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Abstract

The high rates of RNA virus evolution are generally attributed to replication with error-prone RNA-dependent RNA
polymerases. However, these long-term nucleotide substitution rates span three orders of magnitude and do not correlate
well with mutation rates or selection pressures. This substitution rate variation may be explained by differences in virus
ecology or intrinsic genomic properties. We generated nucleotide substitution rate estimates for mammalian RNA viruses
and compiled comparable published rates, yielding a dataset of 118 substitution rates of structural genes from 51 different
species, as well as 40 rates of non-structural genes from 28 species. Through ANCOVA analyses, we evaluated the
relationships between these rates and four ecological factors: target cell, transmission route, host range, infection duration;
and three genomic properties: genome length, genome sense, genome segmentation. Of these seven factors, we found
target cells to be the only significant predictors of viral substitution rates, with tropisms for epithelial cells or neurons
(P,0.0001) as the most significant predictors. Further, one-tailed t-tests showed that viruses primarily infecting epithelial
cells evolve significantly faster than neurotropic viruses (P,0.0001 and P,0.001 for the structural genes and non-structural
genes, respectively). These results provide strong evidence that the fastest evolving mammalian RNA viruses infect cells
with the highest turnover rates: the highly proliferative epithelial cells. Estimated viral generation times suggest that
epithelial-infecting viruses replicate more quickly than viruses with different cell tropisms. Our results indicate that cell
tropism is a key factor in viral evolvability.
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Introduction

RNA viruses are responsible for a disproportionate number of

emerging human diseases, including influenza, ebola hemorrhagic

fever, hantavirus pulmonary syndrome, and Middle East respira-

tory syndrome, which place tremendous health and economic

burdens on both the developing and developed world [1,2]. In

2008, rotavirus and measles virus caused the deaths of 570,000

children under the age of five, making them two of the leading

killers of children worldwide [3]. In 2009, it was estimated that

rotavirus infections alone result in $325 million in medical

treatment costs and $423 million in societal costs each year [4].

Further, the implementation of many intervention strategies has

either failed or been delayed as a result of the evolutionary

dynamics of these pathogens [1,5,6,7,8,9].

Differences in viral evolutionary dynamics, such as rates of

evolution, can explain why certain viruses have the capacity to

adapt to new host species, increase in virulence, or develop

resistance to antivirals [7,8,9,10,11]. Therefore, understanding

why some RNA viruses evolve more quickly can facilitate better

prediction of their pathogenic and epidemiological potential

[8,10,11,12]. Though extremely high nucleotide substitution rates

are a defining feature of RNA virus evolution [1,13,14,15], there

have been few attempts to comprehensively examine the driving

genomic and ecological factors behind these rates.

Differences in the strength and direction of selection pressures

on these viruses result in variation among their substitution rates

[1,5,13]. However, while some general patterns have been

observed in selection pressures, such as enhanced purifying

selection on the structural proteins of arboviruses [16], there have

been no attempts to quantify the relationship between selection

pressures and long-term viral substitution rates.

The high rates of RNA virus evolution are most commonly

attributed to their replication with error-prone RNA-dependent

RNA polymerases (RdRps) [1,17], but these nucleotide substitu-

tion rates are known to span at least three orders of magnitude

[5,17] and do not correlate well with experimentally measured

viral mutation rates [5]. Further, the substitution rates of some

DNA viruses, which replicate with high-fidelity DNA polymerases,

are comparable to the high substitution rates of RNA viruses [13].

Therefore, the polymerase error rate alone cannot explain the

substitution rate variation in RNA viruses.

Along with mutation rate, viral replication frequency directly

impacts the rate at which mutations can be introduced, and

ultimately fixed as substitutions [13]. Replication frequencies

could be influenced by a variety of factors related to viral genomic

architecture or ecology [13]. For example, weak negative

correlations between viral genome lengths and substitution rates

have been attributed to either enhanced replication frequencies or
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higher mutation rates in viruses with smaller genomes [15,17,

18,19]. It has also been suggested that different transmission and

infection modes result in differences in generation time, ultimately

causing variation among per-year rates of synonymous substitution

of RNA virus structural genes [5].

In this modern survey of mammalian RNA virus evolution

rates, we generated and compiled published substitution rates of

structural and non-structural genes produced by Bayesian coa-

lescent analyses [20]. We analyzed these rates as a function of

seven factors related to virus genomic architecture (i.e., genome

length, genome sense, and whether or not the genome is seg-

mented) and virus ecology (i.e., target cell, transmission mode, host

range, and whether the infection is acute or persistent). We also

evaluated the relationships of viral substitution rates with dN/dS

estimates, experimentally measured mutation rates, and estimated

generation times. Though recombination undeniably plays a role

in shaping viral evolutionary dynamics and could inflate substi-

tution rate estimates [21,22], we conservatively removed any

potential recombinants from our datasets prior to analysis.

Through this broad analysis, we were able to demonstrate that

cell tropism, and its impact on viral generation time, has the

greatest influence on rates of mammalian RNA virus evolution.

Results

Datasets
A review of the literature yielded 92 published Bayesian

nucleotide substitution rate estimates for the structural genes of

35 different mammalian RNA viral species, and 21 published

Bayesian rates for RdRps or a non-structural gene of 14 different

viral species (referred to collectively as ‘‘non-structural,’’ Table S1).

