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Receptor-binding domains of spike proteins of emerging
or re-emerging viruses as targets for development of
antiviral vaccines

Shibo Jiang1,2, Lu Lu1, Qi Liu1,3, Wei Xu1 and Lanying Du2

A number of emerging and re-emerging viruses have caused epidemics or pandemics of infectious diseases leading to major

devastations throughout human history. Therefore, developing effective and safe vaccines against these viruses is clearly important for

the protection of at-risk populations. Our previous studies have shown that the receptor-binding domain (RBD) in the spike protein of

severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) is a key target for the development of SARS vaccines. In

this review, we highlight some key advances in the development of antiviral vaccines targeting the RBDs of spike proteins of emerging

and re-emerging viruses, using SARS-CoV, influenza virus, Hendra virus (HeV) and Nipah virus (NiV) as examples.
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INTRODUCTION

Epidemics and pandemics of emerging and re-emerging viral infec-

tious diseases, such as severe acute respiratory syndrome (SARS)-

associated coronavirus (SARS-CoV),1–3 influenza virus,4 Hendra virus

(HeV) and Nipah virus (NiV),5,6 have posed a great threat to public

health, human safety and economic stability worldwide. Therefore,

development of effective and safe vaccines to prevent these diseases

is urgently needed.

Safety concerns have arisen over the use of whole inactivated or

live-attenuated viruses for the development of antiviral vaccines;7

therefore, scientists have been attempting to design vaccines based

on the spike proteins of emerging and re-emerging viruses. Indeed,

spike protein-based vaccines are safer and more effective than vac-

cines based on inactivated or live-attenuated viruses.8 However,

new concerns have been raised over the use of full-length viral

spike proteins for developing subunit vaccines because some of the

non-neutralizing, or immunodominant, epitopes in the spike proteins

may induce antibodies that enhance, rather than neutralize, viral

infection, or otherwise cause harmful inflammatory responses in vac-

cinated hosts.9,10 Therefore, selection of the key functional domains

that contain neutralizing and/or T-cell epitopes as the immuno-

gens appears to be an important strategy in developing antiviral

vaccines.

Infection is initiated upon binding of the viral spike protein with the

receptor or coreceptor on the target cell surface, as mediated by the

spike protein’s receptor-binding domain (RBD) (Figure 1). Therefore,
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Figure 1 The interaction between the receptor-binding domain in the spike of an

emerging virus and the corresponding receptor on the target cell.
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the RBD plays an important role in viral attachment, fusion and entry

and may serve as an attractive target for designing antiviral vaccines.

Our previous studies have demonstrated that the vaccines based on the

RBD in the spike protein of SARS-CoV (Figure 2A) induced the most

potent neutralizing antibody responses and protective immunity in

vaccinated animals,11–17 suggesting that the RBDs in the spike proteins

of other viruses that cause emerging and re-emerging infectious dis-

eases, such as influenza virus (Figure 2B), HeV and NiV (Figure 2C),

may also serve as targets for developing vaccines to prevent corres-

ponding infectious diseases.18

Here, we reviewed important advances in the development of anti-

viral vaccines that mainly target the RBD of spike proteins of some

viruses which have caused serious emerging and re-emerging infec-

tious diseases during the past three decades, and assess the feasibility of

applying similar strategies in the design and development of vaccines

against other emerging and re-emerging viruses.

DEVELOPMENT OF SARS VACCINES TARGETING THE RBD OF

SARS-COV SPIKE PROTEIN

SARS, as the first new infectious disease identified in the twenty-first

century, is an acute and severe respiratory disease. After it originated in

Guangdong Province of China in 2002,3 SARS rapidly spread to 29

countries and areas around the world. SARS-CoV, the causative agent,

was identified in April 2003.19 A total of 8098 SARS cases with 774

deaths were reported during the 2003 outbreak. Although SARS-CoV

was believed to be eliminated from human circulation in July 2003, its

brief recurrence in laboratory workers in China between late 2003 and

early 2004 and its ubiquity in nature both pose a threat for its re-

emergence in human populations through zoonotic reintroduction,

laboratory escape, or bioterrorism.20 Thus, there is an urgent need for

effective strategies against this devastating viral agent, especially in

high-risk groups, including the elderly, healthcare workers and labo-

ratory personnel.

