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ABSTRACT.

The author’s method of oligomer sums for analysis of oligomer compositions of eukaryotic and prokaryotic
genomes is described. The use of this method revealed the existence of general rules for the cooperative oligo-
meric organization of a wide list of genomes. These rules are called hyperbolic because they are associated with
hyperbolic sequences including the harmonic progression 1, 1/2, 1/3, .., 1/n. These rules are demonstrated by
examples of quantitative analysis of many genomes from the human genome to the genomes of archaea and
bacteria. The hyperbolic (harmonic) rules, speaking about the existence of algebraic invariants in full genomic
sequences, are considered as candidates for the role of universal rules for the cooperative organization of ge-
nomes. The results concerns additionally the problem of the origin of life. The described phenomenological
results were obtained as consequences of the previously published author’s quantum-information model of long
DNA sequences. The oligomer sums method was also applied to the analysis of long genes and viruses including
the COVID-19 virus; this revealed, in characteristics of many of them, the phenomenon of such rhythmically
repeating deviations from model hyperbolic sequences, which are associated with DNA triplets. In addition, an
application of the oligomer sums method is shown to the analysis of amino acid sequences in long proteins like
the protein Titin. The topics of the algebraic harmony in living bodies and of the quantum-information approach

in biology are discussed.

1. Introduction

Living bodies are huge sets of various molecules, which have an
amazing ability to inherit biological traits of organisms to the next
generations. G. Mendel, in his experiments with plant hybrids, found
that the transmission of traits under the crossing of organisms occurs by
certain algebraic rules, despite the colossal heterogeneity and
complexity of molecular structures of their bodies. This article repre-
sents new results of studying hidden algebraic rules in molecular genetic
information structures.

One of the founders of quantum mechanics, who introduced also the
term “quantum biology,” P. Jordan noted the main difference between
living and inanimate objects: inanimate objects are controlled by the
average random movement of their millions of particles, whose indi-
vidual influence is negligible, while in a living organism selected — ge-
netic - molecules have a dictatorial influence on the whole living
organism (McFadden and Al-Khalili, 2018). Taking into account the
dictatorial influence of DNA and RNA molecules on the whole body, the
author focused his research on a special analysis of numeric parameters
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of nucleotide sequences in single-stranded DNA of different genomes
and their parts. As a result of this research, a new method of analysis of
nucleotide sequences was created, which has led to discovering new
numeric rules of cooperative oligomer organization of eukaryotic and
prokaryotic genomes. These materials are described below. All initial
data on nucleotide sequences for this analysis were taken from the
GenBank.

It should be recalled that genomic nucleotide sequences are not
random sequences. These sequences carry information transmitted in a
noise-immune manner from generation to generation. They contain a
great number of repeats and complementary palindromes. For example,
in the human genome, about a third of DNA sequences are represented
by complementary palindromes (Gusfield, 1997; McConkey, 1993). In
evolutionary biology, the abundance of such complementary palin-
dromes in genomes is seen as evidence of not random DNA sequences,
that is, their irreducibility to a set of random mutations (see additional
data in (Fimmel et al., 2019; Petoukhov, Tolokonnikov, 2020)).

For long nucleotide sequences of single-stranded DNA, the second
Chargaff’s rule is well known, which states that in such sequences the
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amount of guanine G is approximately equal to the amount of cytosine C
and the amount of adenine A is approximately equal to the amount of
thymine T. Many authors have devoted their works to the analysis and
discussion of this rule (see, for example (Fimmel et al., 2019; Prabhu,
1993; Rapoport, Trifonov, 2012; Rosandic et al., 2016; Shporer et al.,
2016; Yamagishi, 2017),). According to (Albrecht-Buehler, 2006), this
rule applies to the eukaryotic chromosomes, the bacterial chromosomes,
the double-stranded DNA viral genomes, and the archaeal chromosomes
provided they are long enough. In connection with the hidden rules of
long DNA sequences, Chargraff introduced the important term “a
grammar of biology” (Chargaff, 1971), which is repeatedly used by his
followers (see, for example (Yamagishi, 2017)).

Regarding the quantitative analysis of DNA sequences, researchers
usually study quantities and percentages (or probability, or frequencies)
of separate n-plets (that is separate oligomers, having their length n). For
example, the second Chargaff’s rule is based on such a study of the
quantities of separate nucleotides A, T, C, and G. The work (Prahbu,
1993) studies quantities of separate n-plets. In contrast to such analytic
approaches, the author suggests for analysis of long nucleotide se-
quences another method called the oligomer sums method. It allows
studying the oligomer cooperative organization by the comparative
analysis of total amounts of all n-plets, having fixed length n, from the
certain equivalence classes of oligomers.

Below this analytic approach and the results of its application to
many genomes and separate nucleotide sequences are represented. Be-
sides, the article additionally shows that the oligomer sums method can
be usefully applied to the analysis not only genomic sequences of nu-
cleotides but also the analysis of amino acid sequences of long proteins.
The presented study is a continuation of long term author’s researches
on biological symmetries.

2. The hyperbolic rule in the oligomer cooperative organization
of all human nuclear chromosomes

The term “oligomer” refers to a molecular complex of chemical that
consists of a few repeating units. Nucleobases - adenine A, thymine T,
cytosine C, and guanine G - serve as such repeated units in DNA oligo-
mers, which can have different lengths and which are also called n-plets,
where n refers to the oligomer length. Each of nucleotide sequences in
eukaryotic and prokaryotic genomes can be represented as a sequence of
monomers (like as A-C-A-T-G-T- ...), or a sequence of doublets (like as
AC-AT-GT-GG- ...), or a sequence of triplets (like as ACA-TGT-GGA- ...),
etc. In each of such fragmented representations, one can calculate total
amounts of oligomers of various kinds in the analyzed sequence and then
compare them.

The article describes the numerical analysis of sets of n-plets, which
belong - in such fragmented representations of long DNA sequences - to
the equivalence classes (or cooperative groupings) of A;-oligomers, or
Ty-oligomers, or Cj-oligomers, or Gj-oligomers correspondingly (their
index 1 indicates that all oligomers of each class start with the same
nucleotide A, or T, or C, or G). For example, the class of the Aj-oligomers
contains the following n-plets: 4 doublets AA, AT, AC, and AG; 16
triplets AAA, AAT, AAC, AAG, ATA, ..., AGG; etc. The total amount of
different kinds of n-plets, which start with the same nucleotide, under
fixed n is equal to 4™ 1.

To simplify a theoretical explanation, let us consider the example of
an analysis of the oligomer cooperative organization of human chro-
mosome N21 by the author’s method of oligomer sums (abbreviation,
the OS-method). The totality of data obtained by analyzing a nucleotide
sequence by the OS-method is called its OS-representations. This method
gives numeric sequences called oligomer sums sequences (or briefly, OS-
sequences).

The application of the OS-method to the analysis of the human
chromosome N°1 includes the following steps, which are typical also for
the analysis of other DNA and RNA sequences:
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e Firstly, the DNA sequence of this chromosome is represented in the
mentioned form of a set of its fragmented sequences of oligomers of
certain lengthsn =1, 2, 3, ..;

Secondly, phenomenological quantities Sa, St, Sc, and Sg of mono-
mers A, T, C, and G correspondingly are calculated in the considered
nucleotide sequence. In the human chromosome N° 1, the following
quantities exist: Sp = 67,070,277, Sy = 67,244,164, Sc =
48,055,043, Sg = 48,111,528;

Thirdly, in each of the fragmented representations of the DNA
sequence under n = 2, 3, 4, ..., the corresponding total amounts
An,15 2T,n,15 2C,n,1, and Zg .1 of n-plets are calculated in equivalence
classes of Aj-oligomers, T;-oligomers, C;j-oligomers, and Gj-oligo-
mers (here, for example, the symbol 24 3 refers to the total amount
of triplets, which start with the nucleotide A). These total amounts
regarding each of the classes are members of the appropriate OS-
sequence of the class. For analysis of human chromosomes and
various eukaryotic and prokaryotic genomes, the author usually
takesn=1, 2, 3, ..., 19, 20 or, in special cases,n =1, 2, 3, ..., 99,
100.

One can remind here that genomic sequences in the GenBank sites
usually contain some letters N, indicating that there can be any nucle-
otide in this place (https://www.ncbi.nlm.nih.gov/books/NBK21136/).
By this reason, the total amount of all monomers A, T, C, G (that is the
sum Sp + St + Sc + Sg), calculated for the sequence from the GenBank, is
slightly less than the complete length of the DNA sequence, which is
indicated in the GenBank. But practically this is not essential for the
results of the application of the OS-method to analyze genomic
sequences.