These rates were supplemented with 26 novel Bayesian substitu-

tion rates of structural genes of 19 different viral species, and 19

novel Bayesian rates of non-structural genes of 16 different viral

species (Table S2). Collectively, these rates span three orders of

magnitude, ranging from 3.061025 to 1.561022 nucleotide

substitutions per site per year (ns/s/y) and 2.061025 to

1.361022 ns/s/y for the structural genes and non-structural

genes, respectively (Table S1).

Plotting the levels of each variable by ascending mean

substitution rate revealed similar patterns (i.e., the same ordering

of levels) for both the structural (S) and non-structural (NS)

datasets in three of these variables, excepting transmission route.

Viral substitution rates grouped according to target cell (panels 1A

and 1B), transmission route (panels 1C and 1D), infection type

(panels 1E and 1F), and host range (panels 1G and 1H) are shown

in Figure 1.

Substitution rates were also grouped by viral genomic architec-

ture (genome sense/strandedness, Figure 2A and 2B, and genome

segmentation, Figure 2C and 2D) and plotted against viral genome

length (Figure 2E and 2F). There were no apparent relationships

between genomic properties and substitution rates (Figure 2),

including no linear relationship between substitution rates and

genome lengths in either dataset (coefficient of determination, S:

R2 = 0.06, NS: R2 = 0.08).

dN/dS estimates calculated in this study were compiled with

published estimates also calculated using the Single Likelihood

Ancestor Counting (SLAC) method (56 structural gene dN/dS

estimates, 33 non-structural gene dN/dS estimates total, Table

S1).

Statistical analyses
ANCOVA analyses were performed separately on the structural

and non-structural gene datasets to determine which, if any, of

seven factors (target cell, transmission route, infection mode, host

range, genome length, genome sense, and genome segmentation)

significantly predict the nucleotide substitution rates of mamma-

lian RNA viruses. To explore the many dummy-coded categorical

variables, three analyses were run using different variable levels as

the base levels (see Methods for details, Tables 1 and 2). For all of

the ANCOVA analyses, the adjusted coefficient of determination

(�RR2) was $0.73, indicating that over 70% of the substitution rate

variability can be explained by the predictor variables included in

this study. Standardized residual plots identified only six potential

outliers of the 118 structural gene rates and one potential outlier of

the 40 non-structural gene rates (Figure S1), indicating that the

data are normally distributed and therefore amenable to a general

linear model.

Regardless of the base levels, target cells were the only

significant predictors of log-transformed substitution rates for both

structural and non-structural genes (Tables 1 and 2), with cell

tropism as the only significant predictor variable by type III sum of

squares (SS) analyses (P,0.0001 and P = 0.003 for the structural

and non-structural gene datasets, respectively). Targeting epithe-

lial cells or neurons was found to be the most significant predictor

of structural gene rates in each analysis where these were not the

base levels (P,0.0001, Table 1, Figure 3), while targeting neurons

was found to be the sole significant predictor of substitution rates

for the smaller non-structural gene dataset (P = 0.009, Table 2,

Figure 3). Further, there was a high correlation between each viral

species’ estimated structural gene substitution rate and its

corresponding non-structural gene rate (33 viruses, Pearson

r = 0.87, P,0.0001). This suggests that if it were possible to

calculate more non-structural rates, we would likely see results

similar to those from the structural gene dataset.

To minimize any potential bias introduced by using multiple

published rates for a single viral strain or species, we conducted

control analyses using datasets with only one rate per species. For

species with multiple substitution rates in one of our datasets, we

calculated the average log substitution rate and used that as the

sole substitution rate for the species in the control analysis. These

data were also normally distributed (Figure S2), but the �RR2 for

these analyses were slightly lower than for the full datasets (S:
�RR2 = 0.65, NS: �RR2 = 0.70, Tables S3 and S4). These control results

were consistent with those from the full dataset analyses: tropisms

for epithelial cells or neurons were the most significant substitution

rate predictors (Tables S3 and S4, Figure S3).

Author Summary

RNA viruses are the fastest evolving human pathogens,
making their treatment and control difficult. Compared to
DNA viruses, RNA viruses replicate with much lower
fidelity, which can explain why RNA viruses evolve signifi-
cantly faster than most DNA viruses. However, there is
tremendous variation among the evolutionary rates of
different RNA viruses, which is not explained by variation
in mutation rates. Here we present a survey of mammalian
RNA virus rates of evolution, and a comprehensive com-
parison of these rates to different properties of virus
genomic architecture and ecology. We found that cell
tropism is the most significant predictor of long-term rates
of mammalian RNA virus evolution. For instance, viruses
targeting epithelial cells evolve significantly faster than
viruses that target neurons. Our results provide mechanis-
tic insight into why viruses that infect respiratory and
gastrointestinal epithelia have been difficult to control.

Tropism Explains Viral Substitution Rate Variation
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Figure 1. Nucleotide substitution rates and ecological properties of mammalian RNA viruses. Log scale mean substitution rate
(log10(nucleotide substitutions/site/year, NS/S/Y)) estimates for different target cells (A and B), transmission routes (C and D), infection modes (E and
F), and host ranges (G and H). Plots on the left show rates based on structural genes, while the plots on the right show those of non-structural genes.
Each black bar indicates the mean of each level, and the levels of each variable are sorted by increasing mean substitution rate. Sources of the rates
are given in Table S1.
doi:10.1371/journal.ppat.1003838.g001