SARS-CoV primarily transmits via droplets (respiratory secretions)

and close person-to-person contact. It may exist in respiratory secre-

tions, stools, urines and sweats in SARS patients. After entering the

body, the virus binds to its receptor angiotensin-converting enzyme

2,21,22 which expresses on the primary target cells, pneumocytes and

enterocytes in the respiratory system, and other susceptible cells, such

as intestinal mucosal cells, renal tubular epithelial cells, cerebral neu-

rons and immune cells.23 After permeating these cells, the virus repli-

cates and is released to infect new target cells (Figure 3). The

production and activation levels of proinflammatory chemokines

and cytokines are remarkably elevated, causing significant lung tissue

damage that results in atypical pneumonia with rapid respiratory

deterioration and failure.24

The S protein and its RBD of SARS-CoV

SARS-CoV is an enveloped virus containing a single and positive-

stranded RNA. The genome RNA encodes nonstructural replicase

polyprotein and structural proteins, including spike (S), envelope

(E), membrane (M) and nucleocapsid (N) proteins.2,25 SARS-CoV

Figure 2 The RBDs in the envelope glycoproteins of SARS-CoV, influenza virus and Hendra virus. (A) RBD in the SARS-CoV spike protein.14,17,79 The residue numbers

of each region represent their positions in the S protein of SARS-CoV. (B) RBD in influenza virus HA. Taking H5N1 as an example, HA consists of a globular ‘head’ HA1

subunit containing the receptor-binding domain RBD and a membrane proximal HA2 subunit with a-helical stalk region (FP). The leading sequence (SP) is located at

the N-terminus of HA1. There is a protease cleavage site between HA1 and HA2 subunits characterized by specific amino acid sequences, e.g., RERRRKKR. HA1 and

HA2 subunits were connected by interchain disulfide bond from HA1-aa14 to HA2-aa137.80 (C) RBD in the Hendra virus G glycoprotein. There are many glycosylate

sites in the extracellular domain located in 72, 159, 306, 378, 417, 481 and 529, respectively. Residues from aa 439 to aa 468, which are located in RBD domain, are

an important domain within G for receptor interaction. CP, cytoplasm domain; EC, extracellular domain; FP, fusion peptide; HA, hemagglutinin; HR, heptad repeat;

RBM, receptor-binding motif; TM, transmembrane domain; SP, signal peptide.
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infection can trigger a series of humoral and cellular immune res-

ponses, mainly targeting the S protein.26,27

The S protein of SARS-CoV is a type I transmembrane glycoprotein

with its N terminus on the surface of the infected cell or the virus

particle. Its precursor, consisting of 1255 amino acids (aa), can be

cleaved by proteases into the surface subunit S1 (aa 17–680) and the

transmembrane unit S2 (aa 681–1195)28,29 (Figure 2A). S1 recognizes

and binds to host cell receptors, leading to the conformational changes

of S2 that mediate viral fusion between the viral envelope and the host

cell membrane.30

The minimal RBD of SARS-CoV S protein is located in the S1

subunit (aa 318–510) and is responsible for viral binding to host cell

receptors31,32 (Figure 2A). Besides the main receptor, angiotensin-

converting enzyme 2, there are several alternative receptors, such as

dendritic cell-specific intercellular adhesion molecule-3-grabbing

non-integrin and/or liver/lymph node-specific intercellular adhesion

molecule-3-grabbing integrin.33 Two residues (aa 479 and aa 487) in

RBD determine SARS progression and tropism, and their mutations

may enhance animal-to-human or human-to-human transmission.29

Some residues (aa 109, 118, 119, 158, 227, 589 and 699) in S protein are

critical for dendritic cell/lymph node-specific intercellular adhesion

molecule-3-grabbing integrin-mediated virus entry.34

Vaccines based on the RBD of SARS-CoV S protein

The roles of S protein in receptor binding and membrane fusion make

it a perfect target for vaccine and antiviral development. Several vac-

cine candidates based on the full-length S protein of SARS-CoV have

shown high immunogenicity in inducing neutralizing antibody res-

ponses and protection against SARS-CoV challenge.8,9 However, these

vaccines may also induce harmful immune responses that cause liver

damage in the vaccinated animals10 and/or enhance SARS-CoV infec-

tion through an antibody-dependent mechanism.9 All of these have

raised significant concerns about the safety and ultimate protective

efficacy of vaccines based on the entire S protein.