For human chromosome N2 1, phenomenological values of the total
amounts of n-plets from the class of Aj-oligomers are shown in the
graphical form forn=1, 2, 3, ..., 20 in Fig. 2.1 at left (in blue). Here the
abscissa axis represents the values of n, and the ordinate axis represents
the values of the total amounts X ,; of n-plets, which start with the
nucleotide A. The amazing result is that all 20 phenomenological points
[n, Za,n,1] lie - with a high level of accuracy - along with the hyperbola
Ha,1 = Sa/n = 67070277 /n shown in red in Fig. 1, middle. Deviations of
phenomenological quantities X5 51 from model values Sa/n lie in the
range —0.030% - 0.024%, that is, they comprise only one-hundredths
of a percent (Fig. 1, right). Initial data on this chromosome were taken
in the GenBank: https://www.ncbi.nlm.nih.gov/nuccore/NC_
000001.11.

This result is striking because it shows that knowing only the number
of nucleotides A, that is, only one member of the number series shown in
Fig. 1, at left, one can predict with the high accuracy all other 19
members, each of which is a sum of 4"~ possible kinds of n-plets. The
number of possible kinds of n-plets in these sums is growing rapidly,
becoming astronomically huge: 4, 16, 64, 256, 1024, ..., 410 41 of
course, in the human chromosome N°1, for example, not all possible 419
kinds of the mentioned 20-plets exist but the total amount of all those
kinds of 20-plets, which exist in this chromosome, is practically equal to
Sa/20 with a high level of accuracy shown below.

Similar results were obtained when studying in this chromosome the
total amounts of n-plets, which start with the nucleotide T (Fig. 2, at
left), and with the nucleotide C (Fig. 2, at middle), and with the
nucleotide G (Fig. 2, at right). The phenomenological values of the total
amounts X1 ,1, Xc,n,1, and Zg a1 of n-plets are also modeled effectively
by appropriate hyperbolic progressions Hr;, Hc1, Hg,1 (2.1), which
differ from each other only by their numerators St, Sc, and Sg:

Hr, = St/n = 67244164/n, He,y = Sc/n = 48055043/n, Hg | = Sg/n =
48111528/n 2.1)

Fig. 3 shows phenomenological and model numeric values for the
OS-representation of the classes of A;-, T1-, C1-, and Gj-oligomers of the
human chromosome N21 forn=1, 2, 3, ..., 20. The model values of the
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Fig. 1. The graphs of data for the case of the OS-sequences of n-plets from the class A;-oligomers of the human chromosome N©1. In these graphs, the abscissa axis
represents the valuesn =1, 2, 3, ..., 20. Left: the ordinate axis represents the set of phenomenological total amounts X4 1 of n-plets beginning with the nucleotide A.
Middle: the ordinate axis represents modeling values of the hyperbolic progression Sy/n = 67070277 /n. The dots with coordinates [n, Sx/n] belong to the shown
hyperbola Hy 1 = Sa/n = 67070277 /n. Right: deviations of the real OS-sequence X, 1 from the model hyperbolic progression Sa/n in percentages.

70000000 50000000 50000000
60000000
40000000 40000000
50000000
40000000 30000000 30000000
30000000 20000000 20000000
20000000
10000000 10000000
10000000 s ™
ettt tteee . ettt rtetrece . *0000404
0
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Fig. 2. Additional graph data to the OS-representation of the human chromosome N21. The abscissa axes represent the valuesn = 1, 2, 3, ..., 20. The ordinate axes
show model values Hr,;(n), Hc1(n), and Hg 1 (n) (in red) from (2.1), which practically coincide phenomenological values Xt 1, ¢ n,1, and Zg 1 of the total amount of
n-plets, which start with the nucleotide T (at the left graph), the nucleotide C (at the middle graph), and the nucleotide G (at the right graph). The numerical data on
this coincidence is shown below. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

total amounts of n-plets, which start with a certain nucleotide (A, T, C, or
G), are calculated correspondingly as values of the hyperbolic pro-
gressions Hp 1 = Sa/n = 67070277/n, Hy; = St/n = 67244164/n, Hc;
= S¢/n = 48055043/n, and Hg 1 = Sg/n = 48111528/n. Deviations of
phenomenological values from model values are also shown in percent
in accordance with the expression: 100 (1 — (real value)/(model value)).
One can see that these deviations are much lesser than 0,2% in all cases.
The model hyperbolic progressions Ha 1 = Sa/n, Hr,1 = St/n, Hc,1 =
Sc/n, and Hg1 = Sg/n serve as mathematical standards for the described
phenomenological facts. These hyperbolic progressions differ from each
other only in the magnitude of numerators in their expressions, and
therefore they can be specified by the general expression (2.2):

Hy,1(n) = Sn/n, 2.2

where N refers to any of nucleotides A, T, C, or G; Sy refers to the number
of corresponding monomers A, T, C, or G in the analyzed nucleotide
sequence. If you know the total quantity Sy of the monomer N, you can
predict - with a high level of accuracy - the total amounts of n-plets
belonging to the class Nj-oligomers by using the general expression
(2.2). These phenomenological facts testify in favor of the cooperative
entity of the nucleotide sequence in the human chromosome N°1.

By the corresponding compression of the ordinate axis in these
Cartesian coordinate systems (that is by appropriate scaling of numer-
ators S, St, S, and Sg), each of these four hyperbolic sequences Hp 1 =
Sa/n, Hr1 = St/n, Hg1 = Sc/n, and Hg 1 = Sg/n reduces to the hyper-
bolic sequence (2.3):

y = l/n, (2.3)

which we call the canonical (or reference) hyperbolic sequence of OS-
representations (or the canonical OS-sequence) of nucleotide se-
quences. In mathematics, the sequence (2.4)

1/1, 172, 1/3, 1/4, 1/5, ..., Un 2.4

is known long ago as the harmonic progression (or the harmonic
sequence) where each term is the harmonic mean of the neighboring
terms. For this reason, the revealed hyperbolic sequences in genomes
can be also called genomic harmonic progressions, and, in this mathe-
matical sense, one can talk about the harmonic rules and the harmonious
organization of genomes described below. The historically famous name
“the harmonic progression” comes from the connection (2.4) with the
series of harmonics in music. The sums of the first members of the
harmonic progression (2.4) are called harmonic numbers. The cross-
ratio (or the double ratio), which is the basic invariant of projective
geometry, is equal to 4/3 for any four adjacent terms of the harmonic
progression (the harmonic progression is projectively equivalent to
arithmetic progressions, in which the cross-ratio of any four adjacent
terms is also equal to 4/3). This connection of the harmonic progression
with the basic invariant of the projective geometry is interesting with
respect to a wide theme of inherited non-Euclidean symmetries in bio-
logical objects (Petoukhov, 1989).