Figure 2. Nucleotide substitution rates and genomic properties of mammalian RNA viruses. Log scale mean substitution rate
(log10(nucleotide substitutions/site/year, NS/S/Y)) estimates for different genomic architectures (sense/strandedness, A and B, and whether or not the
genome is segmented, C and D) and plotted against genome lengths (E and F). The plots on the left show rates based on structural genes, while the
plots on the right show those of non-structural genes. Each black bar in A–D indicates the mean of each level, and the levels of each of these
variables are sorted by increasing mean substitution rate. The line of best fit is shown in E and F. The coefficients of determination (R2) for the linear
regression models of genome lengths vs. substitution rates were 0.06 for the structural gene dataset and 0.08 for the non-structural gene dataset.
Sources of the rates are given in Table S1.
doi:10.1371/journal.ppat.1003838.g002
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Because of the high correlation between the structural and non-

structural gene rates, we combined the two datasets (Figure 4) and

performed a final set of three ANCOVA analyses using this

combined dataset. The results from these analyses were nearly

identical to those from the structural gene analyses (Table S5). The

exception was that, in addition to cell tropism, Type III SS analysis

also identified transmission route as a significant predictor variable

(P = 0.007), though it was still less significant than cell tropism

(P,0.0001). More specifically, in addition to different cell

tropisms, transmission through arthropod vectors was also found

to be a significant rate predictor in one of the three analyses

(P = 0.002, Table S5).

To ensure that any substitution rate variability attributed to a given

predictor variable was not significantly dependent on other predictor

variables, we examined collinearity in all datasets. With the exception

of the persistent infection variable, which was nested with the

endothelial target cell variable and thus excluded, the ANCOVA

analyses for the structural gene rate datasets and the combined rate

dataset showed no significant collinearity (no variance inflation

factors (VIF) were greater than 10). For the non-structural gene rate

datasets, many different predictor variables had VIF.10. However,

subsequent analyses where each individual variable was removed did

not significantly reduce collinearity in these datasets (data not shown).

Due to the consistent results between the structural and non-

structural gene datasets, as well as those from the combined rate

dataset, we concluded that correlations among independent variables

did not significantly impact our results.

Since target cells were found to be the only consistently

significant predictors of substitution rates, a series of one-tailed t-

tests was used to confirm which cell tropisms are associated with

higher viral substitution rates than others. Viruses that target

epithelial cells were found to have significantly higher structural

gene substitution rates than viruses that target neurons, endothelial

cells, or leukocytes (Table 3, P,0.0009). Similarly, viruses that

target epithelial cells were found to have significantly higher non-

structural gene substitution rates than viruses that target neurons,

hepatocytes, or leukocytes (Table 4, P,0.0007). These results were

recapitulated in the control datasets that only used one rate per

viral species (Tables S6 and S7). It should be noted, however, that

most of the viruses in this study that are classified as targeting

leukocytes ultimately cause systemic infections and infect a wide

variety of cell types. Consequently, viruses in the leukocyte target

cell category had the most rate variation of all the target cell

categories (Figure 1).

Because transmission through arthropod vectors was also found

to be a significant rate predictor in the ANCOVA analyses based

on the combined datasets and because of the correlation between

epithelial cell tropism and fecal-oral/respiratory transmission, we

evaluated any significant variation among substitution rates of

viruses with different transmission routes. Using a series of one-

tailed t-tests, we found that viruses that are transmitted through

the fecal-oral/respiratory route have significantly higher substitu-

tion rates than those transmitted by arthropod vectors (P,0.0001).

However, we also compared different cell tropisms within each of

these transmission routes. We found that fecal-oral/respiratory

transmitted viruses that target epithelial cells have significantly

higher substitution rates than those that target other cell types

(P,0.0001, Figure 5). Similarly, we found that neurotropic

arboviruses have significantly lower substitution rates than

arboviruses that target other cell types (P,0.001, Figure 5).

We also tested for linear relationships between viral substitution

rates and other evolutionary parameters for which only smaller

subsets of our datasets could be analyzed. Reliable experimentally

measured mutation rates estimated as mutations per base per

infectious cycle were only available for four different viruses

included in this study (poliovirus 1 [11,23,24], hepatitis C virus

[25], influenza A virus [26,27,28], influenza B virus [26]).

Mutation rates measured as mutations per base per strand

replication were only available for three viruses included in this

study (poliovirus 1 [29], measles virus [30,31], and influenza A

virus [32]). These mutation rates were not significantly correlated

Table 1. Significant predictors of viral structural gene
substitution rates.

�RR2 Predictor b (95% CI) Significance

1 0.73 Neurons 20.80 (21.01, 20.59) ,0.0001

Leukocytes 20.56 (20.80, 20.33) ,0.0001

Hepatocytes 20.24 (20.40, 20.08) 0.0004

Endothelial cells 20.18 (20.31, 20.05) 0.0007

2 0.73 Epithelial cells 1.13 (0.83, 1.43) ,0.0001

Leukocytes 0.53 (0.33, 0.73) ,0.0001

3 0.73 Neurons 20.39 (20.53, 20.24) ,0.0001

Epithelial cells 0.58 (0.34, 0.82) ,0.0001

�RR2 Predictor b (95% CI) Significance

1 0.73 Neurons 20.80 (21.01, 20.59) ,0.0001

Leukocytes 20.56 (20.80, 20.33) ,0.0001

Hepatocytes 20.24 (20.40, 20.08) 0.0004

Endothelial cells 20.18 (20.31, 20.05) 0.0007

2 0.73 Epithelial cells 1.13 (0.83, 1.43) ,0.0001

Leukocytes 0.53 (0.33, 0.73) ,0.0001

3 0.73 Neurons 20.39 (20.53, 20.24) ,0.0001

Epithelial cells 0.58 (0.34, 0.82) ,0.0001

For each ANCOVA analysis, the overall adjusted R2 (�RR2) of the model is given
along with significant predictor variables (P,0.01) and their standardized
coefficients (b) with 95% confidence intervals (CIs). In the first ANCOVA, the
base levels were epithelial target cells, fecal-oral/respiratory transmission route,
acute/persistent infection, species-specific host range, and dsRNA genome
architecture. In the second ANCOVA, the base levels were neural target cells,
bites/scratches transmission route, persistent infection, order-specific host
range, and (2)ssRNA genome architecture. In the third ANCOVA, the base levels
were leukocyte target cells, respiratory/vertical transmission route, acute
infection, family-specific host range, and (+)ssRNA genome architecture.
doi:10.1371/journal.ppat.1003838.t001

Table 2. Significant predictors of viral non-structural gene
substitution rates.