Previous studies indicated that RBDs of S protein of coronaviruses

(mouse hepatitis virus and human coronavirus 229E contain major

antigenic determinants that can induce neutralizing antibody res-

ponses.35,36 We therefore postulated that RBD of SARS-CoV may also

be the target of neutralizing antibodies. Indeed, we found that a

majority of the neutralizing antibodies in the sera of SARS patients

and animals immunized with the inactivated SARS-CoV strongly

reacted with the RBD of SARS-CoV S protein since depletion of the

RBD-specific antibodies resulted in elimination of the neutralizing

activity.12,37 Chen et al.38 also demonstrated that recombinant RBD

could absorb and remove most neutralizing antibodies from the anti-

sera of mice, rabbits and monkeys immunized with a live-attenuated

modified vaccinia Ankara virus expressing the full-length S protein.

We have constructed several subunit SARS vaccine candidates using

recombinant RBD expressed in Escherichia coli, insect and mammalian

cells and used them to immunize mice. We found that all of them

could induce highly potent and broad cross-reactive neutralizing anti-

body responses11,17 and protective immunity against challenge with

live SARS-CoV. We also demonstrated that intramuscular and muco-

sal immunization of animals with the adeno-associated virus-based

Figure 3 The SARS-CoV life cycle in host cells and its S protein structure. Life cycle of SARS-CoV. SARS-CoV begins its life cycle when its S protein binds to the cellular

receptor ACE2. After receptor binding, the conformation change in the S protein facilitates viral envelope fusion with the cell membrane through the endosomal

pathway. Then SARS-CoV releases RNA into the host cell. Genome RNA is translated into viral replicase polyproteins pp1a and 1ab, which are then cleaved into small

products by viral proteinases. At the same time, polymerase, which produces a series of subgenomic mRNAs by discontinuous transcription, is finally translated into

relevant viral proteins. Viral proteins and genome RNA are subsequently assembled into virions in the ER and Golgi, which are budding into the lumen of the ERGIC and

then transported via vesicles and released out of the cell. ACE2, angiotensin-converting enzyme 2; ER, endoplasmic reticulum; ERGIC, ER–Golgi intermediate

compartment.
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RBD vaccine could elicit strong neutralizing antibody responses and

protection against SARS-CoV challenge.15–17 These findings suggest

that this RBD-based vaccine has considerable potential for develop-

ment into a safe and effective SARS vaccine to prevent future SARS

epidemics.

Therefore, our previous studies on SARS vaccines have proven the

concept of RBD-based vaccines and have shown that this strategy

could also be applied to the development of vaccines against other

infectious diseases.

RATIONAL DESIGN OF INFLUENZA VACCINES BASED ON

NEUTRALIZING EPITOPES IN THE RBD IN THE

HEMAGGLUTININ OF INFLUENZA A VIRUSES

Influenza pandemics occur frequently in the human population with

substantial morbidity and mortality. Three major influenza pandemics

have occurred in the last century, respectively caused by different sub-

types of influenza A virus (IAV), including 1918 H1N1 (‘Spanish Flu’),

1957 H2N2 (‘Asian Flu’) and 1968 H3N2 (‘Hong Kong Flu’).39 In 2009,

a swine-origin IAV (S-OIV), H1N1, which originated in Mexico and

then spread globally, caused the first influenza pandemic of the twenty-

first century.40 Several other subtypes of IAVs were reported to cross

the species barrier to infect humans. For example, in March 1999, avian

IAV H9N2 was seen to infect two persons in Hong Kong, resulting in

mild influenza.41 In 2003, another avian IAV subtype H7N7 was

reported to infect 89 humans with one death during a fowl plague

outbreak in the Netherlands.42 Furthermore, the highly pathogenic

avian influenza A virus (HPAI) H5N1 has become a continuing threat

to public health worldwide since its first report in 2003.43 As of

20th January 2012, 582 cases of H5N1 have been reported to the

World Health Organization with a mortality rate approaching 60%

(http://www.who.int/influenza/human_animal_interface/EN_GIP_

20120120Cumulative NumberH5N1cases.pdf).