The rich centuries-old history of the study of harmonic progressions
and harmonic series is associated with the names of Pythagoras, Orem
(d’Oresme), Leibniz, Newton, Euler, Fourier, Dirichlet, Riemann, and
other researchers. The generalization of the harmonic series is known as
the Riemann zeta function. Using musical terminology, where the term
“timbre” refers to the totality of the set of sound frequencies in a pro-
longed sound, one can conditionally say that the oligomer sums method
represents the analyzed nucleotide sequence as some “oligomer timbre”.
The series of harmonic numbers serves as the discrete analog of the
continuous function of natural logarithm In(n) (Graham et al., 1994, p.
276); this, in particular, connects the harmonic progression (2.4) with
Weber-Fechner logarithmic law, which is the main psychophysical law
and dictates informatic peculiarities for all inherited sensory channels -
vision, hearing, smell, etc, whose organs (eyes, ears, nose, etc.) very
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N 1 2 3 4 6 7 8 9 10
A
Real || 67070277 | 33537501 | 22360413 | 16768845 | 13413532 | 11179286 | 0584038 | 8383461 | 7453552 | 6706672
Model || 67070277 | 33535130 | 22356750 | 16767560 | 13414055 | 11178380 | 0581468 | 8383785 | 7452253 | 6707028
A%A 0.000 -0.007 -0.016 -0.008 0.004 -0.008 -0.027 0.004 -0.017 0.005
T
Real || 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359
Model || 67244164 | 33622082 | 22414721 | 16811041 | 13448833 | 11207361 | 9606309 | 8405521 | 7471574 | 6724416
A%T 0.000 0.005 0.008 0.013 0.026 0.001 -0.005 0.006 0.019 0.001
C
Real || 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919
Model || 48055043 | 24027522 | 16018348 | 12013761 | 9611009 | 8009174 | 6865006 | 6006880 | 5339449 | 4805504
A%C 0.000 0.011 0.035 0.001 -0.013 0.043 -0.014 | -0.022 0.046 0.033
G
Real || 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156
Model || 48111528 | 24055764 | 16037176 | 12027882 | 9622306 | 8018588 | 6873075 | 6013941 | 5345725 | 4811153
A%G 0.000 -0.008 -0.023 -0.009 ~0.029 -0.033 0.057 0.009 -0.049 | -0.042
n 11 12 13 14 15 16 17 18 19 20
I A
| Real || 6095821 | 5588773 | 5160139 | 4792078 | 4472245 | 4192017 | 3946422 | 3726860 | 3531067 | 3354107 ||
I Model || 6097298 | 5589190 | 5159252 | 4790734 | 4471352 | 4191892 | 3945310 [ 3726127 [ 3530015 | 3353514 |
| A%l 0.024 0.007 0.017 ~0.028 ~0.020 ~0.003 ~0.028 ~0.020 ~0.030 -0.018 |
?|| Real || 6111970 | 5601854 | 5173904 | 4801395 | 4479492 | 4202773 | 3954021 | 3735327 | 3535288 | 3360459 ||
{[ Model |[ 6113106 | 5603680 | 5172628 | 4803155 | 4482044 | 4202760 | 3955539 | 3735787 | 3539167 | 3362208 ||
A%T 0.019 0.033 -0.025 0.037 0.077 0.000 0.038 0.012 0.110 0.052
I ¢
|| Real |[ 4370502 | 4002753 | 3694018 | 3433636 | 3202830 | 3003511 | 2826568 | 2668499 | 2531448 | 2402186 ||
4| Model || 4368640 4004587 3696542 3432503 3203670 3003440 | 2826767 2669725 2529213 2402752 ||
I A%C -0.043 0.046 0.068 -0.033 0.026 -0.002 0.007 0.046 -0.088 0.024
|| Real || 4374518 4013372 3701250 | 3435824 | 3210839 3006763 2830698 | 2673815 2532772 | 2407301 ||
I Model |[ 4373775 | 4009294 T 3700887 | 3436538 [ 3207435 | 3006971 [ 2830090 [ 2672863 | 2532186 | 2405576 ||
{| a%G || -0.017 | -0.102 | -0.010 0.021 -0.106 0.007 -0.021 -0.036 [ -0023 | -0.072 |f

Fig. 3. Phenomenological and model values to the OS-representations of the classes of A;-, T1-, C;-, and G;-oligomers in human chromosome N21 are shown for n =
1, 2, ..., 20. The real total amounts of n-plets, which start with a certain nucleotide (A, T, C, or G), are indicated (in blue) jointly with their model values Ha 1(n),
Hr1(n), Hg1(n), and Hg1(n) from (2.1) (in red). The symbol A% refers to deviations of real values from model values in percent (the model values are taken as
100%). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

differ each other in appearance. This mathematical connection is that
the natural logarithm is defined as the area under the hyperbola on the
Cartesian plane (Conway, Guy, 1995, p. 250). It testifies that genetic and
different psychophysical levels of inherited biological informatics are
structurally interrelated on the algebra-harmonical basis (Petoukhov,
2016, 2020Db).

Given the relationship of the harmonic progression (2.4) with the
four OS-sequences for the four types of nucleotides A, T, C, and G,
genomic sequences can be called tetra-harmonic sequences. Fig. 3 shows
that the OS-sequences of the total amounts of n-plets from the classes of
Aj-oligomers and Tq-oligomers differ little from each other. The same is
true for the OS-sequences of the total amounts of n-plets from the classes
of C;- and Gy-oligomers. This fact is described by the expressions (2.5):

ZAaml & Xl Zonl = Lo (2.5)

In the particular case at n = 1, expressions (2.5) demonstrate the
second Chargaff’s rule on the approximate equality between the
amounts of nucleotides A and T, as well as C and G in long DNA se-
quences. Correspondingly the phenomenological fact, described by ex-
pressions (2.5), is a certain generalization of the second Chargaff’s rule.

The results presented indicate, at least for the human chromosome
N°1, that there exist two general hyperbolic (or harmonic) rules
regarding the total amounts of n-plets, which start with a certain
nucleotide A, T, C, or G.

The first hyperbolic rule (about interrelations of oligomers in in-

dividual chromosomes):

e For any of classes of Aj-, T1-, C;-, or Gi-oligomers in individual
chromosomes, the total amounts Xy ,1(n) of their n-plets, corre-
sponding different n, are interrelated each other through the
general expression Zy,1 ~ Sny/n with a high level of accuracy
(here N refers to any of nucleotides A, T, C, or G; Sy refers to the
number of monomers N; n =1, 2, 3, 4, ...is not too large compared
to the full length of the nucleotide sequence). The phenomeno-
logical points with coordinates [n, Zn,1] practically lie on the
hyperbola having points Hy; = Sn/n.

The second hyperbolic rule (about the similarity in the pairs of OS-

sequences):

e In individual chromosomes, two numeric OS-sequences expressing
the total amounts of n-plets, which start with the nucleotide A and
with the nucleotide T, are approximately identical. The same is
true for two numeric OS-sequences expressing the total amounts of
n-plets, which start with the nucleotide C and with the nucleotide
G (in accordance with the expressions (2.5)). Heren=1, 2, 3, 4, ...
is not too large compared to the full length of the nucleotide
sequence.

The obtained results of the hyperbolic (or harmonic) interrelation-
ship of the amounts of n-plets, belonging to the indicated classes of
oligomers, are not trivial. Theoretical counter-examples of artificial
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nucleotide sequences, which have not such interrelation, can be indi-
cated. For example, for the case of the class of A;-oligomers, one can
mentally construct a long nucleotide sequence that contains many nu-
cleotides A but does not have two adjacent nucleotides A, that is, does
not contain a single AA doublet. Such a sequence does not have the
hyperbolic interrelationship between the amounts of the nucleotide A
and the total amounts of n-plets starting with A. It can be noted else that,
in the same human chromosome N° 1, the comparison of amounts of
different n-plets, consisting of only one type of nucleotides, for example,
of the nucleotide A, shows the absence of the hyperbolic relationship
between them. Really, in this case the amount of the nucleotide A is
equal to 67,070,277, the amount of the doublets AA - 10,952,057, the
amount of the triplets AAA — 2,837,038, the amount of the tetraplets
AAAA - 856,207, and so on without their hyperbolic interrelation.

Let us continue the description of obtained results of the analysis of
the human genome, which contains 22 autosomes and 2 sex chromo-
somes X and Y. These chromosomes are very different from each other in
length, molecular weight, gene content, etc. What can be said about the
other 23 human chromosomes? Are there hyperbolic rules similar to
formulated rules for the human chromosome N21? Yes, the author has
got a positive answer to this question. For each of 24 human chromo-
somes, knowing its quantity Sy of the monomer N (that is A, T, C, or G)
allows you to calculate the total amounts of n-plets, which start with the
oligomer N, with a high level of accuracy by using the general expression
(2.2). Here n = 1, 2, 3, ... but not very large in comparison with the
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length of the DNA sequence. Fig. 4 shows general confirmational results
of studying all 24 human chromosomes by the OS-method undern =1,
2,3, ..., 20.

These results demonstrate that both hyperbolic (or harmonic) rules
N2 1 and N2 2 hold true for each of the human chromosomes with a high
level of accuracy.

One can show that the obtained phenomenological data also leads to
the third hyperbolic rule related to normalized versions of the OS-
sequences Sp/n, St/n, S¢/n, and Sg/n. Scaling the numerators Sa, St,
Sc, and Sg by dividing by their total amount S = Sy + St + S¢ + Sg, we
obtain the corresponding scaling of all these OS-sequences, which are
termed as “normalized OS-sequences” (2.6):

Sa/(nS), St/(nS), Sc/(nS), Sg/(nS) (2.6)

It turns out that the normalized OS-sequences of all human chro-
mosomes are similar to each other with a high level of accuracy as Fig. 5
shows regarding the first main members Sa/S, St/S, Sc/S, and Sg/S of
these hyperbolic sequences.

