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Abstract

Changes in gene expression can correlate with poor disease outcomes in two ways: through

changes in relative transcript levels or through alternative RNA splicing leading to changes

in relative abundance of individual transcript isoforms. The objective of this research is to

develop new statistical methods in detecting and analyzing both differentially expressed and

spliced isoforms, which appropriately account for the dependence between isoforms and

multiple testing corrections for the multi-dimensional structure of at both the gene- and iso-

form- level. We developed a linear mixed effects model-based approach for analyzing the

complex alternative RNA splicing regulation patterns detected by whole-transcriptome

RNA-sequencing technologies. This approach thoroughly characterizes and differentiates

three types of genes related to alternative RNA splicing events with distinct differential

expression/splicing patterns. We applied the concept of appropriately controlling for the

gene-level overall false discovery rate (OFDR) in this multi-dimensional alternative RNA

splicing analysis utilizing a two-step hierarchical hypothesis testing framework. In the initial

screening test we identify genes that have differentially expressed or spliced isoforms; in the

subsequent confirmatory testing stage we examine only the isoforms for genes that have

passed the screening tests. Comparisons with other methods through application to a whole

transcriptome RNA-Seq study of adenoid cystic carcinoma and extensive simulation studies

have demonstrated the advantages and improved performances of our method. Our pro-

posed method appropriately controls the gene-level OFDR, maintains statistical power, and

is flexible to incorporate advanced experimental designs.

Introduction

Gene expression profiles have proved extremely useful for evaluating and identifying sub-

groups among cancer patients with similar overt phenotypes. For example, in pediatric leuke-

mia, gene expression signatures originally identified through microarray analyses have been

converted into FDA-approved assays for classifying patients into distinct risk categories [1–4].

However, conventional gene expression profiles do not account for the differences observed in
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expressed isoforms when alternative RNA splicing is analyzed. Alternative RNA splicing can

generate dozens of distinct transcripts from individual genes [5], which greatly increases the

diversity of the whole-transcript expression patterns and the number of variables for statistical

analysis. Transcript isoform expression profiles have been demonstrated to provide more

informative cancer signatures than standard gene expression profiles [6,7]. The regulation of

differential alternative RNA splicing has been implicated to correlate with poor disease out-

come in two aspects: transcript level differential expression [8], and differentially spliced iso-

forms, e.g. changes in relative abundance of isoform expression for a gene [9]. Analyzing

across the whole genome presents numerous obstacles, especially when the data should be ana-

lyzed in the context of more advanced experimental designs, such as time-course, factorial or

multiple confounding designs.

High-throughput next-generation sequencing technologies such as RNA-sequencing

(RNA-Seq) provide powerful tools for transcriptome analysis, reconstruction and quantifica-

tion and offer an unprecedented opportunity to discover novel genes, transcripts and splice

variants underlying complex diseases. While high-throughput RNA-Seq has become a stan-

dard for quantifying whole-transcriptome patterns of gene expression, the statistical methods

for analyzing alternative RNA splicing and investigating differential expressed/spliced iso-

forms are still in their infancy. The early statistical methods for RNA-sequencing analysis

focused on gene level expression analysis and utilized count-based modeling strategies, such as

DESeq [10], edgeR [11], PoissonSeq [12], baySeq [13] and SAMseq [14]. These count-based

strategies are not applicable to transcript level data, where the alignments of read counts to

overlapping transcripts are ambiguous. Cufflinks/Cuffdiff2 [15–17] provides a tool for recon-

struction of transcripts and quantification of isoform expression, but can only be used to ana-

lyze differential expression at the gene or isoform level between conditions. There are other

packages (e.g., DEXSeq [18]) designed to analyze alternative RNA splicing by differential exon

usage analysis, but the biological interpretation at the exon level is difficult. Attempts have

been made to develop differential splicing or differential gene regulation analysis approaches,

but many drawbacks and limitations still exist and improvement is needed. For example, rSeq-

Diff [19] can only analyze one sample per condition and cannot handle biological replicates;

thus it cannot be generalized to representing the differences between biological conditions.

Diffsplice [20] provides a tool to analyze the differences in relative abundance of isoforms

between conditions, but it incorporates the entire set of isoforms for each gene and is not able

to trace the subset of isoforms that have true splicing effects. Ballgown [21] provides a bridge

using a linear model approach to connect isoform quantification tools and downstream statis-

tical tools for more flexible statistical analysis. It was reported that most isoform switches are

independent of somatic mutations, which could uncover novel signatures and provide new

molecular targets for therapy [22]. Sebestyen et al. developed an iso-kTSP algorithm to detect

significant isoform switches, which measure the consistency in changes of relative expression

of transcripts from the same gene [22]. The IsoformSwitchAnalyzeR algorithm was developed

for identification and visualization of isoform switches with predicted functional consequences

(e.g. gain/loss of protein domains) [23,24]. Despite the recent algorithm developments, the

dependence between isoforms is ignored which limits statistical power. In summary, although

several statistical packages are available for analyzing isoform expression, none do an adequate

job of detecting and analyzing both differentially expressed and spliced isoforms, especially in

the context of advanced experimental designs.