IAV hemagglutinin and its RBD

IAVs belong to the family of Orthomyxoviridae. The genome of the

virus consists of eight single-stranded, negative-sense RNA segments,

encoding several important proteins, including surface proteins

hemagglutinin (HA), neuraminidase (NA) and matrix 2 protein

(M2), nucleoprotein (NP), matrix protein 1 (M1), non-structural pro-

teins (NS1, NS2), as well as polymerase proteins PB1, PB2 and PA.44

HA and NA are two important envelope glycoproteins of the virus, and

all IAVs are classified into 16 antigenically distinct HAs (H1–H16) and

9 different NAs (N1–N9), according to the serotypes of HA and NA.

The HA of IAVs is a homotrimer and plays important roles in virus

infection. Each of the single-chain monomers is initially synthesized as

a precursor polypeptide, HA0, which is then cleaved by host proteases

into two subunits, HA1 and HA2. The HA1 subunit is mainly respons-

ible for receptor binding. It mediates viral attachment to the cellular

receptors of the target cells known as sialic acid of glycoproteins and

glycolipids.45 Different HAs of IAVs recognize different sialic acid

receptors. For example, the HAs from humans bind preferentially to

sialic acids in the a (2,6) linkage, while those from avians and equines

recognize a (2,3) linkages. It appears that the HAs from swine may

recognize both a (2,3) and a (2,6) linkages.46 After viral attachment to

the target cells, the HA2 subunit located at the membrane-proximal

helix-rich stem region mediates virus entry into the target cell by

fusion of the viral envelope and the cellular membrane via the fusion

peptide at the N-terminus of HA2.45 The HA2 N-terminal fusion

peptide contains the highly conserved sequence among all IAVs, and

neutralizing epitopes targeting this region have been identified.47

As the main region for binding cellular receptors, RBD is located at

the membrane-distal end (HA1) of each HA monomer, spanning less

than 300 aa (from residues around 105 to residues around 319,

depending on different HAs). The receptor-binding site is composed

of three structural elements, including the 190-helix (HA1 188–190),

the 130-loop (HA1 134–138) and the 220-loop (HA1 221–228), as well

as several conserved residues at the W153, H183 and L194 positions.45

The RBD of HA is the primary target of neutralizing antibodies, based

on which anti-IAV vaccines can be designed and developed.48

Current influenza vaccines and disadvantages

The latest influenza pandemic caused by 2009 swine-origin IAV

H1N1, coupled with the continuing threat of the highly pathogenic

avian influenza A virus H5N1, makes it essential to develop efficacious

vaccines to prevent future influenza pandemics and epidemics.

Conventionally, influenza vaccines have been prepared on the basis

of inactivated virus, in which viruses are grown in embryonated

chicken eggs and then inactivated with formalin and purified for use

with appropriate adjuvants. However, these vaccines are mainly admi-

nistered parenterally, limiting their ability to induce high immunity

and efficacy in preventing heterologous virus infection.49 Therefore,

live-attenuated, cold-adapted influenza vaccines have been produced

to increase immunogenicity. When injected intramuscularly into

mice, these live influenza virus-based vaccines induced greater pro-

tection than those based on the inactivated virus.50 Unfortunately,

a safety concern arose from the possibility of recovering virulence or

the potential re-assortment of the viruses with circulating influenza

viruses. Although other available influenza vaccines, including those

based on DNA, protein and viral vectors, as well as virus-like particles,

may induce immune responses and/or protection against IAV infec-

tion,51,52 their capacity to elicit highly potent and broad immune

responses and protection is greatly restricted.

These disadvantages have made it essential to explore alternative

novel approaches for future vaccine development. Preference will be

given to those vaccines that are capable of stimulating broad neutrali-

zing antibody responses and cross-protective immunity against diver-

gent IAVs, including the pandemic strains of 2009 H1N1 and highly

pathogenic strains of H5N1.