The same results on the similarity of normalized OS-sequences Sp/
nS, St/nS, Sc/nS, and Sg/nS in all chromosomes of a particular genome
were obtained by the author when studying the genomes of a number of
eukaryotes (until now, without a single exception in analyzed cases).
Below appropriate results for some eukaryotic genomes are described.
These results allow proposing the third hyperbolic (or harmonic) rule on

= S\ Range % S, Range % 3 Range % So Range % Fig. 4. Some results of the analysis of all _24
1 [ 67070277 0.030 67244164 0.025 [ 48055043 20.088 38111528 -0.106 human nuclear chromosomes by the olig-
0.024 0.110 +0.068 0.057 omer sums method are represented. For each
2 | 71791213 0.079 71987932 0.075 48318180 0.097 38450903 0.105 of the chromosomes, quantities Sa, St, Sc,
_ -0.087 :O_D‘)_:j 0.072 _ 0.141 and Sg of monomers A, T, C, and G are
3 | 59689001 0.021 59833302 0.097 39233483 0.130 39344250 0.034 shown to define the model hyperbolic pro-
0.045 +0.098 0.081 0.088 ! .
7 | 58561236 | 0.065 | 58623430 | 0.036 | 36236976 0.039 | 36331025 | 0.117 gressions (2.2). The columns «Range %
-0.044 +0.128 +0.127 -0.075 show ranges of deviations of real OS-series
5 | 54699004 0.052 54955010 0.071 35731600 0012 35870674 -0.103 of corresponding n-plets (n = 1, 2, ..., 20)
0.040 +0.078 0.132 0.085 from their appropriate model values Sp/n,
6§ S1160455 %%'19. SEANA %%19, 33520786 %%[':,]21 33516767 %%é?) St/n, Sc/n, and Sg/n in percentages (in each
7 | 47058248 0.104 47215040 0.061 32317084 -0.086 32378850 0076 case, an appropriate model value is taken as
0.040 0.030 0.091 0.069 100%). The left column shows chromosome
8 | 42641072 0.061 42581941 0.111 28600559 0.110 28600963 20.068 numbers.
+0.068 +0.071 0.069 +0.050
5 | 31752642 0134 31733822 0.083 32487631 0.099 33470015 0.079
+0.090 “0.065 0.141 0.143
10 | 28875926 -0.081 39027555 -0.067 27639505 -0.058 27719976 -0.118
+0.052 +0.099 0.085 0.085
11 | 39286730 -0.032 39361954 0.062 27903257 0.139 27981801 -0.086
0,084 0,042 0.056 0,112
12 | 39370109 -0.096 39492225 0.097 27092804 0.076 27182678 0073
0.056 +0.094 0.078 0.105
13 | 29224840 0,067 29320872 0.107 18341128 20.107 18346620 20.130
0.077 +0.069 +0.141 0.065
14 | 25606393 -0.109 25819249 -0.040 17733667 0.137 17782016 -0.056
+0.100 +0.086 +0.077 0.142
15 | 24508669 ~0.085 24553812 0.127 17752941 20.090 17825903 20.067
0.179 0.088 0.162 0.113
16 | 22558319 0.122 22774906 -0.143 18172742 0.146 18299976 20.146
+0.080 +0.104 0.074 +0.173
17 | 22639499 0.141 22705261 -0.146 18723944 0.134 18851500 -0.144
+0.105 +0.070 0.072 0,105
18 | 22087028 0.160 22109347 0.169 14574701 0.090 14594335 20.160
-0.071 +0.121 0.134 0.210
19 | 15142293 -0.160 15282753 -0.062 13954580 0.103 14061132 -0.057
0.024 0.062 0.097 0.226
20 | 16455618 0.106 16643030 0.099 13037092 0.062 13098788 20.092
+0.129 +0.089 0.116 +0.155
21 | 9943435 0.161 9882679 -0.206 6864570 0.134 6852178 0373
0.083 0.173 0.277 0.219
22 | 10382214 0.175 10370725 0.036 9160652 0.258 9246186 0.143
+0.084 +0.209 0.155 +0.235
X | 36754807 0.078 26916701 0.102 30523780 0.116 30697741 20135
+0.084 +0.055 0.179 0.067
Y | 7886192 0.244 7956168 0.063 5285789 0.181 5286894 0.247
0.097 0,185 0.407 0.142
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the total amounts of n-plets, which start with a certain nucleotide A, T,
C, or G.

The third hyperbolic rule (about the similarity of chromosomes):

e All chromosomes of any individual eukaryotic genome have
approximately the same normalized OS-sequences Sp/nS, St/nS,
Sc/nS, and Sg/nS representing classes of A;-, T1-, C;-, and Gi-
oligomers (n = 1, 2, 3, 4, ...is not too large compared to the full
length of the nucleotide sequence).

Sa/n + St/n + Sc/n 4+ Sg/n = Sin or SA/nS + St/nS + Sc/nS + Sg/nS = 1/n

The author suggests that these hyperbolic rules are universal genetic
rules. But at this stage of the study, they are only candidates for the role
of universal rules, since the analysis of the widest variety of genomes is
required to verify their universality.

Let us return to the harmonic progression (2.4) and recall its relation
with the well-known concept of the harmonic mean. The harmonic mean
H of the positive real numbers x1, x2, ..., xn, is defined to be

He=r 2.7
TFEe i @7
Knowing two neighboring members of the harmonic progression,

one can calculate its next member by means of the harmonic mean

relation. Here we can briefly mention that the harmonic mean is asso-
ciated with the Pythagorean teaching on the musical harmony and the
aesthetics of proportions, presented in the famous numerical triangle
published 2000 years ago by Nichomachus of Gerasa in his book

“Introduction into arithmetic”. In accordance with this triangle, the

Parthenon (Kappraff, 2006) and other great architectural objects were

created because architecture was interpreted as the non-movement

music, and the music was interpreted as the dynamic architecture (see
more details in (Kappraff, 2000, 2002; Petoukhov, 2008; Petoukhov, He,

2010, Section 2, Chapter 4)). Since the harmonic mean is related to the

harmonic progression, the author indicates magnitudes of the harmonic

mean in some figures of the article for the comparison analysis of

Chrom | SA/S S1/S Sc/S Sc/S | Harmonic mean
1 0.2910 | 0.2918 | 0.2085 | 0.2087 0.243
2 0.2984 | 0.2993 | 0.2009 | 0.2014 0.241
3 0.3013 | 0.3020 | 0.1980 | 0.1986 0.239
4 0.3086 | 0.3089 | 0.1910 | 0.1915 0.236
5 0.3018 | 0.3032 | 0.1971 | 0.1979 0.239
6 0.3021 | 0.302 | 0.1979 | 0.1970 0.239
7 0.2960 | 0.2970 | 0.2033 | 0.2037 0.241
8 0.2994 | 0.2990 | 0.2008 | 0.2008 0.240
9 0.2928 | 0.2926 | 0.2074 | 0.2072 0.243
10 0.2917 | 0.2929 | 0.2074 | 0.2080 0.243
11 0.2920 | 0.2926 | 0.2074 | 0.2080 0.243
12 0.2957 | 0.2966 | 0.2035 | 0.2042 0.242
13 0.3069 | 0.3079 | 0.1926 | 0.1926 0.237
14 0.2945 | 0.2970 | 0.2040 | 0.2045 0.242
15 0.2896 | 0.2901 | 0.2097 | 0.2106 0.244
16 0.2758 | 0.2784 | 0.2221 | 0.2237 0.247
17 0.2730 | 0.2738 | 0.2258 | 0.2273 0.248
18 0.3011 | 0.3014 | 0.1987 | 0.1989 0.240
19 0.2591 | 0.2615 | 0.2388 | 0.2406 0.250
20 0.2778 | 0.2810 | 0.2201 | 0.2211 0.247
21 0.2964 | 0.2946 | 0.2047 | 0.2043 0.242
22 0.2651 | 0.2648 | 0.2339 | 0.2361 0.249
X 0.3019 | 0.3029 | 0.1971 | 0.1982 0.239
Y 0.2985 | 0.3012 | 0.2001 | 0.2001 0.240

Fig. 5. Data for normalized OS-sequences S,/(nS), St/(nS), Sc/(nS), and Sg/
(nS) of all human chromosomes are shown for comparison. Here Sy, St, Sc, and
Sg refer to phenomenological quantities of nucleotides A, T, C, and G; S = Sp +
St + Sc + Sg. Harmonic means of the values S5/S, St/S, Sc/S, and Sg/S in each
chromosome are also indicated
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OS-sequences in different nucleotide sequences (Fig. 5 and many
others).

Each genomic DNA sequence with its total amount S of all nucleo-
tides A, T, C, and G also contains total amounts S/n of n-plets (that is, S/2
doublets, S/3 triplets, etc.). These total amounts are members of the
hyperbolic progression S, S/2, S/3, ..., S/n. Each member of this
sequence S/n is the sum of the four OS-sequences Sa/n, St/n, Sc¢/n, and
Sg/n (2.8):

(2.8)

These linear superpositions are valid for a wide variety of genomes
that differ only in individual coefficients Sa, St, Sc, and Sg.