It is critical to understand and appropriately handle multiplicity in high dimensional alter-

native RNA splicing analysis. Most current statistical methods simply apply multiple testing

procedures such as the Benjamini and Hochberg procedure (BH) to control for the false dis-

covery rate (FDR) at the levels of exons, isoforms, or genes by treating them as independent
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features. The multiple comparison correction for RNA splicing analysis remains a challenge

when evaluating all expressed isoforms, particularly for detection of isoform switches which

evaluates all possible pairs [22,24]. The overall false discovery rate (OFDR) was introduced as

an appropriate error rate to control [25], which is recommended over FDR because it focuses

on the inferential units of interests (genes) and is more powerful by testing a much smaller

number of screening hypotheses [26]. It was illustrated that controlling the FDR does not guar-

antee control of the OFDR, and similarly controlling for OFDR does not guarantee appropri-

ate FDR control. A stage-wise method (stageR) was proposed to control the gene level false

discovery rate (FDR) and boost power in analysis of differential transcript usage [27]. We

applied the similar concept of controlling for OFDR in the multi-dimensional alternative RNA

splicing analysis, where the OFDR is defined as the expected proportion of falsely discovered

genes out of all discovered genes.

In this research, we developed a unified linear mixed effects model-based statistical

approach accompanied by a two-step hierarchical hypothesis testing framework for analyzing

complex alternative RNA splicing regulation patterns detected by whole-transcriptome RNA-

sequencing technologies. We present a novel application of two-step hierarchical hypothesis

testing procedure coupled with a linear mixed model setting to analyze the differential expres-

sion at the multi-dimensional gene- and isoform- level using data from RNA sequencing tech-

nologies. Our approach provides three key advantages. First, the linear model approach

thoroughly characterizes and differentiates three types of genes related to alternative RNA

splicing events as demonstrated in Fig 1, e.g. genes with (i) no differentially expressed iso-

forms; (ii) differential expression of isoforms but no differential splicing; and (iii) differentially

spliced isoforms with differential expression at the isoform level but not necessarily at the gene

level. Specifically, Fig 1 describes the pattern of log-scale isoform level expression for these

three types of genes, which correspond to Models 0–2 proposed in Shi et al. [19]. The genes of

type (iii) are of special interest, which implicate the presence of isoform switches. Second, our

mixed model naturally incorporates the important features of biological correlation patterns

between isoforms of the same gene, which have typically been ignored in other existing

approaches. The third major advantage is that the employment of a two-step hierarchical

hypothesis testing approach appropriately control the overall false discovery rate (OFDR) and

yield greatly improved statistical power and computational efficiency by dramatically reducing

the number of tests performed. To our knowledge, there is no existing statistical package that

has incorporated all the aforementioned analyses at the same time.

We applied this approach to two whole transcriptome RNA-Seq studies of adenoid cystic

carcinoma [28] and pediatric acute myeloid leukemia [29], and compared the results with

other methods (Cuffdiff, Limma, and t-test with BH correction) in identification of differen-

tially expressed/spliced isoforms. We conducted extensive simulation studies to evaluate the

performance of our methods in controlling gene-level OFDR and achieving the power to

detect true differences in alternative RNA splicing.

Materials and methods

A linear mixed effects model approach

We start with the raw sequence reads from the RNA-Seq experiment that have been prepro-

cessed and for which we have obtained the expression estimates for the isoform (transcript)

abundance measured in fragments per kilobase of transcript per million fragments mapped

(FPKM) or transcripts per million (TPM). This can be done by using, for example, Cufflinks

[15–17], kallisto [30] and RSEM [31]. Our interest is to identify isoforms that are differentially

expressed or spliced among different conditions. To reach this goal we propose a linear mixed
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effects model for the isoform abundance. Suppose we have M genes and J conditions. For the

jth condition there are Kj samples and the total number of samples is N = K1 + K2 + � � � +KJ.
For a given gene m we assume that there are Lm isoforms and we denote Yjklm as the abundance

in the log scale of the lth isoform of gene m in sample k nested in condition j (j = 1,2,. . .,J,
k = 1,2,. . .,Kj, l = 1,2,. . .,Lm, m = 1,2,. . .,M). For simplicity in notation throughout the follow-

ing, we assume we are discussing gene m and drop the fourth subscript m. We assume Yjkl fol-

lows a normal distribution and can be modeled using the following linear mixed effects model

for two-factor split-plot design with unequal variances among the effects of isoforms:

Yjkl ¼ b
G
þ b

I
l þ b

C
j þ b

IC
jl þ rkðjÞ þ εjkl; ð1Þ

where, βG represents the baseline isoform expression in the log scale of the gene. b
I
l is the loga-

rithm of the expected relative expression of the lth isoform. b
C
j is the logarithm of the fold

change in overall expression of the given gene under condition j. bICjl is the effect that condition

j has on the relative expression of the lth isoform. ρk(j) is the effect of the kth sample (whole

Fig 1. Expression patterns of three types of genes with isoform abundance levels in log scale, which correspond to

Models 0–2 proposed in Shi et al. [19]. (Model 0) no differentially expressed isoforms; (Model 1) differential

expression of isoforms but no differential splicing; and (Model 2) differentially spliced isoforms with differential

expression at the isoform level but not necessarily at the gene level.

https://doi.org/10.1371/journal.pone.0232646.g001
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plot), nested within the jth condition and we assume that rkðjÞ � Nð0; s2
r
Þ. εjkl is random

error and εkjl � Nð0; s2
l Þ. ρk(j) and εjkl are mutually independent. The mixed model (1) con-

tains the effects of conditions and isoforms and the condition by isoform interaction as fixed

effects and the subject effects as random effects.

Let’s denote the observations of the kth sample (whole plot), nested within the jth condition

as Y jk ¼ ðYjk1; Yjk2; � � � ;YjkLÞ
T
. Then the covariance structure for Yjk is

VarðYjkÞ ¼ Σ ¼

s2
1
þ s2

r
s2
r

� � � s2
r

s2
r

s2
2
þ s2

r
� � � s2

r

..