Discovery of the neutralizing epitopes in the RBD of IAV

Neutralizing antibodies play critical roles in protecting against IAV

infection. The neutralizing antibodies could be induced by virus infec-

tions or raised by vaccination with specific antigens. The produced

antibodies may neutralize various viruses by first recognizing and

targeting specific positions (epitopes) of viral antigens. Currently, a

number of neutralizing epitopes have been identified by binding of the

neutralizing antibodies to the exposed loops surrounding the receptor

binding site of HA protein and interfering with virus attachment, or

selecting antibody escape mutants.53

Using genome-fragment phage display libraries, a group from the

US Food and Drug Administration was able to map the epitopes of

the neutralizing monoclonal antibody (mAb) FLD21.140 into two aa

clusters in the RBD, 121-SWS-123 and 164-YNNT-167, the highly

conserved sequences among clades 1, 2, 5, 6 and 8 of H5N1 viruses.48

Using yeast surface display of neutralizing mAb NR2728 with a

full-length H5 HA, researchers identified a conformation-dependent

neutralizing epitope in the interface overlapping the receptor binding

site of HA1. Another conformational epitope adjacent to the RBD

was identified by mapping mAb S139/1 with HA. This mAb showed
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cross-reactive neutralization and HA inhibition against particular

strains of H1, H2, H3 and H13 subtypes of IAVs.54

Conformational neutralizing epitopes covering residues 125–129

and 157–169 at the apex of the RBD were identified by co-crystal

structure of the 1918 HA with 2D1 mAb from a survivor of the 1918

Spanish flu. These epitopes were conserved in pandemic viruses caus-

ing the 1918 Spanish flu and 2009 swine-origin IAV.55 Studies on the

HA of Qinghai-type influenza H5N1 virus revealed other antigenic

epitopes at the globular head region of H5 HA containing residues 113,

117, 118, 120 and 123.56 Neutralizing epitopes at residues 260 and 261

of RBD were also identified using H5N1-specific neutralizing mono-

clonal Ab 9F4. These residues are well-conserved across different

clades of H5N1 strains.57

In addition to the above neutralizing epitopes identified by anti-

body binding assays, several immunodominant epitopes were iden-

tified by selection of escape mutants using neutralizing mAbs. These

neutralizing epitopes cover residues at positions 138, 140, 155, 159,

189, 194, and 218 of RBD.58 Other conserved neutralizing epitopes in

the head region of HA1 were identified from naturally occurring anti-

bodies F045-092 and F026-427.59 The neutralizing epitopes at residues

178–181 and 227–239 of the receptor binding site of HA globular

region were identified by two human neutralizing antibodies, B-1

and D-1, to H3N2 derived from different donors. These neutralizing

epitopes are proven to be highly conserved in human H1N1, swine-

origin pandemic H1N1, human H5N1 and avian H5N1 strains.60 It

was also reported that a neutralizing mAb, CH65, was capable of

recognizing the receptor-binding pocket of IAV H1N1 HA, indicating

that broad neutralization of IAV could be achieved by antibodies

targeting the RBD pocket.61

Prospective development of novel influenza vaccines based on the

neutralizing epitopes in RBD of the IAV HA1

Identification of the above neutralizing epitopes in the RBD region

brings hope for the development of innovative vaccines because the

identified epitope regions may be applied as novel vaccine targets.

Vaccines based on these neutralizing epitopes could induce neutrali-

zing antibodies against a broad spectrum of IAV strains. Studies on the

development of such vaccines have been initiated, and some of them

have shown promising results.62

It is reported that an E. coli-expressed recombinant protein,

HA63-286-RBD, containing HA-RBD of the A/H1N1/2009 influenza

virus, is immunogenic with the capacity to trigger neutralizing anti-

bodies and induce protective activity in the tested ferret model.63

Studies have shown that recombinant vaccines targeting the globular

head RBD region fused to flagellin of Salmonella typhimurium fljB

gene induced protective immunity to H1N1 and H5N1 infections in

challenged mice.62 It was demonstrated that a recombinant oligomeric

protein covering H5N1 (A/Vietnam/ 1203/2004) HA1-RBD neutrali-

zing epitopes elicited potent neutralizing antibodies in the vaccinated

mice against homologous and heterologous H5N1 strains and pro-

tected ferrets from homologous and heterologous H5N1 challenge.48

Previous studies by the same group also demonstrated the protective

immunity of vaccines containing H1N1 (A/California/07/2009) HA1-

RBD region against challenge of H1N1 pandemic influenza virus. A

report by Prabakaran and colleagues indicated that a recombinant

baculovirus-expressed trivalent vaccine covering the major neutral-

izing epitopes in the RBD of H5N1 effectively neutralized viruses from

clades 1, 2.1, 2.2, 4, 7 and 8 of H5N1 and protected 100% of the mice

against challenge with three different clades (clade 1.0, clade 2.1 and

clade 7.0) of H5N1 strains. Our recent studies also revealed that a

recombinant HA1-Fdc vaccine containing RBD neutralizing region

induced high titers of antibodies that cross-neutralized clades 0, 1,

2.2 and 2.3.4 of H5N1 strains and completely protected vaccinated

mice against high-dose lethal challenge of different strains of H5N1

covering clades 0, 1 and 2.3.4.64

The above findings further support our hypothesis that the neut-

ralizing epitopes in the RBD of IAV HA are attractive targets for

development of universal influenza vaccines, which can be used to

prevent future influenza pandemics or epidemics caused by emerging

or re-emerging IAV strains.