3. The hyperbolic rules in all chromosomes of a fruit fly
Drosophila melanogaster and some other model eukaryotic
species

This Sections is devoted to the analysis - by the oligomer sums
method (the OS-method) - of single-stranded DNA sequences of the
complete sets of chromosomes of a few model eukaryotic organisms,
which are used long ago in the study of genetics, development, and
disease. Received results confirm that both hyperbolic (harmonic) rules
regarding n-plets from the classes of A;-, T;-, C;-, and G;-oligomers hold
for each of described chromosomes atn =1, 2, 3, 4, ..., 19, 20 (although
these rules are also satisfied for larger values of n, at least up ton = 100,
but the data tables for such large n are too cumbersome to include in the
presentations).

Let us start with a fruit fly Drosophila melanogaster, which is studied
in biology labs for over eighty years. All initial data about its chromo-
somes were taken from the GenBank - https://www.ncbi.nlm.nih.gov/
genome/?term=drosophila+melanogaster. Resulting data in Fig. 6
confirm that - for all the chromosomes - the model hyperbolic pro-
gressions Hy 1(n) = Sa/n, Hr,1(n) = St/n, He,1(n) = S¢/n, and Hg,1(n) =
Sn/n from the expression (2.2) practically coincide with the real se-
quences of total amounts of n-plets from the classes A;-, T1-, C;-, and G-
oligomersatn=1, 2, 3, ..., 20. In all shown cases, the deviations of real
sequences from model hyperbolic progressions are less than 1% as data
in the tabular columns « Range %» indicates. This means that the
formulated hyperbolic (harmonic) rules are fulfilled in the considered
genome.

Ne Sa Range % St Range % Sc Range % Sc Range %
X 6732793 -0.196  J 6774766 | -0.125 | 4975870 | -0.198 | 4992722 | -0.148
+0.057 +0.090 +0.139 +0.213
2L § 6853032 | -0.217 J 6836080 | -0.219 [§4912017 | -0.239 | 4912383 -0.251
+0.178 +0.090 +0.313 +0.350
2R | 7272860 | -0.259 | 7235562 | -0.144 | 5395216 | -0.195 5376598 | -0.222
+0.128 +0.304 +0.222 +0.323
3L | 8143548 | -0.142 [ 8198331 -0.126 | 5825673 -0.211 5824515 -0.262
+0.196 +0.206 +0.108 +0.169
3R | 9205526 | -0.143 9197619 | -0.145 6833716 | -0.170 | 6817898 | -0.231
+0.152 +0.132 +0.169 +0.192
4 425241 -1.759 436669 -0.423 232566 -1.463 236655 -0.855
+0.488 +0.744 +1.299 +1.369
Y | 1056780 | -0.494 1008635 | -0.125 682725 -0.268 661579 -0.512
+0.314 +0.431 +0.659 +0.386

Fig. 6. The results of the analysis of all chromosomes of Drosophila melanogaster
by the OS-method. The left column shows symbols of chromosomes. Sa, St, Sc,
and Sg refer to the quantities of nucleotides A, T, C, and G in appropriate
chromosomes. The columns “Range %" show deviations of real sequences from
the model hyperbolic progressions Hyp 1(n) = Sa/n, Hr1(n) = St/n, He1(n) =S¢/
n, and Hg1(n) = Sg/n at n = 1, 2, 3, ..., 20 (the model values are taken
as 100%).


https://www.ncbi.nlm.nih.gov/genome/?term=drosophila+melanogaster
https://www.ncbi.nlm.nih.gov/genome/?term=drosophila+melanogaster
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Chrom | SA/S St/S Sc/S Sc/S Harmonic mean
X 0.2868 | 0.2886 | 0.2120 | 0.2127 0.244
2L 0.2915 [ 0.2907 | 0.2089 | 0.2089 0.243
2R 0.2877 | 0.2862 | 0.2134 | 0.2127 0.245
3L 0.2909 | 0.2929 | 0.2081 | 0.2081 0.243
3R 0.2872 1 0.2869 | 0.2132 | 0.2127 0.245
4 0.3195]0.3280 | 0.1747 | 0.1778 0.228
Y 0.3099 | 0.2958 | 0.2002 | 0.1940 0.239

Fig. 7. Data of normalized OS-sequences S/nS, St/nS, Sc/nS, and Sg/nS of all
chromosomes of Drosophila melanogaster are shown for comparison. Here S =
Sa + St + Sc + Sg. Harmonic means of the values S,/S, St/S, Sc/S, and Sg/S in
each chromosome are also indicated.

Fig. 7 shows data of normalized OS-sequences for all chromosomes of
Drosophila melanogaster.

Similar results, which confirm the hyperbolic rules in eukaryotic
genomes, are received by the oligomer sums method for all the analyzed
eukaryots including the following:

e The free-living soil nematode Caenorhabditis elegans by the OS-
method. This nematode is widely used as a model organism in ge-
netics for a long time. The Caenorhabditis elegans nuclear genome is
approximately 100 Mb, distributed among 6 chromosomes;

o the laboratory mouse Mus musculus, which has 21 chromosomes and
is a major model organism for basic mammalian biology, human
disease, and genome evolution;

e a plant Arabidopsis thaliana. This small flowering plant has 5 chro-
mosomes and is used for over fifty years to study plant mutations and
for classical genetic analysis. It became the first plant genome to be
fully sequenced; it has a small genome of ~120 Mb.

All initial data on these genomes were taken from the GenBank.
Detailed numerical results of the analysis are presented in the preprint
(Petoukhov, 2020e).

4. Analysis of long genes by the oligomer sums method

Before proceeding to the analysis of prokaryotic genomes, it is useful
to show the applicability of the oligomer sums method to the analysis of
genes whose sequences are much shorter than DNA sequences in chro-
mosomes. The application of the method unexpectedly reveals the
phenomenon of regular rhythmic deviations of the sequences of real
total sums of n-plets in the described genes from the corresponding
model hyperbolic progressions.

Let us first consider the human TTN gene encoding the largest known
protein Titin. Titin, also known as connectin, is important in the
contraction of striated muscle tissues. Figs. 8-9 show some results of the
analysis - by the oligomer sums method - of the nucleotide sequence of
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Fig. 9. The graph, uniting two graphs from Fig. 8 for the TNT gene, is shown.
The blue dot line and the green dot lines correspond to those additional hy-
perbolic progressions 11979/n and 28788/n, which model real total amounts of
3m-plets. Other parts of this united graph are the same as in Fig. 8. (For
interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

the TTN gene (numeric results will be represented below). Initial data on
its nucleotide sequence are taken in the GenBank https://www.ncbi.
nlm.nih.gov/nuccore/X90568.1. This gene contains 26,373 nucleo-
tides A, 19569 nucleotides T, 17097 nucleotides C, and 18,901 nucle-
otides G, that is Sy = 26,373, St = 19,569, S¢c = 17,097, and Sg = 18,901
for the model hyperbolic progressions (2.2). It can be especially noted
that, in this gene, the amounts of nucleotides A and T are significantly
different (26,373 and 19,569), that is, the second Chargaff’s rule on
their approximate equality in long sequences is not satisfied here since
this nucleotide sequence is not enough long for the Chargaff’s rule.

Fig. 8 shows the sequences of the highly regular significant de-
viations of the real total amounts of n-plets, which start with the
nucleotide T and the nucleotide G, from model hyperbolic progressions
St/n = 19569/n and Sg/n = 18901/n. One should note that all these
significant deviations happen only atn = 3, 6, 9, ..., 3m, that is only for
cases of 3m-plets (here m =1, 2, 3, ...). Correspondingly these signifi-
cant deviations can be called « triplet-deviations».

Fig. 9 shows the graph, which unites both graphs from Fig. 8 and
demonstrates a few interesting features of the highly regular series of
these triplet-deviations.

Firstly, one can see in Fig. 9 that, in classes of T;-oligomers and G-
oligomers, the triplet-deviations happen in opposite directions (or,
figuratively speaking, in antiphase):

e in the class of T;-oligomers, they decrease real values compared with
model values of the hyperbolic progression 19569/n;

The class of Ti-oligomers

The class of Gi-oligomers

x10

0 2 4 6 8 10 12 14 16 18 20

Fig. 8. Graphical representations of the results of the analysis - by the oligomer sums method - of the human TTN gene. The OS-sequences of its total amounts of n-
plets, which start with the nucleotide T (left) and the nucleotide G (right), are shown. The red lines refer to model hyperbolic progressions St/n and Sg/n corre-
spondingly, where St = 19,569 and Sg = 18,901 are quantities of nucleotides T and G in the gene; n =1, 2, 3, ..., 20 as shown at the abscissa axes. The blue line (left)
and the green line (right) with dots on them refer to the real OS-sequences of the total amounts of such n-plets. The ordinate axes indicate the total amounts of n-plets.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)


https://www.ncbi.nlm.nih.gov/nuccore/X90568.1
https://www.ncbi.nlm.nih.gov/nuccore/X90568.1

S.V. Petoukhov

e in the class of Gj-oligomers, they increase real values in comparison
with model values of the hyperbolic progression 18901 /n.