. ..
. . .

. ..
.

s2
r

s2
r

� � � s2
L þ s

2
r

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð2Þ

We denote (2) as the covariance structure with unequal error variances. The above covariance

structure is reduced to compound symmetry when σ1 = σ2 = � � � = σL, and is generalized to

unstructured when there are no constraints on the covariance elements in (2).

Null hypotheses. To identify isoforms that are differentially expressed or spliced among

different conditions, we will consider two types of hypothesis tests as described below:

Type 1: Identify genes whose isoforms are differentially expressed or differentially spliced

(either Model 1 or Model 2 genes in Fig 1)

H0 : b
C
j ¼ b

IC
jl ¼ 0 ð3Þ

Type 2: Identify genes whose isoforms are differentially spliced only (Model 2 in Fig 1)

H0 : b
IC
jl ¼ 0 ð4Þ

We first fit the linear mixed effects Model (1), and then perform likelihood ratio tests (LRT) of

the coefficients to identify genes with differentially expressed/spliced isoforms.

A two-step hierarchical hypothesis-testing framework. Many existing approaches for

detecting differentially expressed isoforms treat each isoform as a single genomic feature and

perform the hypothesis tests for all isoforms simultaneously. These approaches usually lack sta-

tistical power due to the large number of hypothesis tests performed at the same time. A two-

stage procedure was proposed to test differentially expressed gene sets [26], which was later

generalized to a two-step hierarchical hypothesis set testing framework in microarray time-

course experiments [32]. A similar two-step approach (stageR) was proposed to control the

gene level false discovery rate (FDR) and boost power in analysis of differential transcript

usage [27]. We will utilize a similar two-step hierarchical hypothesis-testing framework for

identifying isoforms of interest. For genes, the first step of the proposed framework is to per-

form gene level tests to identify genes that have differentially expressed or spliced isoforms,

which we refer to as the screening tests. In the second step we examine only the isoforms of

genes that have passed the screening tests.

In the initial screening, we will test for two types of null hypotheses, i.e. (3) and (4), for

identification of differentially expressed isoforms or only differentially spliced isoforms. In the

subsequent step we test genes that passed the screening test to see whether each individual iso-

form is differentially expressed. We propose two options: the first option is to perform the test

using either the t-test or one-way ANOVA; and the second option is to perform the test using

the contrast (Wald-test) based on the linear mixed effects model. The null hypotheses for test-

ing the differential expression of the lth isoform among J conditions are described in the
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following equation:

H0 :

b
C
2
� b

C
1
þ b

IC
2l � b

IC
1l ¼ 0

b
C
3
� b

C
1
þ b

IC
3l � b

IC
1l ¼ 0

..

.

b
C
J � b

C
1
þ b

IC
Jl � b

IC
1l ¼ 0

8
>>>>>><

>>>>>>:

9
>>>>>>=

>>>>>>;

ð5Þ

Utilizing a two-step hierarchical hypothesis-testing framework, we will control for the over-

all false discovery rate (OFDR) at the gene level, which was recommended over FDR because it

focuses on the inferential units of interest [26]. Compared with standard approaches that per-

form the hypothesis tests on all isoforms simultaneously, the number of tests performed in the

proposed framework will be dramatically reduced, and consequently the statistical power is

expected to be increased [32].

Procedure to control for OFDR. We control the OFDR which is defined as the expected

proportion of

falsely discovered genes out of all discovered genes: ¼ E
V
R

� �

; ð6Þ

where R is the total number of rejected hypotheses or discovered genes, and V is the number

of discovered genes where at least one null hypothesis (including screening and confirmatory

hypotheses) was incorrectly rejected.

We aim to perform two levels of inferences while controlling for the OFDR, i.e. test for dif-

ferentially expressed or differentially spliced genes and at the same time test for individual iso-

form differential expression. The specific procedure is described as below in details:

1. Screening stage: apply the Benjamini-Hochberg procedure [33] at level α to the p-values of

the M screening tests. Let R be the number of genes that pass the screening tests.

2. Confirmatory stage: for each gene that passes the screening test, test the hypotheses for the

L individual isoforms simultaneously, applying a p-value adjusting procedure on the p-val-

ues of the L tests such that the family-wise error rate (FWER) of these L tests is controlled at

level Rα/M. Specifically we will control the FWER using three methods: Bonferroni, Holm,

and Hochberg methods.

It was proved that the above procedure controls the OFDR at level α under the condition

that the individual hypothesis tests in the second confirmatory stage are independent from all

other screening tests [26,32].

Results

Application to an RNA-sequencing study of adenoid cystic carcinoma

(ACC)

We applied the proposed linear mixed model approach to a study of adenoid cystic carcinoma

where RNA-sequencing was performed on 20 ACC salivary gland tumors and five normal sali-

vary glands. Details of the RNA sequencing were described previously [28]. We present pri-

mary results using the covariance structure with unequal error variances as shown in Eq (2).

Cufflinks was used to estimate and quantify the isoform abundance in FPKM prior to the dif-

ferential expression/splicing analysis. We examined 2850 genes having two or more detected

isoforms in our two-step analyses, and compared results using our proposed methods with
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other widely used methods for analysis of RNA-Seq data: Cuffdiff [17], Limma, and t-test with

BH correction.