�RR2 Predictor b (95% CI) Significance

1 0.77 - - -

2 0.77 - - -

3 0.77 Neurons 20.33 (21.33, 20.20) 0.009

For each ANCOVA analysis, the overall adjusted R2 (�RR2) of the model is given
along with the significant predictor variable (P,0.01) and its standardized
coefficients (b) with 95% confidence intervals (CIs). In the first ANCOVA, the
base levels were epithelial target cells, fecal-oral/respiratory transmission route,
acute/persistent infection, species-specific host range, and dsRNA genome
architecture. In the second ANCOVA, the base levels were neural target cells,
bites/scratches transmission route, acute infection, order-specific host range,
and (2)ssRNA genome architecture. In the third ANCOVA, the base levels were
leukocyte target cells, respiratory/vertical transmission route, acute infection,
family-specific host range, and (+)ssRNA genome architecture.
doi:10.1371/journal.ppat.1003838.t002

Tropism Explains Viral Substitution Rate Variation
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with their corresponding substitution rate estimates (r = 0.69,

P = 0.31 and r = 20.93, P = 0.25, for mutation rates measured as

mutations per base per infection and mutation rates measured as

mutations per base per replication, respectively). Similarly, there

were no significant correlations between the estimated substitution

rates and dN/dS estimates (r = 20.02, P = 0.88 and r = 20.07,

P = 0.68, for the limited structural gene and non-structural gene

datasets, respectively).

ANCOVA and t-tests consistently revealed epithelial cell

tropism and neurotropism as the most significant viral substitution

rate predictors. Since these two cell types have some of the highest

and lowest turnover rates, respectively, of all mammalian cells

[33,34,35,36], we sought to determine if there were any

associations between host cell turnover rate and viral generation

time. Using the model proposed by Sanjuán (2012) that relates the

long-term substitution rate, K, to the mutation rate, m, correcting

Figure 3. Standardized coefficients for predictors of viral substitution rates. Standardized coefficients with 95% confidence intervals for
the different predictor variables of structural (left) and non-structural (right) gene substitution rates. A and B show the coefficients from the first
ANCOVA analysis, C and D show coefficients from the second ANCOVA analysis, and E and F show coefficients from the third ANCOVA analysis.
Coefficients are indicated by the same symbols used in Figures 1 and 2. Dark coefficients correspond to significant substitution rate predictors
(P,0.01: neural, leukocyte, hepatocyte, and epithelial target cells in A, leukocyte and epithelial target cells in C, neural and epithelial target cells in E,
and neural target cells in F), while the other coefficients are shown in gray.
doi:10.1371/journal.ppat.1003838.g003

Tropism Explains Viral Substitution Rate Variation
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for transient deleterious mutations, we were able to estimate

generation times for the few viruses with reliable mutation rate

estimates. This model, K~ame{bmG , with a~ga%0:27, b~

(1{a)=sH%3:744 (G = genome length, g = generation time,

sH = harmonic mean of the selection coefficient) [15], confirmed

that influenza A virus, influenza B virus, and poliovirus, which

target epithelial cells, have substantially shorter generation times

(,40 hours) than hepatitis C virus, which targets hepatocytes

(.200 hours). These results, while based on a very limited dataset,

provide quantitative evidence for a link between cell tropism and

generation time. Shorter average generation times lead to more

rounds of replication per year, which could neatly explain higher

per-year substitution rates.

Discussion

A variety of intrinsic and ecological factors could plausibly alter

the tempo of virus evolution by influencing the rate at which

genetic diversity is generated, maintained, and fixed within viral

populations. Others have focused on genomic properties as drivers

of substitution rate variation [14,15,17,18], demonstrating a weak

negative correlation between the genome lengths and substitution

rates of RNA viruses [15,17] or suggesting that ssRNA viruses

evolve faster than dsRNA viruses [15]. However, we did not find

any significant relationship between genomic properties and

substitution rates (Figures 2 and 3). While some have conducted

more limited studies on the influence of ecological factors [5,37],

we performed a comprehensive analysis that revealed that cell

tropism is a key factor in understanding mammalian RNA viral

substitution rates.

