the learned DCNN. Finally, we use the fine-tuned
DCNN to implement experiment.

4.1. Transfer Learning. Transfer learning uses knowledge
learned from one specific scene to help another application
scenario. In other words, it uses auxiliary data to learn
a model or mapping and then uses the model or mapping to
do a new task.

Since there is one training sample in SSPP FR, DCNN
which needs abundant training data is difficult to be used.
0erefore, we use transfer learning to introduce a well-
trained DCNN model. Here, we have the aid of a lightened
CNN [30] which can learn a compact embedding for face
recognition to do the research.

Different from other DCNN models, the lightened CNN
introduces a new activated function named Max-Feature-
Map which introduces maxout in the fully connected layer to
the convolution layer. Given an input convolution layer
C ∈ Rh×w×2n, the Max-Feature-Map activation function can
be written as follows:

f
k
ij � max

1≤n
C

k
ij, C

k+n
ij , (5)

where the channel of the input convolution layer is 2n,
i ∈ [1, h], j ∈ [1, w].

0e architecture of the lightened CNN is illustrated in
Figure 5.

4.2. Fine-Tuning. 0e lightened CNN is trained by CASIA-
WebFace database. 0e CASIA-WebFace database contains
10,575 persons and has a total of 493,456 face images. Before
it is used to train the lightened CNN, it is firstly pre-
processed. 0e preprocessing includes the images that are
converted to grayscale images and normalized to 144 × 144.
After it is preprocessed, it is used to train the lightened CNN.
Later, a well-trained model is obtained. We use the well-
trained model to do the fine-tuning task. Some expanding

samples are selected and put into the well-trained model to
do fine-tuning. And the fine-tuned model is used to im-
plement experiment.

5. Experiments

We test the performance of TDL on AR face database [31],
Extend Yale B face database [32], FERET database [33], and
LFW face database [34], respectively. We also compare TDL
with the following methods:

(i) Direct method: SRC [35], CRC [36], PCA [37], (PC)
2A [38], E (PC)2A [39], 2DPCA [40], (2D)2PCA
[41], SOM [42], LPP [43], and UP [44];

(ii) Generic learning method: AGL [45], ESRC [15],
SVDL [18], and LGR [6];

(iii) Patch-based method: DMMA [16], PNN [46],
PCRC [47], TLC [5], Block PCA [48], Block LDA
[49], and Fast DMMA [20];

(iv) Expanding sample method: SVD-LDA [10];
(v) DL method: SSAE [12].

Since TDL is regarded the proposed method, the
expanding sample method is proposed for TDL, so when
these methods are used to be compared, these are not using
the generated training images. But the expanding sample
method has been demonstrated that it has a good perfor-
mance compared with the direct method [50].

5.1. Similarity. Here, we use AR face database to produce
intraclass variation set. To describe briefly, the expanding
images are numbered as 1, 2, 3, . . . , 26 based on their types of
variation. 0eir meanings are described as follows: 1: neutral
expression, 2: smile, 3: anger, 4: scream, 5: left light on, 6:
right light on, 7: all side light on, 8: wearing sunglasses, 9:
wearing sunglasses and left light on, 10: wearing sunglasses
and right light on, 11: wearing scarf, 12: wearing scarf and
left light on, 13: wearing scarf and right light on, and 14 to
26: same conditions as 1 to 13 but not in the same period.We
divide these images into two sessions, session 1 and session
2. Session 1 includes 1 to 13, and session 2 includes 14 to 26.

In order to evaluate the similarities between expanding
samples and actual images, an algorithm is proposed.

0e details of measuring similarities between expanding
samples and actual images are as follows.

First, calculate the Euclidean distances between
expanding samples and actual images Ed. Suppose that there
are m persons and n variations, we label expanding samples
as De and label actual samples as Da. We use every pixel of

Figure 2: 0e basic principle diagram of the expanding sample method.

Table 1: 0e algorithm of generating intraclass variation set.
Input: an extrafrontal face dataset X

Output: intraclass variation set ε
(1) calculate:

εij � Xij −Xi1
where i ∈ [1, m], j ∈ [2, n].