We performed differential isoform expression/splicing analysis between 8 patients who are

free of cancer vs. 6 patients who are not among whom have complete follow-up. The multi-

dimensional multiple comparisons were corrected using our proposed procedure, and statisti-

cal significance was considered at OFDR = 0.10 due to the exploratory nature of this study

where the sample sizes and effect sizes are limited. While no isoforms are called significantly

different between the two patient outcome groups using the three alternative methods (Cuff-

diff [17], Limma, and simple t-tests), our approach using the covariance structure with

unequal error variances identified 11 genes that have either differentially spliced or differen-

tially expressed isoforms using a simultaneous test for the main group effect along with the

interaction effect (Table 1). In addition, a Type 2 screening test identified 4 genes that are dif-

ferentially spliced using a screening test for the condition by isoform interaction term. A sec-

ond stage confirmatory test using the Hochberg method further identified 12 isoforms from 9

genes that are differentially expressed (Table 2). The confirmatory test using the Bonferroni or

Holm methods yielded the same results as the Hochberg method. We also performed the dif-

ferential alternative RNA splicing analysis using the proposed linear mixed model with an

unstructured covariance structure for the exploratory purpose. The limitation for specifying

the unstructured covariance matrix lies in the possible inflated type I error rates due to the

large number of covariance parameters included in the estimation process. For this reason, we

performed the analysis at significance level FDR = 0.05 and we summarize the results in S1

and S2 Tables. As the result, 50 genes have passed the Type 1 screening test and 8 genes have

passed the Type 2 screening test. Seven of the 11 genes identified in the type 1 screening test

using the unequal variance covariance structure were also identified by assuming unstructured

covariance variance, indicating agreement between the two choices of covariance matrix. We

observed that the p-values of the first step gene-based screening test using both covariance

matrix structures are highly correlated with each other (Spearman’s ρ of 0.92 and 0.94 for type

I and type II screening tests).

For each gene, the group mean values of the log-transformed expression of different iso-

forms in FPKM detected and estimated by Cufflinks are plotted in Fig 2. Groups (free of

Table 1. List of genes that are called significant between 8 patients who are free of cancer vs. 6 patients in the screening tests along with the likelihood ratio test p-

values and FDR. Type 1 screening test identified 11 differentially expressed/spliced genes, and Type 2 screening test identified 4 differentially spliced genes. False discov-

ery rate was controlled at the 0.10 level.

Type 1 screening Type 2 screening

Gene name P value FDR P value FDR

POSTN 9.14E-06 0.03 0.00233 0.36

HNRNPA2B1 0.00004 0.06 0.00022 0.12

VEGFA 0.00012 0.09 0.43157 0.84

FRMD4A 0.00017 0.09 0.06945 0.54

TRIP12� 0.00020 0.09 0.00012 0.09

PRKAA1� 0.00021 0.09 0.00012 0.09

GNPTAB 0.00023 0.09 0.01255 0.44

C3orf17� 0.00030 0.09 0.00012 0.09

ASXL1 0.00030 0.09 0.00425 0.43

RRBP1� 0.00034 0.09 0.00010 0.09

FZD6 0.00037 0.09 0.00104 0.24

� Genes that passed both Types 1 and 2 screening tests.

https://doi.org/10.1371/journal.pone.0232646.t001
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cancer or not) are labeled on the X axis. The last six digits of the Ensemble transcript IDs are

given in the legend. Under the null hypothesis that there is no differential splicing, the distri-

butions of the relative isoform abundance are expected to be similar, and the lines representing

Table 2. List of 12 differentially expressed isoforms between 8 patients who are free of cancer vs. 6 patients in the confirmatory test.

Isoform ID gene name Fold Change P value (model-based) P value (t test) Two step significance threshold

ENST00000474311 C3orf17 5.50 8.50E-07 0.00030 3.40E-06

ENST00000492155 FRMD4A 3.67 7.35E-06 0.00178 2.94E-05

ENST00000358621 FRMD4A 2.01 9.13E-06 0.00137 3.65E-05

ENST00000522566 FZD6 8.59 8.12E-08 0.00028 1.62E-07

ENST00000356674 HNRNPA2B1 1.68 5.72E-11 0.00081 3.43E-10

ENST00000541179 POSTN 19.31 8.16E-08 0.00087 4.08E-07

NST00000478947 POSTN 9.48 4.80E-07 0.00037 2.40E-06

ENST00000379743 POSTN 9.15 6.16E-05 0.00394 0.00031

ENST00000511248 PRKAA1 7.34 3.03E-08 0.00026 9.10E-08

ENST00000495501 RRBP1 5.89 2.49E-05 0.00139 7.46E-05

ENST00000428959 TRIP12 -14.65 4.19E-08 0.00249 2.93E-07

ENST00000497139 VEGFA 7.58 7.29E-07 0.00052 1.46E-06

https://doi.org/10.1371/journal.pone.0232646.t002

Fig 2. The isoform expression profiles for nine differentially expressed/spliced genes between 8 patients who are free of cancer vs. 6 patients who are

not.

https://doi.org/10.1371/journal.pone.0232646.g002
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the mean isoform expression profile for the two conditions, normal vs. tumor, are expected to

be parallel. We have observed considerable non-parallel patterns for the 4 differentially spliced

genes that passed Type 2 screening test: C3orf17, PRKAA1, RRBP1, and TRIP12.

Our preliminary results have revealed genes with combined patterns of differential

expressed/spliced isoforms. We observed the overexpression of isoforms of genes C3orf17,

FRMD4A, FZD6, HNRNPA2B1, POSTN, PRKAA1, RRBP1 and VEGFA, and the under expres-

sion of TRIP12 isoform (ENST00000428959) in ACC patients who are not free of cancer,

which is a surrogate for poor ACC outcomes (Table 2 and Fig 2). Up- or down- regulation of

isoforms exist even for genes (e.g. HNRNPA2B1, TRIP12) which do not appear to be differen-

tially expressed at the gene level. A number of these genes were shown in previous reports to

be associated with cancer prognoses. The high expression level of the POSTN gene was repeat-

edly reported to correlate with poor outcome of different human malignancies, which include

shorter progression-free survival following first-line chemotherapy in epithelial ovarian cancer

[34], more advanced stage and lower survival rates in colorectal cancer patients [35], and high

grade and invasive meningioma [36].