RBDS IN THE G PROTEINS OF HEV AND NIV AS TARGETS FOR

VACCINE DEVELOPMENT

HeV and NiV are emerging zoonotic viruses discovered during out-

breaks in Australia in 1994 and in Malaysia in 1998, respectively.

As newly defined viruses, HeV and NiV belong to the family

Paramyxoviridae and genus Henipavirus.5 The broad species tropism

and the ability to cause severe diseases in both humans and animals

distinguish HeV and NiV from other zoonotic viruses. Symptoms of

HeV and NiV infection of humans can be respiratory, including

hemorrhage and edema of the lungs, or encephalitic, resulting in men-

ingitis. The principal natural reservoirs for HeV and NiV are pteropid

fruit bats; however, recent evidence of henipavirus infection has been

found in a wider range of species, including flying foxes, humans, cats,

horses, rabbits and laboratory rodents6 (Figure 4). Because HeV and

NiV can potentially cause significant morbidity and mortality in

humans, with consequent major economic and public health impact,

they are classified as biological safety level-4 pathogens.65

Both HeV and NiV have non-segmented, negative-stranded RNA

genosomes consisting of transcription units encoding six major struc-

tural proteins, including nucleocapsid protein (N), phosphorprotein

(P), matrix protein (M), fusion protein (F), glycoprotein (G) and

large protein (L).66 The G protein, which contains a length of 602

aa, is responsible for virus binding to the receptor and entry into the

host cell.

While the G protein has neither HA nor neuraminidase activities, it

plays an important role in HeV and NiV binding to ephrin-B2 and

ephrin-B3, which are members of a large family of important signaling

proteins involved in cell–cell interactions.67 Binding of RBD in the G

protein with its receptor facilitates F protein-mediated viral fusion

with the target cell. Mutations of some residues in the RBD of the G

protein significantly impaired viral binding and fusion activities.68

The G protein of HeV or NiV is comprised of a short cytoplasmic tail,

a transmembrane domain, a stalk region and a globular head domain68

(Figure 2C). The globular head region of the G protein contains the

minimal RBD (aa 439–468)68 (Figure 2C). The G protein of HeV or

NiV appears to be the dominant target antigen for neutralizing anti-

bodies.69 While no vaccines are available for the prevention of

henipavirus disease in humans, several G protein-based henipavirus

vaccine candidates have been tested in three different animal models.70

Two of them using ALVAC canarypox as vector showed protection

against NiV infection in pigs. A recombinant soluble G protein-based

vaccine adjuvanted with CpG was shown to induce strong immune

responses in a ferret NiV infection model, which could protect cats

from NiV infection.71

The first human neutralizing mAb, m101, with exceptional potency

against HeV and NiV, was identified in 2006.72 A panel of 17 alanine-

scanning mutants of the G protein of HeV was tested for binding

ability to the human neutralizing antibodies m101 and m102.4. It

was found that the binding of HeV G mutants D260A, G439A,
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K443A and K465A to both m101 and m102.4 was almost completely

eliminated, while the binding activity of mutants G449A and D468A

was significantly decreased.73 These results suggest that the epitopes of

the neutralizing antibodies overlap the RBD of HeV or NiV G proteins

and that some discontinuous residues located in the RBD are critical

for HeV or NiV binding to its receptors ephrin-B2 and ephrin-B3.74

Based on these findings, the design of an RBD-based henipavirus

vaccine to prevent HeV or NiV infection is very feasible.

CONCLUSION AND PROSPECTS

The use of RBD of spike proteins for developing antiviral vaccines to

prevent epidemics of emerging or re-emerging viral infectious diseases

is attracting more research interest. The common features of RBDs

of spike proteins of SARS-CoV, influenza virus and Hendra virus

include: (i) being located in the spike proteins; (ii) mediating binding

of the virus to the target cell via the interaction between viral spike

protein and the receptor on the target cell; (iii) having a length ranging

from 30 to 215 aa; and (iv) containing discontinuous neutralizing

epitope(s).