(2) calculate:
εj � (1/m)

m
i�1εij

(3) output intraclass variation set, as follows:
ε � (ε2, ε3, ...εn)
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the ith person’s image with the jth variation in expanding
samples Deij minus the corresponding pixel of the ith
person’s image with the jth variation in actual images Daij.
So we get the Euclidean distance of the ith person with the
jth variation image between expanding sample and actual
image Edij, as follows:

Edij � Deij −Daij, (6)

where i ∈ [1, m], j ∈ [1, n].
Second, calculate average Euclidean distance of the jth

variation Edj which is used as the threshold of the jth
intraclass variation, as follows:

Edj �
1
m



m

i�1
Edij. (7)

0ird, count the number of similar images. Let Nj

represent the similar number of the jth variation image.
When the Euclidean distance Edij is bigger than the
threshold of intraclass variation Edj, it is regarded that the
expanding sample is not similar to the actual image. Oth-
erwise, it is similar as follows:

Edij ≤Edj, similar,

Edij >Edj, not similar.
(8)

Finally, calculate the similarity of the jth variation be-
tween expanding samples and actual samples ηj, as follows:

ηj �
Nj

m
× 100%. (9)

Its specific steps are shown in Table 2.
0e thresholds of intraclass variation and the similarities

are shown in Tables 3 and 4, respectively.

5.2. Intraclass Variation Set. In Table 4, we can see several
similarities are very low, which may be detrimental to the
experimental results, so it is necessary to select the best
intraclass variation set.

We label these expanding samples as Part I, Part II, Part
III, and Part IV according to the similarity that is no less than
90%, 95%, 99%, and 100%, respectively. 0en, we can know
that Part I includes 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 15, 16, 17, 18,
19, 20, 22, and 23. Part II includes 1, 2, 3, 4, 5, 6, 7, 9, 10, 14,
15, 16, 18, 19, and 20. Part III includes 1, 2, 3, 4, 5, 6, and 7.
Part IV includes 1, 2, 3, 5, 6, and 7. We also label Part V
which includes all expanding samples and label Part VI
which includes SSPP. So it can be known that the number of
samples in Part I, Part II, Part III, Part IV, Part V, and Part
VI is 1800, 1500, 700, 600, 2600, and 100, respectively.

In order to test the influence of these expanding samples,
we test the accuracies and losses in session 1 and session 2 by
using Part I, Part II, Part III, Part IV, Part V, and Part VI to
fine-tune the lightened CNNmodel, respectively.0ese fine-
tuned models are used to implement experiment on AR face
database, respectively. 0e accuracies and losses are shown
in Figures 6–9, respectively.

According to Figures 6–9, we can find that the accuracies
in Figure 6 are the highest when the fine-tuning number is

1800, so does in Figure 7. We also find the errors in Figure 8
are the lowest when the fine-tuning number is 1800, so does
in Figure 9. All in all, Part I is selected to implement ex-
periment. Correspondingly, these models which are used to
produce Part I is selected as the final version of intraclass
variation set.

So we can know that these models are these variation
types, as follows: 1: neutral expression, 2: smile, 3: anger, 4:
scream, 5: left light on, 6: right light on, 7: all side light on, 9:
wearing sunglasses and left light on, 10: wearing sunglasses
and right light on, 14: neutral expression, 15: smile, 16:
anger, 17: scream, 18: left light on, 19: right light on, 20: all
side light on, 22: wearing sunglasses and left light on, and 23:
wearing sunglasses and right light on.

5.3. AR Face Database. AR face database consists of 126
persons (70 men and 56 women) with more than 4,000 color

Table 2: 0e algorithm of measuring similarity between expanding
samples and actual images.
Input: expanding samples De, actual samples Da
Output: the similarity of the jth variation image between
expanding samples and actual samples ηj

1. Calculate Edij � Deij −Daij

2. Calculate Edj � (1/m) 
m
i�1 Edij

3. Initialize Nj � 0
4. for (i � 1; i≤m; i + +)

if (Edij ≤Edj)

Nj � Nj + 1;
else

Nj � Nj;
end

5. Calculate ηj � (Nj/m) × 100%

Table 3: 0e thresholds of intraclass variation.
Number 2 3 4 5 6
0reshold 802.3 814.1 873.0 839.5 804.3
Number 7 8 9 10 11
0reshold 834.0 855.1 914.1 898.5 636.6
Number 12 13 14 15 16
0reshold 780.9 835.8 815.2 848.9 880.1
Number 17 18 19 20 21
0reshold 889.9 864.3 850.0 856.3 895.4
Number 22 23 24 25 26
0reshold 953.5 945.2 614.4 793.9 804.4

Table 4: 0e similarities between expanding database and AR
database.
Number 1 2 3 4 5 6
Similarity 100% 100% 100% 99% 100% 100%
Number 7 8 9 10 11 12
Similarity 100% 88% 98% 98% 4% 26%
Number 13 14 15 16 17 18
Similarity 40% 98% 97% 98% 94% 98%
Number 19 20 21 22 23 24
Similarity 98% 97% 80% 94% 93% 1%
Number 25 26 — — — —
Similarity 29% 29% — — — —
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face images. 0ese images were taken in two-week interval
and were divided into two sessions which were session 1 and
session 2. In the experiment, a face subdatabase including 50
men and 50 women is selected.