It has been proposed that persistent viruses evolve more slowly

than those that produce acute infections [1,5,15,38]. Unfortu-

nately, with the exception of latent viruses, which are most

commonly retro- or DNA viruses and thus not within the scope in

this study, it can be difficult to classify viruses as acute or

persistent. The duration of persistence can vary; most persistent

viral infections begin with an acute phase and may occasionally be

resolved after only this acute phase (e.g., HCV), and many viruses

that predominantly result in acute infections occasionally persist

[39,40]. By classifying the viruses in this study as accurately as

possible, we found no significant association between infection

mode and substitution rate. However, only three viruses in this

study, all endothelial-infecting hantaviruses, were classified as

strictly persistent. This causes the nesting of the persistent level

with tropism for endothelial cells, and the persistent infection

Figure 4. Nucleotide substitution rates and principle target cells of mammalian RNA viruses. Log scale mean nucleotide substitution
rates (log10(nucleotide substitutions per site per year, NS/S/Y)) of all RNA viruses included in this study with 95% credibility intervals. Credibility
intervals that are not visible are eclipsed by the symbol or, in three cases (NoV GII.b, HEV, and TBEV), were not available from the published source.
Sources of the rates are given in Table S1.
doi:10.1371/journal.ppat.1003838.g004

Table 3. Structural gene substitution rate variation among
viruses with different cell tropisms.

N En L H Ep

N - 0.97 1.00 1.00 1.00

En 0.03 - 0.98 1.00 1.00

L ,0.0001 0.02 - 0.99 1.00

H ,0.0001 0.001 0.006 - 0.98

Ep ,0.0001 0.0008 ,0.0001 0.03 -

The significance of viruses with each target cell in the left column having higher
log-scale mean substitution rates than the viruses with each target cell in the
top row is designated with a p-value from a one-tailed t-test. The threshold for
statistical significance (a= 0.01) was Bonferroni-corrected to account for
multiple comparisons (P,0.001); the significant values are bolded. N = neurons,
En = endothelial cells, L = leukocytes, H = hepatocytes, Ep = epithelial cells.
doi:10.1371/journal.ppat.1003838.t003

Table 4. Non-structural gene substitution rate variation
among viruses with different cell tropisms.

N L H Ep

N - 0.99 0.99 1.00

L 0.007 - 0.56 1.00

H 0.009 0.44 - 1.00

Ep 0.0006 0.0001 0.0001 -

The significance of viruses with each target cell in the left column having higher
log scale mean substitution rates than the viruses with each target cell in the
top row is designated with a p-value from a one-tailed t-test. The threshold for
statistical significance (a= 0.01) was Bonferroni-corrected to account for
multiple comparisons (P,0.002); the significant values are bolded. N = neurons,
L = leukocytes, H = hepatocytes, Ep = epithelial cells.
doi:10.1371/journal.ppat.1003838.t004

Tropism Explains Viral Substitution Rate Variation
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variable was therefore excluded from our analyses. Infection

duration could be a factor explaining substitution rate variation

across the Baltimore classifications of viruses, but there is no

evidence that it affects the mammalian RNA virus substitution

rates included in this study.

Transmission mode and, less explicitly, host range are

frequently invoked as determinants of viral substitution rates

[5,41]. Specifically, plant or animal viruses that primarily rely on

arthropod vectors for transmission, and therefore obligately infect

very diverse hosts, are thought to evolve more slowly than viruses

with other transmission modes [5,41,42,43]. Surprisingly, only one

of our 15 ANCOVA analyses implicated transmission route as a

significant substitution rate predictor, and we found no significant

relationship between substitution rate and host range.

The seven genomic and ecological factors examined are not

necessarily independent. For example, 25% of the arboviruses in

our study are neurotropic, the second-most common cell tropism

of our arboviruses (Table S1). Therefore, the observation that

vector-borne viruses tend to evolve more slowly is qualitatively

consistent with our results. Cell tropism does appear to be the

more significant factor, though, as our results show that

arboviruses with other cell tropisms evolve significantly faster

than those with neurotropism. Previous studies have also indicated

that phylogenetic relationships are predictive – that sister taxa

have similar rates of evolution [5]. We initially included virus

families as an explanatory variable in our analyses, but we had to

discard it due to high colinearity with these other seven variables

(data not shown). Once the virus families were removed, there was

no statistically significant colinearity within the structural gene

dataset. Of these seven non-colinear factors, cell tropism was the

best predictor of viral substitution rates. The smaller non-

structural gene dataset, on the other hand, had significant

collinearity among predictor variables that could not be resolved.

The NS dataset also had only 1/3 of the taxa, inherently reducing

its statistical power. It was not possible to expand the mammalian

RNA virus NS dataset at this time; our novel rate analyses

increased the number of reliable rates by 40% by exhaustively

searching the available sequences in GenBank. The results of the

combined dataset were nearly identical to those from the dataset of

only S rates, again identifying target cells as the only consistent

predictor variables. While many factors likely influence nucleotide

substitution rates, and there may be inherent relationships among

some of our seven variables, our results affirm that cell tropism is

the most significant predictor of mammalian RNA virus substitu-

tion rate.

Though previously unexplored, cell tropism could influence

viral substitution rates by the same mechanisms that have been

suggested for the other ecological factors described above [44].

Infection of different host cells could expose viruses to different

selection pressures, which could influence the rates at which

mutations are fixed as substitutions. Additionally, it is possible that

cell tropism influences the rate at which genetic diversity is

generated by affecting viral mutation rates or generation times.

Selection pressures do not predict substitution rates
Variation in strength and/or direction of selection has

frequently been invoked as a determinant of viral substitution

rates [12,13,21]. While positive selection can certainly result in

variation among very short-term substitution rates, purifying

selection tends to dominate over longer timescales [21,45,46,47].