The overexpression of VEGFA was implicated in the poor outcome of breast cancer [37,38].

There is significant evidence that the VEGFA gene alternative RNA splicing plays an important

role in tumor growth and progression, suggesting a potential target for new cancer therapies

[39,40]. Colorectal cancer patients with high RRBP1 expression had shorter disease specific

survival compared to those with low RRBP1 expression [41]. The up-regulation of FRMD4A
was reported in human head and neck squamous cell carcinoma (HNSCC) and correlated

with increased risks of relapse [42]. The over expression of FZD6 was reported to be associated

with poor prognosis in glioblastoma patients [43]. A recent RNA-Seq study of acute myeloid

leukemia patients at remission identified an aberrant RNA splicing of exon3-skipping event in

TRIP12 suggesting future investigation of its use as a potential target [44].

Application to an RNA-sequencing study of pediatric acute myeloid

leukemia (AML)

We also applied the proposed approach to identify differentially expressed/spliced isoforms that

are associated survival outcome in a large cohort of pediatric AML from the NCI/COG TAR-

GET-AML initiative [29]. The RNA-seq data at exon, isoform and gene levels as well as the clin-

ical data for the AML patients are downloaded from NCI/COG TARGET website at https://ocg.

cancer.gov/programs/target. We analyzed a subset of 234 patients who have clinical outcomes

with 81 cases (relapsed within 3 years) and 153 controls (CCR for at least 3 years). After remov-

ing those with low abundances and those that are not in the coding region, we analyzed a total

of 35397 isoforms representing 8058 genes. The multi-dimensional multiple comparisons,

again, were corrected using the two-step procedure, and statistical significance was considered

at standard cutoff of. 0.05 for OFDR. With our approach using the covariance structure with

unequal error variances, we identified 782 genes that have either differentially spliced or differ-

entially expressed isoforms using the Type 1 screening tests that simultaneously test for the

main group effect along with the interaction effect; and 857 genes that are differentially spliced

using the Type 2 screening which tests for just the condition by isoform inter-action term.

Table 3 summarizes the distribution of the genes detected using our method that passed either

Type 1 or Type 2 screening tests grouped by the number of studied isoforms for each gene. The

union of the two lists of genes is presented in S3 Table. A second stage confirmatory test using

the t-test with Hochberg method for controlling FWER further identified 269 and 203 isoforms

(S4 and S5 Tables) that are differentially expressed based on the aforementioned two lists of the

genes, respectively. Note that the majority of the genes from Type 2 screening test cannot be
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identified by the traditional gene level differential expression analysis. We performed the t-test

with BH adjustment on the gene expression data of these 857 genes and none of them are called

significant at level FDR = 0.05. Fig 3 shows the isoform expression profiles of two genes,

EEF1B2 and RUNX2. While there seems no difference in the overall expressions of the genes

there appears to be interesting splicing events for these two genes. EEF1B2 is one of the Eukary-

otic translation factors that have received much attention recently with regards to their role in

the onset and progression of different cancers [45]. For this gene, two isoforms

ENST00000435123 and NEST00000455150 are significantly up- and down-regulated in cases as

compared to controls while the rest of 6 isoforms do not seem to differ between the two condi-

tions. Another gene RUNX2 is a member of RUNX family proteins that are generally consid-

ered to function as a tumor suppressor in the development of leukemia. Our approach has

identified one isoform NEST00000371436 that is significantly down-regulated in the cases as

compared to the control while the rest of the isoforms showed no difference between the two

conditions. As a comparison to our approach we applied t-tests with BH multiple comparison

adjustment to the same data set. We found that only 13 isoforms (representing 12 unique

genes) were significantly differentially expressed between the two conditions at the level

FDR = 0.05. We also performed the differential alternative RNA splicing analysis using the pro-

posed linear mixed model with an unstructured covariance structure and the results can be

found at http://www.unm.edu/~kanghn/software/. We observed that the p-values of the first

Table 3. The distribution of the number of significant genes that passed Type 1 or Type 2 screening tests comparing the isoform expression patterns between 81

cases and 153 controls.

No. of isoforms 2 3 4 5 6 7 8 9 10 11 12 13 14 15 �16 Total

No. of genes that passed Type 1 screening test 88 111 105 90 88 67 69 46 27 31 20 14 10 4 12 782

No. of genes that passed Type 2 screening test 100 123 116 98 101 68 75 52 29 34 21 14 10 5 11 857

https://doi.org/10.1371/journal.pone.0232646.t003

Fig 3. Isoform expression profiles for two gene with differentially spliced isoforms that are associated with survival outcome

in AML.

https://doi.org/10.1371/journal.pone.0232646.g003
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step gene-based screening test using both covariance matrix structures are highly correlated

with each other (Spearman’s ρ of 0.92 and 0.94 for type I and type II screening tests).

A simulation study

We performed a simulation study to verify that our proposed two-step procedures with differ-

ent options for the confirmatory stage inference properly control the OFDR and to compare

their statistical powers. In order to capture the dependence structure of all the isoforms for

each gene, we conducted the following simulations based on the data set used in Section 3.2,

where we considered two conditions, free of cancer versus not. We considered Type 1 screen-

ing test and used the covariance structure with unequal error variances as shown in Eq (2).