Secondly, under triplet-deviations, real total amounts of 3m-plets
from the classes of T;-oligomers and Gi-oligomers belong correspond-
ingly to other hyperbolic progressions 11979/n and 28788/n. These
hyperbolic progressions are indicated by the blue dot line and the green
dot line in Fig. 9. Where did these numerators of model hyperbolas come
from? Each of these numerators is associated with the total amount of
triplets (n = 3) in an appropriate class of oligomers in this gene: the total
amount of triplets starting with nucleotide T is equal to 3993, and the
total amount of triplets starting with nucleotide G is equal to 9596. To
calculate the first values of the model hyperbolas, each of these amounts
of triplets must be tripled, giving the shown numerators 11,979 and
28,788.

Similar triplet-deviations exist in the OS-representations not only of
the TTN gene but also of other long genes, prokaryotic genomes, and
viruses in different degrees as the author has discovered in the analysis
of a limited set of nucleotide series by the OS-method. In the genetic
code system, triplets have an important meaning, which differs from
other n-plets: they encode amino acids and punctuations of protein
synthesis. One can believe that the phenomenon of the triplet-deviations
is related to this special meaning of triplets. For this reason, the deeper
analysis of triplet-deviations in different species can be useful to study
the secrets of the genetic system and biological evolution.

Fig. 9 demonstrated the highly regular rhythmic triplet-deviations
forn=1, 2, 3, ..., 20, but similar rhythmic triplet-deviations exist in
a much wider range of values n.

Fig. 10 shows in graphical forms percentage values of the highly
regular rhythmic deviations of the real total amounts of n-plets, which
start with the nucleotide T and with the nucleotide G in the TTN gene,
from the appropriate model values 19569/n and 18901/n. Two cases of
the range of values n are represented there:n=1,2, 3, ...,20,andn =1,
2,3, .., 100.

The nucleobases T and G are keto-nucleobases. Figs. 9 and 10 draw
attention to the phenomenon of long-range correlations in the TTN gene
between sequences of the triplet-deviations in classes of Ty-, and G-
oligomers: the triplet-deviations in these sequences happen in opposite
directions as above mentioned. Such binary oppositions, which meet in
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different long genes, prokaryotic genomes, and viruses regarding the
classes of different Nj-oligomers (here N refers to A, T, C, or G), should
be specially studied in future since they bear important information and
are associated with other binary-opposition features of molecular ge-
netic systems.

The following Fig. 11 shows the OS-sequences of the total amounts of
n-plets, which start with two other nucleotides A and C in the TTN gene.
This gene contains 26,373 nucleotides A and 17,097 nucleotides C;
correspondingly Sy = 26,373 and S¢ = 17,097 for the model hyperbolic
progressions (2.2).

One can see in Fig. 11 that the class of C;-oligomers has regular se-
quences of the significant triplet-deviations at 3m-plets shown by the
blue line. The class of Aj-oligomers has not such regular sequences of
significant deviations; besides, its deviations are essentially less than
deviations in the class of C;-oligomers. In the class of Aj-oligomers, the
real and model values differ little from each other, and therefore, in
Fig. 11, the red line of model values covers the line of real values.

Fig. 12 shows the numeric results of the analysis of the TTN gene by
the oligomer sums method.

The preprint (Petoukhov, 2020e) shows similar results of the analysis
of some other genes, including one of the short genes of human histones,
by the oligomer sums method. The author notes else that not all long
genes have regular sequences of the pronounced triplet-deviations in
their ~OS-representations. The comparison analysis of the
OS-representations of different genes is a new research field. Certain
triplet-deviations between real and model values under 3m-plets are also
found in the OS-representations of entire chromosomes of humans and
other organisms, but in a much less pronounced form than in cases of
individual genes.

5. The hyperbolic rules in bacterial genomes of different groups
both from bacteria and archaea

Let us turn now to prokaryotic genomes. The Section represents re-
sults of the analysis of nucleotide sequences of all 19 bacterial genomes
of different groups both from Bacteria and Archaea, which are listed in
the article on the second Chargaff’s rule (Rapoport, Trifonov, 2012, p.
2): “Nucleotide disparities for prokaryotic coding sequences were taken from
bacterial genomes of different groups both from Bacteria and Archea. All

The class of Ti-oligomers The class of Gi-oligomers
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Fig. 10. Percentage representations of highly regular rhythmic sequences of the triplet-deviations of the real amounts of n-plets, which belong to classes of T;-, and
G-oligomers, from the appropriate model hyperbolic values 19569/n and 18901/n in the TTN gene. Here n = 1, 2, 3, ..., 20 (upper row) and n =1, 2, 3, ..., 100
(bottom row) as shown at the abscissa axes. The ordinate axes show percentages of the deviations (the model values are taken as 100%).
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The class of Ai-oligomers

Fig. 11. Graphical representations of the
results of the analysis - by the oligomer sums

method - of the human TTN gene regarding
the sequences of the total amounts of n-plets,
which start with the nucleotide A (left) and
the nucleotide C (right). Heren=1,2, 3, ...,
20 (at the absciss axes). Upper row: the red
lines refer to model hyperbolic progressions

o o L " T R N R N Sa/n = 26373/n and Sc/n = 17097/n
correspondingly. The ordinate axes show the
a 20 total amounts of appropriate n-plets. The
class of C;-oligomers has regular sequences
= = of the significant triplet-deviations at 3m-
L § = o — = e plets shown by the blue line. Bottom row:
-2 = percentage representations of the sequences
s o of deviations of the real total amounts of n-
- o T = e *= ° plets of these classes from the appropriate
model hyperbolic values 26373/n and
17097/n (the ordinate axes show these per-
centages). The model values are taken as
100%. (For interpretation of the references
to color in this figure legend, the reader is
referred to the Web version of this article.)
n 1 2 3 4 5 6 7 8 9 10
A
Real 26373 13334 8848 6656 5346 4463 3805 3315 2924 2724
Model 26373 13187 8791 6593 5275 4396 3768 3297 2930 2637
A% 0 -1.119 -0.648 -0.952 -1.354 -1.536 -0.993 -0.557 0216 -3.287
T
Real 19569 9677 3993 4857 3885 1964 2755 2426 1332 1943
Model 19569 9784.5 6523 4892 3914 3262 2796 2446 2174 1957
A% 0 1.099 38.786 0.721 0.736 39.782 1.451 0.823 38.740 0.710
C
Real 17097 8522 4876 4199 3426 2431 2458 2101 1617 1707
Model 17097 8549 5699 4274 3419 2850 2442 2137 1900 1710
A% 0 0.310 14.441 1.761 -0.193 14.687 -0.638 1.690 14.880 0.158
G
Real 18901 9437 9596 4773 3731 4798 2687 2400 3231 1820
Model 18901 9451 6300 4725 3780 3150 2700 2363 2100 1890
A% 0 0.143 -52.309 -1.011 1.302 -52.309 0.487 -1.582 -53.849 3.709
n 11 12 13 14 15 16 17 18 19 20
A
Real 2403 2219 1989 1956 1819 1683 1499 1454 1415 1384
Model 2398 2198 2029 1884 1758 1648 1551 1465 1388 1319
A% -0.228 -0.967 1.957 -3.833 -3.458 -2.104 3.375 0.762 -1.941 | -4.956
T
Real 1782 986 1563 1339 788 1224 1160 660 1032 974
Model 177 1631 1505 1398 1305 1223 1151 1087 1030 978
A% -0.169 39.537 -3.833 4.206 39.598 -0.077 -0.772 39.292 -0.199 0.455
C
Real 1548 1207 1258 1227 963 1024 1038 803 932 849
Model 1554 1425 1315 1221 1140 1069 1006 950 900 855
A% 0.404 15.283 4.346 -0.474 15.511 4.170 -3.211 15.459 -3.574 0.684
G
Real 1716 2416 1493 1330 1892 1190 1123 1635 933 890
Model 1718 1575 1454 1350 1260 1181 1112 1050 995 945
A% 0.132 -53.389 -2.688 1.487 -50.151 -0.735 -1.005 -55.706 6211 5.825