However, variation is observed in the strength of purifying

selection due to differences in host ranges. For instance, as

previously mentioned, viruses vectored by arthropods have unique

evolutionary constraints placed on them by their host diversity

[41,42,43,48]. While previous studies found that arboviruses are

under stronger purifying selection than non-arboviruses [1,41,49],

we found that the dN/dS estimates based on structural genes of

arboviruses were not significantly lower than those for non-

arboviruses (P = 0.19). The dN/dS estimates based on non-

structural genes of arboviruses were only moderately lower than

those for non-arboviruses (P = 0.04). Further, we found no

significant correlation between the estimated dN/dS and substi-

tution rates, suggesting that detectable differences in selection

pressures do not explain the variation in substitution rates of

mammalian RNA viruses. To date, there are no data supporting a

link between cell tropism and sustained differences in selection

pressures.

Mutation and substitution rates are uncorrelated
Compared to the slower evolution of DNA viruses, the evolution

of RNA viruses is dominated by their high mutation rates

[1,13,15]. Weak negative correlations between genome lengths

and viral substitution rates have been attributed to a relationship

between mutation rate and substitution rate, as smaller genomes

could in theory withstand higher mutation rates than larger

genomes [13,15,50]. However, while differences in spontaneous

mutation rates appear to be significantly correlated to the long-

term substitution rates of DNA viruses [15], this linear relationship

disappears past a certain mutation rate threshold: around 1026

mutations per site per infectious cycle, the lower end of the

mutation rate range of RNA viruses [13,15]. It is, therefore, not

surprising that we found no significant correlation between

substitution rates and the available, reliable mutation rate

estimates. Additionally, a recent study of the retrovirus HIV-1

Figure 5. Nucleotide substitution rate variation among arbo-
viruses and fecal-oral/respiratory transmitted viruses with
different cell tropisms. The means of the log-scale mean nucleotide
substitution rates of neurotopic (n = 13) and non-neurotropic (n = 38)
arboviruses are shown as squares on the left, and the means of the log-
scale mean nucleotide substitution rates of viruses that are transmitted
through the fecal-oral/respiratory routes and primarily target epithelial
cells (n = 73) and those that are transmitted through the fecal-oral/
respiratory routes and primarily target other cells (n = 15) are shown as
the triangles on the right. The mean of each group is shown with 95%
confidence intervals (CIs), except for non-neurotropic arboviruses,
where the CIs are eclipsed by the symbol.
doi:10.1371/journal.ppat.1003838.g005

Tropism Explains Viral Substitution Rate Variation

PLOS Pathogens | www.plospathogens.org 8 January 2014 | Volume 10 | Issue 1 | e1003838



found that infection of different cell types did not lead to

differences in mutation rate [51], providing some evidence that

mutation rate is not correlated with cell tropism. Together, these

data suggest that mutation rate variation among different cell types

is not driving higher substitution rates in epithelial-infecting

mammalian RNA viruses.

Generation time could explain substitution rate variation
Ruling out selection, mutation rates, and recombination

frequencies as drivers of RNA virus substitution rates implies that

the rate variation is largely the result of variation in replication

dynamics [5,13]. Enhanced replication frequencies (shorter

generation times) have been used to explain a variety of the

previously suggested links between virus ecology and substitution

rate. For example, viruses in the acute phase of an infection

generally replicate more frequently than those in a persistent

infection, and viruses in a latent phase do not replicate at all [39].

Further, as an alternative to differential selection pressures, the

argument that transmission mode drives viral substitution rates

assumes that viruses that can be transmitted more rapidly will have

shorter generation times (e.g., horizontal transmission vs. vertical

transmission [5,52,53]).

DNA viruses have shorter generation times in faster dividing

cells [54,55], but the associations between cell tropism and RNA

virus generation time are less obvious, as RNA viruses do not

depend on cellular replication machinery. However, there is

evidence that for at least some RNA viruses, viral genome

replication is highly dependent on host cell proliferation, with

RNA synthesis occurring at much lower rates in poorly

proliferating cells than in rapidly dividing cells [56,57,58,59,60].

For example, it has been repeatedly demonstrated that hepatitis C

virus genome replication is enhanced in proliferating cells, perhaps

due to higher levels of available nucleotides [59], or because of

higher levels of viral protein synthesis facilitated by nuclear

translation initiation factors that only become available in the

cytoplasm during cell division [58]. Similar dependence on cell

proliferation for viral replication efficiency has been demonstrated

in a number of picornaviruses [57,60,61,62]. Further, using the

model proposed by Sanjuán (2012), we found that viruses that

infect epithelial cells have generation times that may be as much as

40-fold shorter than a virus that infects non-epithelial cells. This

offers a possible mechanistic basis for our finding that viruses that

target the fastest-dividing cells in the body (intestinal and

respiratory epithelial cells [34,35,36,63]) have higher substitution

rates than viruses that infect cells that turnover at very low rates, if

at all (neurons [33,35,64]).

We are the first to provide statistical evidence that cell tropism

predicts rates of mammalian RNA virus evolution, likely through

its influence on virus generation time. These results offer a new

perspective on why it has been difficult to create effective vaccines

for viruses that infect epithelial tissue, such as rotavirus and

enterovirus 71 [65,66]. Further, as it has been shown that higher

rates of viral evolution can result in increased genetic diversity and

higher epidemiological fitness [26,67,68], the higher substitution

rates of epithelial-infecting viruses predict increased evolvability

and greater potential for emergence in novel host species [21].