The results for Type 2 screening should be similar.

In the case of two conditions (J = 2) we re-write model (1) as the following (7) so that the

model specification corresponds closely to the syntax used in R package nlme.

Yjkl ¼ b
G
þ b

C
2
Cj þ b

I
2
I2l þ � � � þ b

I
LILl þ b

IC
22
CjI2l þ � � � þ b

IC
2LCjILl þ rk jð Þ þ εjkl; ð7Þ

where we assume

b
C
1
¼ b

I
1
¼ b

IC
11
¼ � � � ¼ b

IC
1L ¼ b

IC
21
¼ 0; ð8Þ

and Cj, Il,l are dummy variables such that Cj ¼
1; if j ¼ 2

0; if j ¼ 1

(

and Il 0 l ¼
1; if l ¼ l0

0; if l 6¼ l0

(

(j = 1,2,

l = 1,� � �,L, k = 1,� � �,Kj). The mean difference in abundance (in log scale) of isoform l between

the two conditions is

m2l � m1l ¼
b
C
2

if l ¼ 1;

b
C
2
þ b

IC
2l if l ¼ 2; � � � ; L:

ð9Þ

(

The matrix form of (7) can be written as

Y jk ¼ Xjkβþ ejk; ð10Þ

where Y jk ¼ ðYjk1; Yjk2; � � � ;YjkLÞ
T
; β ¼ ðbG bC

2
b
I
2
� � � b

I
L b

IC
22
� � � b

IC
2LÞ

T
,

Xjk ¼

1 Cj 0 0 0 0 0 0 � � � 0

1 Cj 1 0 0 0 Cj 0 � � � 0

1 Cj 0 1 0 0 0 Cj � � � 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

1 Cj 0 0 � � � 1 0 0 � � � Cj

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

; ð11Þ

and ejk ¼ ðejk1; ejk2; � � � ; ejkLÞ
T

is a multivariate normal distribution random vector with a zero

vector mean and a covariance matrix (2).

There are 2L parameters b
G
; b

C
2
; b

I
2
; � � � ; b

I
L; b

IC
22
; � � � ; b

IC
2L corresponding to the fixed effects

and L + 1 parameters in the variance-covariance matrix (2) for a full model, which we refer to

as the model for simulating a false null hypothesis gene (FNHG) or simply a full model. If the

null hypothesis (3) holds, i.e. b
C
2
¼ b

IC
22
¼ � � � ¼ b

IC
2L = 0 then the number of parameters corre-

sponding to the fixed effects is reduced to L where the variance-covariance matrix (2) keeps

the same. We call this model as that for simulating a null hypothesis gene (NHG) or a reduced

model.
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Our approach to simulation is to choose one gene with L isoforms, which we refer to as a

template gene and fit a full model and a reduced model to the data of the gene. Based on the

estimated parameters of the full model and the reduced model we simulate a number of RNA-

Seq datasets with M = 1000 genes, L isoforms for each gene, and two conditions (J = 2).

We conduct the simulation in three scenarios corresponding to three different effect

sizes: small, medium and large. In each scenario we simulate data for m0 NHGs and M–m0

FNHGs from multivariate normal distribution based on model (10). To accommodate vari-

ous patterns of the differentially expressed isoforms in real conditions, we simulate data for

two types of FNHGs which we refer to as full FNHGs and partial FNHGs; each accounts for

half of the M–m0 genes. The isoforms of a full FNHG are all assumed to be differentially

expressed, i.e. the mean difference (9) is not equal to zero for every isoform, whereas a par-

tial FNHG is defined such that only half of the isoforms of gene are differentially expressed.

Data for the NHGs are simulated based on the estimated parameters of the reduced model

from real data and these parameters are kept the same among the three scenarios with dif-

ferent effect sizes. In generating the data for the FNHGs the parameters βG and b
I
2
; � � � ; b

I
L as

well as the parameters for the covariance matrix are also kept the same among the genes and

among the three scenarios. The difference lies in the way b
C
2
; b

IC
22
; � � � ; b

IC
2L are specified for

the simulations. Suppose that the estimates of these parameters for the full model are

bC
2
; bIC

22
; � � � ; bIC

2L. If bC
2

is greater than 0, then b
C
2

’s for the full FNHGs are randomly chosen

(uniformly) from the intervals ½0; bC
2
�, ½bC

2
� bC

2
=2; bC

2
þ bC

2
=2�, and ½bC

2
; 2bC

2
� corresponding

to the small, medium and large effect size scenarios. If bC
2

is less than 0 then the three inter-

vals are ½bC
2
; 0�, ½bC

2
þ bC

2
=2; bC

2
� bC

2
=2�; and ½2bC

2
; bC

2
�. b

IC
22
; � � � ; b

IC
2L are chosen in the same

way. The parameters for simulating partial FNHGs are chosen in the same way except that

we force b
IC
2l ¼ � b

C
2

for l = [(L+1)/2]+1,� � �,L, where [x] is the largest integer not greater

than x. This will force half of the isoforms not to be differentially expressed. We choose a

series of m0 ranging from 0 through M, and for each m0 we simulate 100 datasets, each

includes n = 200 independent sample units for each condition. The level α is set at 0.05 and

the simulation results for each m0 are the averages of the results from the 100 replications

(simulated datasets).