Fig. 12. Real and model values to the OS-representations of the classes of A;-, T;-, C1-, and G;-oligomers in the human TTN gene are shown forn =1, 2, ..., 20. The
real total amounts of n-plets, which start with a certain nucleotide (A, T, C, or G), are indicated jointly with their model values Hu ;(n) = 26373/n, Hy1(n) = 19569/n,
Hc,1(n) = 17097/n, and Hg 1(n) = 18901/n (in red). The symbol A% refers to deviations of real values from model values in percent (the model values are taken as
100%). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 13. Graphical representations of the results of the analysis - by the oligomer sums method — of the following bacterial genomes mentioned in (Rapoport,
Trifonov, 2012, p. 2): 1) Aquifex aeolicus; 2) Bradyrhizobium japonicum. For each of genomes two rows of resulting data are shown atn =1, 2, ..., 20 plotted along the
abscissa axes: the top rows demonstrate that model hyperbolic progressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of
phenomenological values (the ordinate axes show appropriate values); the bottom blue lines show in percent slight alternating deviations of phenomenological
values from model values. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

together 19 genomes were used: Aquifex aeolicus, Acidobacteria bacterium,
Bradyrhizobium japonicum, Bacillus subtilis, Chlamydia trachomatis,
Chromobacterium violaceum, Dehalococcoides ethenogenes, Escherichia coli,
Flavobacterium psychrophilum, Gloeobacter violaceus, Helicobacter pilory,
Methanosarcina acetivorans, Nanoarchaeum equitans, Syntrophus acid-
itrophicus, Streptomyces coelicolor, Sulfolobus solfataricus, Treponema
denticola, Thermotoga maritima and Thermus thermophiles”.

Fig. 13 shows the results of the analysis of the first three prokaryotic
genomes form this list by the oligomer sums method. Similar results of
the analysisi of all other genomes from the list are shown in the preprint
(Petoukhov, 2020e). These results demonstrate that the hyperbolic rule
No. 1 is fulfilled for all the listed genomes of prokaryotes: the model
hyperbolic progressions Ha 1(n) = Sa/n, Hr,1(n) = St/n, He,1(n) = Sc/n,
and Hg 1(n) = Sg/n from the expression (2.2) practically coincide with
the OS-sequences of real total amounts of n-plets from the classes A;-,
T1-, C1-, and Gi-oligomers at n = 1, 2, 3, ..., 20. Because of this coin-
cidence, the model hyperbolic progressions, which are represented by
red lines in the graphs of Fig. 13, almost completely cover the sequences
of real values (the blue lines in the lower graphs show in percent slight
alternating deviations of real values from model values).

The initial data on these prokaryotic genomes were taken from the
GenBank:

1) Aquifex aeolicus VF5, complete genome, 1,551,335 bp, accession
AE000657, version AE000657.1, HYPERLINK “https://www.ncbi.
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nlm.nih.gov/nuccore/AE000657.1?report = genbank™ https://www
.ncbi.nlm.nih.gov/nuccore/AE000657.1?report=genbank;

2) Bradyrhizobium japonicum strain E109, complete genome,
9,224,208 bp, accession CP010313, HYPERLINK “https://www.
ncbi.nlm.nih.gov/nuccore/CP010313.1?report genbank”
https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=gen
bank.

Similar results, received in the analysis of other 17 genomes of
bacteria and archaea by the OS-method, are presented in the preprint
(Petoukhov, 2020e).

6. Analysis of genomes of microorganisms living in extreme
environments

Of particular interest is the analysis of the genetic characteristics of
microorganisms (extremophiles) living under extreme conditions of
high and low temperatures, radiation, acidic and alkaline environments,
drying, etc. Study of extremophiles is useful for many practical and
theoretical problems. The https://en.wikipedia.org/wiki/Extremophile
website contains a table of extremophiles. For the analysis of their ge-
nomes by the oligomer sums method, the author used 1-2 organisms
from each category of the table. Thus, the genomic data of the following
extremophiles were taken in the GenBank and analyzed: 1) Pyrolobus
fumarii 1A, which lives in submarine hydrothermal vents; 2)


https://www.ncbi.nlm.nih.gov/nuccore/AE000657.1?report=genbank
https://www.ncbi.nlm.nih.gov/nuccore/AE000657.1?report=genbank
https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank
https://www.ncbi.nlm.nih.gov/nuccore/CP010313.1?report=genbank
https://en.wikipedia.org/wiki/Extremophile
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Synechococcus lividus PCC 6715, which lives in low temperature condi-
tions; 3) Chroococcidiopsis thermalis PCC 7203, which lives in conditions
of desiccation; 4) Pyrococcus furiosus DSM 3638, which lives in subma-
rine hydrothermal vents; 5) Psychrobacter alimentarius strain PAMC
27889, which lives in soda lakes; 6) Clostridium paradoxum JW-YL-7 =
DSM 7308 strain JW-YL-7 ctgl, which lives in volcanic springs, acid
mine drainage; 7) Deinococcus radiodurans R1, which lives in conditions
of cosmic rays, X-rays, radioactive decay; 8) Halobacterium sp. NRC-1,
which lives in conditions of high salt concentration.

The results of the analysis of these genomic data shows the fulfill-
ment of the hyperbolic rule N21 of oligomeric sums for all listed
extremophiles. The extremal living conditions of these microorganisms
do not affect the subordination of their genomes to the described hy-
perbolic (harmonic) rules of the algebraic invariance, which are true for
the genomes of other prokaryotes and eukaryotes.

Fig. 14 shows the results of the analysis for the first two extrem-
ophiles from the list. Similar results for all other listed extremophiles are
presented in the preprint (Petoukhov, 2020e).
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7. Analysis of giant viruses by the oligomer sums method

This Section represents examples of studying genomes of different
viruses by the oligomer sums method. The focus is on giant viruses
(Fig. 15).

The results, presented in this Section, show the fulfillment of the
hyperbolic (harmonic) rule N2 1 for the viruses considered and provide
material for comparative analysis of different OS-sequences in genetics.

8. Analysis of the COVID-19 virus by the oligomer sums method

Let us turn now to the analysis - by the oligomeric sums method - of
the COVID-19 virus, which led to a pandemic. The initial data on its
nucleotide sequence was taken by the author from the site https://www.
ncbi.nlm.nih.gov/nuccore/MN908947.3, where the following is written
about it: severe acute respiratory syndrome coronavirus 2 isolate
Wuhan-Hu-1, complete genome, GenBank: MN908947.3, LOCUS
MN908947, 29,903 bp ss-RNA linear VRL 18-MAR-2020.

Figs. 16-17 show some results of such an analysis of the virus.

In particular, Figs. 16 and 17 show that this virus in its OS-
representations has under n = 3, 6, 9, ..., 3m such deviations of
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Fig. 14. The results of the analysis the following extremophiles: 1) Pyrolobus fumarii 1A, complete genome, 1843267 bp, https://www.ncbi.nlm.nih.gov/nuccore/
NC_015931.1; 2) Synechococcus lividus PCC 6715 chromosome, complete genome, 2,659,739 bp, https://www.ncbi.nlm.nih.gov/nuccore/NZ_CP018092.1 All ab-

scissa axes show the valuesn =1, 2, ...

, 20. The red hyperbolic lines demonstrate model hyperbolic progressions Sa/n, St/n, Sc/n, Sg/n, which almost completely

cover the OS-sequences of phenomenological values (the ordinate axes show appropriate values). Blue lines show in percent slight alternating deviations of
phenomenological values of the OS-sequences from model values Sp/n, St/n, Sc/n, Sg/n (here Sa, St, Sc, and Sg denote number of nucleotides A, T, C, and G in the
genomes). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 15. The results of the analysis - by the oligomer sums method — the following giant viruses: 1) Megavirus chiliensis, complete genome, 1,259,197 bp, NCBI
Reference Sequence: NC_016072.1, https://www.ncbi.nlm.nih.gov/nuccore/NC_016072.1; 2) Cafeteria roenbergensis virus BV-PW1, complete genome, 617,453 bp,
NCBI Reference Sequence: NC_014637.1, https://www.ncbi.nlm.nih.gov/nuccore/NC_014637.1. All abscissa axes show the values n = 1, 2, ..., 20. The red hy-
perbolic lines demonstrate that model hyperbolic progressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of phenomenological
values (the ordinate axes show appropriate values). Blue lines show in percent slight alternating deviations of real values of the OS-sequences from model values S/
n, St/n, Sc/n, Sg/n (here Sa, St, Sc, and Sg denote number of nucleotides A, T, C, and G in these viruses). (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)

phenomenological values from model values, which resemble the
triplet-deviations in human genes, which were described above in
Fig. 4.1-4.5. Perhaps the harmfulness of this virus to humans is related to
this similarity. It should also be noted that - in the classes of pyrimidines
C;- and T-oligomers - these deviations occur in opposite directions in a
coordinated manner, which indicates a particular consistency in the
structure of the nucleotide sequence of this virus concerning pyrimidines
classes.