Materials and Methods

Published rates
Long-term nucleotide substitution rates of mammalian RNA

viruses were collected from the literature, with a focus on finding

rates for the outer structural gene containing the major antigenic

site(s) and non-structural (preferably the RdRp) genes. While the

RdRp genes of the (-)ssRNA and dsRNA viruses are classified as

structural, or virion-associated, genes [69], they are generally

thought to be more conserved and under very different selection

pressures than the structural genes that interact with the host

immune system [70,71]. We excluded retroviruses from analysis

because they are known to have highly variable substitution rates

due to time spent integrated into DNA genomes, where they

evolve at the rate of their hosts’ genome [13,72]. Viruses that

predominately infect non-mammals, with mammals serving as

incidental, dead-end hosts, were also excluded. Only rates

estimated for individual viral species or strains were used, not

those that aggregated multiple species into one analysis. Similarly,

only rates from single gene analyses were included, not those based

on full genomes or multiple gene alignments. In order to minimize

any rate discrepancies that could result from variations among

datasets (e.g., number of taxa, temporal range, portion of gene

analyzed) and/or subtle methodological variations

[45,73,74,75,76,77], only rates produced by Bayesian coalescent

analyses of datasets composed of at least 30 taxa, isolated over a

minimum range of 15 years and spanning at least 40% of the

analyzed gene were included. Bayesian coalescent analyses provide

estimates of viral evolution that are calculated over a longer range

than simply the date range over which the taxa were isolated. This

is because they determine the likely phylogenetic relationship

among the isolates and infer substitution rates over the entire

evolutionary history of the sampled taxa: over decades, hundreds,

even thousands of years. These rates can therefore be considered

‘‘long-term’’ nucleotide substitution rates.

Data regarding genomic architecture and ecology were

obtained for all viruses with published substitution rates that met

these criteria. We included multiple rates for a given virus when

available, except when a single study examined multiple lineages

and summarized the results in a single rate [78,79,80,81].

Corresponding dN/dS estimates were collected when available.

Sequence data
These published substitution rates were supplemented with

novel BEAST [20] rate analyses based on the sequence data

available in GenBank (accessed through Taxonomy Browser,

http://www.ncbi.nlm.nih.gov/Taxonomy). Sequences for struc-

tural and non-structural genes with years of isolation available in

GenBank or the literature were manually aligned using Se-Al

v2.0a11 [82]. Sequences with GenBank or published information

that indicated they were genetically manipulated or extensively

passaged in the lab prior to sequencing were eliminated from

further analysis. The final datasets also adhered to the conservative

criteria described above for published datasets.

Substitution rate and selection analyses
As recombination events can lead to over-estimation of

nucleotide substitution rates, each dataset was scanned for

recombination using seven different algorithms (RDP, GENE-

CONV, Bootscan, MaxChi, Chimaera, SiScan, and 3seq)

implemented in RDP v3.44 [83]. Sequences implicated as

recombinant by two or more algorithms were excluded from

further analysis. These finalized alignments were deposited into

Dryad (doi:10.5061/dryad.58ss8). Modeltest v3.7 [84] was used to

determine the best-fit model of nucleotide substitution for each

dataset (by AIC).

Long-term nucleotide substitution rates were estimated using

BEAST v1.5.4 [20]. Each dataset was run for at least 50 million

generations and until all parameters had stabilized (effective

sampling size .200). Each dataset was run with two different clock

models (strict and uncorrelated lognormal) and three different
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demographic models (constant, exponential, and Bayesian skyline).

The best-fitting clock/demographic model combination for each

dataset was determined using Bayes factors as implemented in

Tracer v1.5 [85]. For each best set of priors, two independent runs

were performed to ensure that the results were replicable, and a

control analysis was run without the dataset to ensure that the

priors were not controlling the outcome of the analysis.

The Single Likelihood Ancestor Counting (SLAC), codon-based

maximum likelihood method available in the HYPHY package on

the Datamonkey web server [86] was used to evaluate the strength

of selection pressure on these datasets.

Statistical analyses
In order to determine which factors most significantly predict

substitution rates of mammalian RNA viruses, ANCOVA analyses

were run using SPSS Statistics v21 (IBM) with log-transformed

mean substitution rates as the dependent variable and seven

overarching predictor variables (target cell, transmission route,

whether the infection is acute or persistent, host range, genome

length, genome sense, and whether or not the genome is

segmented). For each variable, different base levels were tested

to ensure that the chosen base level did not significantly influence

the results. Collinearity among the variables was also assessed,

with variance inflation factors (VIF) greater than 10 indicating

redundancy among variables. Separate ANCOVA analyses were

run on the structural and non-structural gene datasets. As there

were multiple published rates for some viral species and strains,

additional analyses were run for both the S and NS datasets with

only one substitution rate per virus species. When there were

multiple rates for a given virus species, we calculated and used an

average rate.

One-tailed t-tests were subsequently run in R v2.14.1 [87] to

provide an additional measure of significant directional variation

among the log-transformed mean rates of different levels for any

categorical variable that was found to be a significant rate

predictor (a= 0.01, adjusted by Bonferroni correction for multiple

comparisons) in the ANCOVA analyses. Additional t-tests were

also conducted using the control datasets with one rate per virus

species.

Additionally, though there were no dN/dS or mutation rate

estimates available for all viruses used in this study, the available

data for each variable were compared to corresponding log-

transformed mean substitution rate estimates using Spearman rank

correlation (for dN/dS) or Pearson correlation coefficient (for

mutation rates). Structural and non-structural gene rate estimates

were also compared using Pearson correlation coefficient. All

correlation analyses were performed in SPSS Statistics v21.

Supporting Information

Figure S1 Standardized residuals of the ANCOVA
analyses. Standardized residuals are shown for each data point,

or observation, included in the ANCOVA analyses. A and B show

the residuals from the first analysis, C and D show residuals from

the second analysis, and E and F show residuals from the third

analysis. Residuals outside the interval [21.96, 1.96] are shown in

red and labeled according to the virus abbreviations given in Table

S1.