We use Part I to fine-tune the lightened CNN. 0en the
fine-tuned model is used to perform experiment. 0e ac-
curacies of different methods in session 1 and session 2 are
shown in Tables 5 and 6, respectively.

We can see from Table 5 that the direct method has
a poorest performance among these methods, and patch-
based method is better than generic learning method. 0e

patch-based method TLC outperforms the generic learning
method LGR by 0.4%, 0.6%, and 1.8% under expression,
disguise, and illumination with disguise conditions, re-
spectively. But under the same conditions, TDL outperforms
TLC by 1.7%, 0.1%, and 1.2%, respectively. Besides, we find
that the accuracies under expression and illumination
conditions achieve 100%.

In Table 6, we can find that the patch-based method TLC
is very competitive, and it outperforms the generic learning
method LGR by 1.7%, 2.1%, 2.5%, and 3.1% under different

The accuracies (%) under different fine-tuning
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The accuracies (%) under different fine-tuning
numbers (session 2)

Illumination
Expression

Disguise
Illumination + disguise

70

75

80

85

90

95

100

A
cc

ur
ac

y

500 1000 1500 2000 2500 30000
Fine-tuning numbers

Figure 7: 0e accuracies in session 2 by using different parts to
fine-tune the lightened CNN.

The losses under different fine-tuning
numbers (session 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

500 1000 1500 2000 2500 30000
Fine-tuning numbers

Illumination
Expression

Disguise
Illumination + disguise

Figure 8: 0e losses in session 1 by using different parts to fine-
tune the lightened CNN.

The losses under different fine-tuning
numbers (session 2)

Illumination
Expression

Disguise
Illumination + disguise

0

0.5

1

1.5

Lo
ss

500 1000 1500 2000 2500 30000
Fine-tuning numbers

Figure 9: 0e losses in session 2 by using different parts to fine-
tune the lightened CNN.

Computational Intelligence and Neuroscience 7



conditions, but the proposed TDL outperforms TLC by
0.8%, 12.9%, 3.7%, and 7.4%, respectively. Especially, the
accuracies obtained by using TDL achieve 100% under il-
lumination, expression, and disguise conditions.

0e accuracies in Table 5 and Table 6 are very high. On
the one hand, it is because the images in AR face database
were taken under strictly controlled conditions. On the other
hand, the intraclass variation set has the same variations as
the images of AR face database.

5.4. Extend Yale B Face Database. Extend Yale B face da-
tabase contains 38 subjects, and each subject has 64 images
under different pose and illumination conditions. Different
from other experiments that using one part of the database
as testing samples and another as generic samples and
training samples, in the experiment, the intraclass variation
set is added to the neutral and normal illumination image of
each subject to obtain adequate training samples, and the
rest of the database is used as testing samples. 0ese
expanding samples are used to fine-tune the well-trained
DCNN model, and then the fine-tuned model is used to
perform experiment. 0e accuracies obtained by using
different methods are shown in Table 7.

We can find that the direct method still has the lowest
recognition rate and DL method SSAE is better than direct
method; however, the generic learning methods SVDL and
LGR outperform SSAE by 2.8% and 4.4%, respectively. But

TDL outperforms SVDL and LGR by 3.3% and 1.7%, re-
spectively. We also find that the accuracy on Extend Yale B
face database is lower than that on AR face database. For one
thing, these expanding samples have no same variation as
testing samples. For another, Extend Yale B face database has
a greater degree of change corresponding to its neutral
images compared with AR face database.

5.5. FERET Face Database. FERET face database contains
200 subjects with 1400 images under different pose, ex-
pression, and illumination conditions. 0e neutral and
normal image of each person is used as single sample to
expand sample by adding the intraclass variation set to it.
0e rest is used as testing samples. 0ese expanding samples
are used to fine-tune the DCNNmodel. 0en, the fine-tuned
DCNN model is applied to implement experiment. Table 8
lists the accuracies of different methods.

We can see from Table 8 that the direct method con-
sistently performs worst than other methods. Expanding
sample method also exhibits worse results. 0e expanding
sample method SVD-LDA outperforms the direct method
PCA by 1.5%; however, the best direct method SOM out-
performs SVD-LDA by 5.5%, but the patch-based method
DMMA outperforms SOM by 2%. 0e proposed method
TDL achieves the best performance and outperforms the
second DMMA by 0.9%.