With its relatively conserved sequences, RBD plays a critical role in

the elucidation of antiviral immune response and protective immu-

nity. The best example is the RBD-based SARS vaccine. It is a safe

vaccine candidate and has been shown to induce the most effective

immune response and protective immunity against SARS-CoV. Thus,

it is expected that an RBD-based SARS vaccine will be one of the first

SARS vaccines going to clinical trials.

To design vaccines with the ability to induce highly potent and

cross-reactive neutralizing antibodies with high binding affinity, we

recommend the following strategies: (i) construct an immunogen

containing the discontinuous sequences of bonding set and/or

induced epitopes; (ii) induce conformational changes by mutation

or glycan shield of the non-neutralizing immunodominant epitopes

from the immunogen in order to reduce the immunogenicity of

these epitopes; and (iii) add an immunopotentiation motif to the

immunogen in order to enhance the immunogenicity of the RBD-

based vaccine.

Similar to the RBD of SARS-CoV spike protein, the IAV HA protein

RBD spans about 215 aa (aa 105–319) with three conserved structural

elements45 and contains primary neutralizing antibody epitopes that

serve as important targets for influenza vaccine development.48 A

number of broadly cross-reactive neutralizing mAbs, such as

NR2728 (146), S139/1,54 B-1 and D-1,61 were identified to specifically

bind to the conformation-dependent neutralizing epitopes in the

interface overlapping with, or adjacent to, the RBD in HA1. Our recent

studies have shown that vaccination of mice with the fusion protein

HA1-Fdc, which consists of H5N1 HA1, a trimeric motif foldon and

a human immunoglobulin G Fc fragment, resulted in induction of

potent neutralizing antibody responses and complete cross-clade

protection against H5N1 infection,64 including elucidation of neut-

ralizing mAbs whose epitopes were mapped to RBD (unpublished

data). All these findings support the feasibility of developing RBD-

based influenza vaccines. It is anticipated that these RBD-based influ-

enza vaccines could be effective against divergent IAV strains, includ-

ing those that may cause future influenza pandemics or epidemics.

HeV and NiV, which belong to the family Paramyxoviridae and

genus Henipavirus,5 are emerging zoonotic viruses that caused out-

breaks in humans in Australia and resulted in high mortality. The G

protein of HeV or NiV contains the minimal RBD overlapping about

30 aa (aa 439–468) in its globular head domain.68 The first human

neutralizing antibody, m101, is highly potent in neutralizing both HeV

and NiV,71 and its epitope overlaps the minimal RBD in the G protein,

suggesting the potential of developing RBD-based henipavirus vaccine

to prevent HeV or NiV infection.

Besides the viruses mentioned above, the strategy of designing RBD-

based vaccines can also be applied to the development of vaccines

against other emerging or re-emerging viruses with identified recep-

tor(s) and RBDs, such as Zaire Ebolavirus and Lake Victoria

Marburgvirus.75 Although the receptors for some viruses have not

Figure 4 The structure and natural reservoirs of HeV. The principal natural reservoirs for HeV are fruit bats. Recent evidence of Hendra infection has indicated that

flying foxes can also be natural reservoirs. The secondary vectors can be laboratory rodents, cats, dogs and rabbits. The dead-end hosts are horse and man. HeV has six

major structural proteins. They are nucleocapsid protein (N), phosphorprotein (P), matrix protein (M), fusion protein (F), glycoprotein (G) and large protein (L). HeV,

Hendra virus.
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been clearly defined, the sites in the spike proteins of these viruses for

binding to the cellular cofactors that facilitate viral entry may also be

used to design vaccines able to induce antibodies to block viral entry or

neutralize viral infectivity. For example, entry of hepatitis C virus

(HCV) into the hepatocyte requires at least four cellular cofactors,

including CD81,76 the tight junction proteins claudin-1 and occlu-

din,77 and scavenger receptor BI.78 It is expected that the sites in the E1

and E2 proteins of HCV for binding to the above cofactors or putative

HCV coreceptors may serve as targets for development of preventive

vaccines against HCV in the near future.
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