(TIFF)

Figure S2 Standardized residuals of the ANCOVA
analyses using the control datasets. Standardized residuals

are shown for each data point, or observation, included in the

ANCOVA analyses using the datasets with one rate per viral

species. A and B show the residuals from the first analysis, C and D

show residuals from the second analysis, and E and F show

residuals from the third analysis. The one residual outside the

interval [21.96, 1.96] is shown in red and labeled according to the

virus abbreviations given in Table S1.

(TIFF)

Figure S3 Standardized coefficients for predictors of
viral substitution rates based on analyses of control
datasets. Standardized coefficients with 95% confidence inter-

vals for the different predictor variables of structural (left) and non-

structural (right) gene substitution rates, using the datasets with

one rate per viral species. A and B show the coefficients from the

first analysis, C and D show coefficients from the second analysis,

and E and F show coefficients from the third analysis. Coefficients

are indicated by the same symbols used in Figures 1 and 2. Dark

coefficients correspond to significant substitution rate predictors

(P,0.01, epithelial, leukocyte, hepatocyte, and epithelial target

cells in A, leukocyte and epithelial target cells in C, neural and

epithelial target cells in E, and neural target cells in F), while the

other coefficients are shown in gray.

(TIFF)

Table S1 Nucleotide substitution rates and character-
istics of all viruses used in this study.
(DOCX)

Table S2 Dataset and analysis information for novel
substitution rates produced in this study. Abbreviations for

viruses and genes are as in Table S1. Nucleotide substitution

models shown general time reversible (GTR), Tamura-Nei (TrN),

transition (TIM), transversion (TVM), transversion with equal

frequencies (TVMef), Kimura 3-parameter with unequal frequen-

cies (K81uf), and Hasegawa-Kishino-Yano (HKY); corrections for

invariant sites (+i) and a gamma distribution of rate heterogeneity

(+G) were also included in some models.

(DOCX)

Table S3 Significant predictors of viral structural gene
substitution rates using one rate per viral species. For

each multiple regression analysis, the overall adjusted R2 (�RR2) of

the model is given along with significant predictor variables

(P,0.01) and their standardized coefficients (b) with 95%

confidence intervals (CIs). In the first regression, the base levels

were epithelial target cells, fecal-oral/respiratory transmission

route, acute/persistent infection, species-specific host range, and

dsRNA genome architecture. In the second regression, the base

levels were neural target cells, bites/scratches transmission route,

persistent infection, order-specific host range, and (2)ssRNA

genome architecture. In the third regression, the base levels were

leukocyte target cells, respiratory/vertical transmission route,

acute infection, family-specific host range, and (+)ssRNA genome

architecture.

(DOCX)

Table S4 Significant predictors of viral non-structural
gene substitution rates using one rate per viral species.

For each multiple regression analysis, the overall adjusted R2 (�RR2)

of the model is given along with significant predictor variables

(P,0.01) and their standardized coefficients (b) with 95%

confidence intervals (CIs). In the first regression, the base levels

were epithelial target cells, fecal-oral/respiratory transmission

route, acute/persistent infection, species-specific host range, and

dsRNA genome architecture. No factors were significant in this

analysis. In the second regression, the base levels were neural

target cells, bites/scratches transmission route, acute infection,

order-specific host range, and (2)ssRNA genome architecture. No

factors were significant in this analysis. In the third regression, the
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base levels were leukocyte target cells, respiratory/vertical

transmission route, acute infection, family-specific host range,

and (+)ssRNA genome architecture.

(DOCX)

Table S5 Significant predictors of viral substitution
rates based on all rates included in this study. For each

ANCOVA analysis, the overall adjusted R2 (�RR2) of the model is

given along with the significant predictor variable (P,0.01) and its

standardized coefficients (b) with 95% confidence intervals (CIs).

In the first ANCOVA, the base levels were epithelial target cells,

fecal-oral/respiratory transmission route, acute/persistent infec-

tion, species-specific host range, and dsRNA genome architecture.

In the second ANCOVA, the base levels were neural target cells,

bites/scratches transmission route, acute infection, order-specific

host range, and (2)ssRNA genome architecture. In the third

ANCOVA, the base levels were leukocyte target cells, respiratory/

vertical transmission route, acute infection, family-specific host

range, and (+)ssRNA genome architecture.

(DOCX)

Table S6 Structural gene substitution rate variation
among viruses with different cell tropisms. Based on the

control datasets with one substitution rate per viral species. The

significance of viruses with each target cell in the left column

having higher log scale mean substitution rates than the viruses

with each target cell in the top row is designated with a p-value

from a one-tailed t-test. The threshold for statistical significance

(P,0.01) was Bonferroni-corrected to account for multiple

comparisons (P = 161023). N = neurons, En = endothelial cells,

L = leukocytes, H = hepatocytes, Ep = epithelial cells.

(DOCX)

Table S7 Non-structural gene substitution rate varia-
tion among viruses with different cell tropisms. Based on

the control datasets with one substitution rate per viral species.

The significance of viruses with each target cell in the left column

having higher log scale mean substitution rates than the viruses

with each target cell in the top row is designated with a p-value

from a one-tailed t-test. The threshold for statistical significance

(P,0.01) was Bonferroni-corrected to account for multiple

comparisons (P,261023). N = neurons, L = leukocytes, H = he-

patocytes, Ep = epithelial cells.

(DOCX)
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