5.6. LFW Database. 0e LFW database contains 1680
subjects with more than 13000 images which were collected
from Web and had many unconstrained conditions. Fol-
lowed by [6], LFW-a is used to implement experiment. We
select 50 persons from LFW-a who have more than 10
images to do experiment. 0ese images are preprocessed
before being used. First, the face images are cropped. Second,
the cropped face images are resized to 144 × 144. 0ird, the
intraclass variation set is added to one image of each person
to get more training samples. Finally, these expanding
samples are used to fine-tune the DCNN model, and then
the remaining images of the database are tested on the fine-
tuned model. Table 9 presents the accuracies obtained by
different methods.

We can find that all the accuracies are very low and none
of them overtakes 31%; however, the proposed method TDL
achieves the best which is 74% and outperforms the second
LGR by 43.6% more than 2 times. Particularly, the LFW
database is taken under unconstrained conditions. 0e ex-
perimental result proves that although the intraclass vari-
ation set is obtained by constrained images, it also can be
used in unconstrained conditions.

From Tables 7–9, we can find that TDL has the best
performance compared with other method, although the
intraclass variation set is obtained by another database. On
the one hand, it demonstrates that the intraclass variation set
has a wide range of practicability. On the other hand, it
shows that TDL has a better generic ability.

From Tables 5–9, we find that the direct method is the
poorest method, expanding sample method is the second

Table 5: Accuracy (%) on AR face database (session 1).

Method Illu Exp Dis Disill
SRC [35] 80.8 85.4 55.6 25.3
CRC [36] 80.5 80.4 58.1 23.8
AGL [45] 93.3 77.9 70.0 53.8
DMMA [16] 92.1 81.4 46.9 30.9
PNN [46] 84.6 86.7 90.0 72.5
PCRC [47] 95.0 86.7 95.6 81.3
ESRC [15] 99.6 85.0 83.1 68.6
SVDL [18] 98.3 86.3 86.3 79.4
LGR [6] 100 97.9 98.8 96.3
TLC [5] 100 98.3 99.4 98.1
TDL 100 100 99.5 99.3

Table 6: Accuracy (%) on AR face database (session 2).

Method Illu Exp Dis Disill
SRC [35] 55.8 68.8 29.4 12.8
CRC [36] 55.8 69.6 35.0 13.5
AGL [45] 70.8 55.8 40.6 30.7
DMMA [16] 77.9 61.7 28.1 21.9
PNN [46] 77.5 73.8 71.9 52.8
PCRC [47] 88.8 71.7 81.8 63.1
ESRC [15] 87.9 70.4 59.4 45.0
SVDL [18] 87.1 74.2 61.3 54.1
LGR [6] 97.5 85.0 93.8 88.8
TLC [5] 99.2 87.1 96.3 91.9
TDL 100 100 100 99.3
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poorest method, generic learning method is more better
than expanding sample method, patch-based method is the
best method among these methods, and the DL method
SSAE performs worse than generic learning method, but the
proposed method TDL is better than patch-based method. It
says that TDL not only outperforms expanding sample
method but also has a better performance compared with
direct method, generic method, patch-based method, and
another DLmethod. Otherwise, we also find that recognition
rates on AR face database are very high which is because the
intraclass variation is learned from the same database,
recognition rate on LFW database is the lowest among these
database which is because the assumption of the model is to

deal with frontal faces, so the final system is only working
with frontal faces, when it is tested on LFW database which
concludes nonfrontal faces the recognition rate dropped
sharply.

6. Conclusion and Future Work

In this paper, we propose a scheme combined traditional and
DL (TDL) method for single sample per person (SSPP) face
recognition (FR). First, a novel expanding sample method is
proposed to increase training sample. Second, similarities
between expanding samples and actual samples are validated,
and then the best intraclass variation set is selected as
expanding sample model based on the similarity and per-
formance on these actual samples. 0ird, the selected intra-
class variation set is used to expand training sample, and then
the DCNN model is fine-tuned. Finally, experiments are
implemented on the fine-tuned DCNN model. Extensive
experimental results on several databases including AR face
database, Extend Yale B face database, FERET face database,
and LFW database demonstrate that TDL achieves the state-
of-the-art performance among these methods in SSPP FR.
Besides, this paper is a pioneer that uses DCNN in SSPP FR,
which makes it possible that DCNN is used in single sample
or few samples.

In the future, on the one hand, a research on how to
improve its accuracy and practicability will be continued,
and on the other hand, a research on how to strictly carry out
the alignment between the new image and the reference
images will also be continued.
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