We applied our two-step procedure to each simulated dataset with Type 1 screening test,

two options on the test statistic (t-test and Wald-test) and three options for controlling the

FWER (Bonferroni, Holm, and Hochberg methods) that were employed in the confirmatory

stage. We compared our proposed two-step procedures to standard isoform-by-isoform analy-

sis with t-tests and BH correction. We called this analysis as simple BH that is borrowed from

[32]. There is no gene level screening test for simple B-H method. In order for comparing this

method with our two-step procedures we define a screening test for the simple BH method for

each gene by rejecting the null hypothesis of no differentially expressed isoforms if the null

hypothesis of at least one isoform is rejected by simple BH. We define the OFDR in the same

way as shown in (6). To compare the performances of the four procedures we define power (I)

and power (II) in the similar way as that in [32]. The power (I) is defined as the proportion of

false null hypothesis isoforms that are correctly rejected. It looks at the all M × L individual iso-

forms. The power (II) is defined as the proportion of FNHGs that are correctly identified.

Here we say that an FNHG is correctly identified if and only if it passes the screening test and

a correct decision is made for every single isoform of the gene.

We choose three genes EIF1, MDM2 and ATM as the template genes for the simulations.

The numbers of the isoforms for the three genes are 5, 7, 11. The isoform expression profiles of

the three genes are presented in supplementary S1 Fig. The unadjusted p-values of the Type 1

screening tests for the three genes are 0.005, 0.123 and 0.003, implying that the data simulated
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based on the first and third genes tend to have larger effect sizes than that simulated based the

second one if all other simulation settings are the same. Fig 4 presents the evaluation of the

OFDR, power(I) and power(II) when Wald-test is used in the confirmatory stage through the

simulation with Template Gene MDM2. The results are compared across four methods: our

two-step method with Bonferroni, Holm and Hochberg adjustments in the confirmatory stage

and the simple BH method. The same simulation results with template genes EIF1 and ATM

are shown in the supplementary S2 and S3 Figs. The results for the evaluations when t-test

instead of Wald-test is used in the confirmatory stage through the simulation with all three

template genes are presented in supplementary S4–S6 Figs.

The three panels in the leftmost column of Fig 4 show that our two-step procedure controls

OFDR very well regardless of the effect size and the method used in controlling the FWER in the

confirmatory stage; the OFDRs have an increasing trend as the number of NHGs increases with

an upper-limit of the nominal level of α = 0.05. Fig 4 shows that the OFDR of the simple BH

method is substantially inflated and the inflation effect gets serious when the effect size is large.

Results of the OFDR are very similar to that of the simulations based on template genes EIF1 and

ATM (S2 and S3 Figs.) An over inflated OFDR for simple BH method is seen especially in the

simulations based on gene ATM that has the largest number of isoforms among the three tem-

plate genes (S3 Fig). It implies that there is a positive association between the extent to which the

OFDR of simple BH method is inflated and the number of isoforms that each gene possesses.

Fig 4. Evaluation of OFDR and power through the simulation with template gene MDM2 when Wald-test is used in the confirmatory stage.

https://doi.org/10.1371/journal.pone.0232646.g004
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The rest six panels in the middle and rightmost of Fig 4 show the simulation results for

power (I) and (II), respectively. We can see that our two-step procedure with either Holm or

Hochberg adjustment in the confirmatory stage has the same power (I) and (II) regardless of

the number of NHGs and the effect sizes, and has improvements in power as compared to that

with Bonferroni adjustment. This is what one would expect because the Bonferroni adjustment

is more conservative than the other two methods. The results are the same when EIF1 (S2 Fig)

or ATM (S3 Fig) is used as the template gene. The simple BH method shows slightly improved

power than our two-step procedure in most of settings, which is partly attributable to the over

inflated OFDR. When the percentage of NHGs is large (e.g. greater than 90%) the difference in

power between the simple BH and our two step procedure is often small. In the setting of

small effect size with the simulation based on gene MDM2 (Fig 4) which has the weakest sig-

nals among all simulation settings, we observed that our two-step procedure shows an

improved power (II) compared to the simple BH method although the OFDR of simple BH is

still overly inflated. The difference in power (II) substantially increases as the number of

NHGs increases. It implies that when the effect sizes are small and the number of NHGs are

large (which is common in real data sets) our method provides more statistical power than the

simple BH. This partially explains why in the real data example the simple BH method could

not identify any significant isoforms.

We examined the differences caused by using different tests (Wald-test or t-test) in the con-

firmatory stage by comparing Fig 3 and S2 and S3 with S4–S6 Figs. The OFDR is well con-

trolled regardless of whether the Wald-test or the t-test is used in the confirmatory stage and

the differences in powers are negligible for all the simulation settings.

We repeat the evaluation of OFDR and power of our two-step procedure and simple BH

under a setting of a small sample size, n = 50 for each condition (S7–S9 Figs). As we expected

the power of all the methods is reduced. The power of the simple BH method has more reduc-

tion as compared to our two-step procedure while the OFDR of the simple BH keeps inflated

in all the settings. We also notice that when the percentage of NHGs is large, the OFDR of our

two-step procedure is also slightly inflated. This is because the likelihood ratio tests using the

standard Chi-square distribution for fixed effects in linear mixed effects models tend to be

“anticonservative” and their type I errors are sometimes inflated, which has been reported in

the literature [46]. To overcome this limitation one may use the F-test with Kenward-Roger

approximation or parametric bootstrap methods [46] instead of using likelihood ratio test in

the screening test.

Discussion

High-throughput RNA-Seq technologies have provided the unprecedented opportunity to

characterize whole-transcriptome profiling of gene expression, and in addition facilitates

quantification of complex alternative splicing patterns. Systematically investigating the rela-

tionship between the complex alternative splicing patterns and the biological or clinical patient

outcomes requires advanced statistical method and tools that appropriately account for the

unique data characteristics, e.g. differential expression/splicing patterns. In this work, we

developed a unified approach for simultaneously assessing genes with differentially expressed

or spliced isoforms, which also employed appropriate hierarchical hypotheses-testing frame-

work to efficiently alleviate the multiple comparison burden.

The multi-dimensional structure of gene- and isoform- level expression induces extremely

high burden of multiple comparisons, where appropriate corrections for multiple comparisons

need special care. Traditional statistical tools focusing on corrections for each individual iso-

form or all possible pairwise comparisons of two isoforms will yield limited statistical power.
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The stage-wise method (stageR) developed by Van den Berge et al. [27] utilized the two-step

hierarchical hypothesis testing framework to determine the gene-level and isoform-level sig-

nificance in a two-step fashion, which represent great efforts to overcome such limitations.

However, the limitation in the stageR method lies in the statistical methods used to determine

the gene-level significance in the first step. They rely on existing statistical methods of evaluat-

ing the aggregated transcript level differential expression or different usage/switches of tran-

script expression to determine the gene-level significance. These approaches are often based

on generalized linear models, do not distinguish the genes with different patterns of expression

and splicing, and do not account for the correlation between isoforms from the same gene as

well as the random subject effects. To build upon existing methods and address the analytical

challenges particularly in effectively detecting significant genes that are differentially expressed

or spliced, we developed the linear mixed effects model framework for analysis of the complex

alternative RNA splicing patterns.

Our approach provides several advantages in modeling the patterns of differential expres-

sion/splicing while appropriately accounts for the correlation among different isoforms. First,

the utilized linear model approach fully characterizes three different types of genes with dis-

tinct alternative RNA splicing patterns with differential expression and or differential splicing

profiles. We proposed two types of screening tests using a linear mixed effects model approach

that thoroughly characterizes and differentiates three types of genes related to alternative RNA

splicing events. Specifically, our approach differentiates among genes that have no differen-

tially expressed isoforms, genes that have differential expression of isoforms but no differential

splicing, and genes with differentially spliced isoforms with differential expression at the iso-

form level but not necessarily at the gene level. Our proposed type 1 screening tests will iden-

tify genes that have either differential isoform expression or differential isoform switches at the

same time. The significant genes detected using the type 1 screening tests provide a solid foun-

dation for downstream pathway analysis in order to identify biologically meaningful gene sets

that are enriched for genes with different types of alternative splicing events. This overcomes

the limitation of existing pathway-based alternative splicing analysis which requires an extra

step to combine the significance in differential expression and splicing [47]. Second, our

mixed model including fixed and random effects effectively accounts for the biological correla-

tion structure among isoforms of the same gene. These correlations are often times ignored in

other existing statistical tools, which may yield false positive or false negative results. Third, we

conducted extensive simulation studies and demonstrated that our proposed linear mixed

effects modeling framework coupled with the use of two-step hierarchical hypothesis testing

procedure appropriately controls the gene-level overall false discovery rate (OFDR) which also

provides improved statistical power and computational efficiency to discover genes with sig-

nificant differential expression/splicing patterns or genes with isoform switches. Lastly, the

application to two real RNA-Seq studies have demonstrated the advantages and improved per-

formances of our method in the differential alternative RNA splicing analysis.

As with other studies where a linear mixed effects model is applied, a typical issue is how to

choose the covariance structure. We have compared and provided the analysis scripts for three

different choices of covariance matrix (compound symmetry with equal variances, unequal

variances, and unstructured). We focus on demonstrating the results from unequal variances

covariance structures in the main text, but also included the results from other covariance

structures for open access through http://www.unm.edu/~kanghn/software/. We note the lim-

itations of the two other choices. The compound symmetry with equal variances covariance

structure is limited in capturing the different variances in the different isoform expressions.

The unstructured covariance structure covariance has no constraints imposed on it which

results in best model fit, however, it will suffer from inflated type I error for relatively small
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samples as previously reported [48]. In the case of large sample sizes, the computation time for

incorporating an unstructured covariance structure is much larger than other choices of

covariance structures. The unequal variances covariance structure is in the middle of these two

covariance structures. It can be used more broadly because not only does it allow for heteroge-

neous variances among the isoforms, it also captures the random interaction effects between

the subjects and isoforms. It is also a parsimonious model as it has a fewer number of parame-

ters than the unstructured covariance does. We observed substantial overlap of genes on the

top of the list ranked based on the p-values of the first-step screening tests obtained using

unequal variance and unstructured covariance matrix. For those non-overlapping genes, i.e.

genes passed the screening test in the first step using the unequal variance covariance struc-

tures but not using the unstructured covariance matrix, we observed that that false discovery

rates for these genes using the unstructured covariance matrix are also small (median FDR of

0.067–0.129). The correlations between the p-values for gene-based screening tests are high

with Spearman’s ρ of 0.92–0.94. We focused on the discussion of our results using the covari-

ance structure with unequal variances from the practical perspective, which accounts for both

the computation time and the appropriate covariance structure assumption that suits the

majority of genes. However, we also provided the alternative option of using unstructured

covariance matrix, which can be adapted for specific case scenarios in other applications.

In summary, we developed a unified approach for simultaneously assessing genes with dif-

ferentially expressed or spliced isoforms that offers much more flexible and improved perfor-

mance than existing methods which can 1) incorporate a broader range of models to analyze

differential splicing and expression; 2) include testing between conditions that have multiple

samples within each condition and allow more than two conditions; 3) maintain statistical

power with proper control of OFDR; and 4) appropriately control for confounding clinical fac-

tors which are common in large genetic epidemiological studies.
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