9. DNA epi-chains and the hyperbolic rules for oligomer sums

This Section presents some results of the study of special sub-
sequences of long nucleotide sequences in single-stranded DNA by the
oligomer sums method. These subsequences are termed «DNA epi-
chains» (Petoukhov, 2019a). The author’s initial results testify that the
above described hyperbolic rules of oligomer sums for genomes are also
fulfielld for these epi-chains; it gives new materials to a known theme of
fractal-like structures in genetics.

By definition, in a nucleotide sequence N; of any DNA strand with
sequentially numbered nucleotides 1, 2, 3, 4, ... (Fig. 18a), epi-chains of
different orders k are such subsequences that contain only those nucle-
otides, whose numeration differ from each other by natural number k =
1, 2, 3, .... For example, in any single-stranded DNA, epi-chains of the
second order are two nucleotide subsequences Ny,; and Ng/2 in which
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their nucleotide sequence numbers differ by k = 2: the epi-chain Ny/;
contains nucleotides with odd numerations 1, 3, 5, ...(Fig. 18b), and the
epi-chain Ny, contains nucleotides with even numerations 2, 4, 6, ...
(Fig. 18c). By analogy, epi-chains of the third order are those three
nucleotide subsequences Nj3,;, N3/, and N33, each of which has
sequence numbers that differ by k = 3: these epi-chains contain nucle-
otides with numerations 1, 4, 7, ... or 2,5, 8, ... or 3, 6, 9, ..., respec-
tively (Fig. 18d-a). The epi-chain of the first order N; coincides with the
nucleotide sequence of the DNA strand (Fig. 18a).

The term “epi-chain” was coined from the Ancient Greek prefix epi-,
implying features that are “on top of” DNA strands. In any DNA strand,
each nucleotide belongs to many epi-chains having different orders k.
The symbol “N” in the designation of DNA epi-chains corresponds to the
first letter in the word “nucleotides”. In the designation “N/m,” of single-
stranded DNA epi-chains, the numerator “k" in the index indicates the
order of the epi-chain, and the denominator “m" indicates the numera-
tion of the initial nucleotide of this epi-chain along the DNA strand
(Fig. 18a). For example, the symbol N3/ refers to the epi-chain of the
third order with the initial nucleotide having the number 2 in the DNA
strand: 2-5-8- ... (Fig. 18e).

Each DNA epi-chain of k-th order (if k = 2, 3, 4, ....) contains k times
fewer nucleotides than the DNA strand and has its own arrangements of
nucleobases A, T, C, and G. But unexpectedly, despite on these differ-
ences, OS-sequences of the total amounts of those n-plets, which start
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Fig. 16. The graphs for the cases of the OS-sequences of n-plets from the classes of A;-oligomers (rows 1) and T;-oligomers (rows 2) of the coronavirus 2 isolate
Wuhan-Hu-1, complete genome, GenBank: MN908947.3, LOCUS MN908947, 29,903 bp. The abscissa axes represent the valuesn=1,2, 3, ...,20andn=1,2, 3, ...,
100. In the graphs with red lines the ordinate axes represent the set of phenomenological total amounts X, 1 and X1 of n-plets beginning with the nucleotides A
and T. The graphs with blue lines show deviations of phenomenological OS-sequences X, ,,; and Xt from the model hyperbolic progressions Sy/n = 8954/n and
St/n = 9594/n in percentages. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

with a nucleotide A, or T, or C, or G, are modeled by very similar hy-
perbolic progressions as in the complete DNA strand and as in its epi-
chains (at this stage of the research, the author studied OS-
representations of epi-chains only in cases of epi-chains with relatively
small orders k).

Figs. 19-23 explain these results in graphical forms by examples of
the OS-representations of epi-chains Ny,1, N3/1, N4/1, N1g/1, and Nsg 1 in
the human chromosome N°1 (the OS-representation of this complete
chromosome was presented above in Figs. 1-3).

Figs. 19-23 show that in these epi-chains, which are sparse sub-
sequences of the complete DNA sequence, the same hyperbolic rule No.
1 is fulfilled, which was formulated above for complete DNA sequences
in eukaryotic and prokaryotic genomes. The rule is fulfilled in these epi-
chains with the same high accuracy as in the complete DNA of the
sequence.
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Similar results were obtained by the author in study of epi-chains in
the single-stranded DNA of other analyzed genomes (see some corre-
sponding data in (Petoukhov, 2019a)). These results allow formulating
the fourth hyperbolic (or harmonic) rule of eukaryotic and prokaryotic
genomes, which is considered by the author as a candidate for the role of
a universal genetic rule (it is necessary to further investigate the widest
variety of genomes to verify a degree of its universality).

The fourth hyperbolic rule (about interrelations of oligomers in

epi-chains of long DNA sequences):

e In any nuclear chromosome of eukaryotic genomes and in pro-
karyotic genomes, the hyperbolic rules N°N© 1 and 2 are fulfielld
not only for the complete nucleotide sequences but also for their
epi-chains of the order k (where k = 2, 3, 4, ...is not too large
compared to the full length of the nucleotide sequence).
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Fig. 17. The graphs for the cases of the OS-sequences of n-plets from the classes of C;-oligomers (rows 1) and G;-oligomers (rows 2) of the coronavirus 2 isolate
Wuhan-Hu-1, complete genome, GenBank: MN908947.3, LOCUS MN908947, 29,903 bp. The abscissa axes represent the valuesn=1,2,3,...,20andn=1,2, 3, ...,
100. In the graphs with red lines the ordinate axes represent the set of phenomenological total amounts X¢ 1 and Zg 51 of n-plets beginning with the nucleotides C
and G correspondingly. The graphs with blue lines show deviations of phenomenological OS-sequences Z¢ ,,; and 2,1 from the model hyperbolic progressions Sc/n
= 5492/n and Sg/n = 5863/n in percentages. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)

The numeric data, which determine the graphs in Figs. 19-23, are
represented in the preprint [Petoukhov, 2020e].

Fig. 24 shows that normalized values of amounts Sp, St, Sc, and Sg of
each of nucleotides A, T, C, and G are practically identical in all
considered epi-chains of the human chromosome N°1, that is, they are
independent of the epi-chain order.

10. The representation of the DNA alphabets by their binary-
oppositional traits in matrix genetics

The described phenomenological rules in the genetic systems were
discovered as a result of the development of a matrix-algebraic approach
to modeling the genetic coding system. Some features of this author’s
model approach are presented below.

Science does not know why the DNA alphabet of nucleotides consists
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of only 4 relatively simple molecules A, T, C, and G. But science knows
that this alphabet is endowed with a system of binary-opposition traits
(or indicators):

- 1) in the double helix of DNA, there are two complementary pairs of
nucleotides: the nucleotides C and G of the first pair are connected by
three hydrogen bonds, and the nucleotides A and T of the second pair
by two hydrogen bonds. Given these oppositional indicators, one can
represent C=G=1and A=T = 0;

- 2) the two nucleotides are keto molecules (G and T), and the other
two are amino molecules (A and C). Given these oppositional in-
dicators, one can represent G=T=1and A=C=0.

Taking this into account, it is convenient to represent DNA alphabets
of 4 nucleotides, 16 doublets and 64 triplets in the form of square tables,
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Fig. 18. A schematic representation of a
single-stranded DNA and its initial epi-
chains of nucleotides, denoted by black cir-
cles. a, a sequence N; of numerated nucleo-
tides of the DNA strand. b, an epi-chain of
the second order Nj,; beginning with
nucleotide number 1. ¢, an epi-chain of the
second order N, ,» beginning with nucleotide
number 2. d, an epi-chain of the third order
N3,; beginning with nucleotide number 1. e,
an epi-chain of the third order N3/, begin-
ning with nucleotide number 2. f, an epi-
chain of the third order N33 beginning
with nucleotide number 3.
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Fig. 19. The results of the analysis - by the oligomer sums method - the nucleotide sequence of the epi-chain of the second order N5 ,; (Fig. 18b), which consists of
nucleotides with serial numerations 1-3-5-7-9- ... in the DNA sequence of the human chromosome N2 1. All abscissa axes show the values n =1, 2, ..., 20. The top
row demonstrates that the model hyperbolic progressions Sy/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real total amounts of those
n-plets, which start with a nucleotide A, or T, or C, or G in this epi-chain correspondingly (the ordinate axes show appropriate amounts). The bottom row shows in
percent slight alternating deviations of phenomenological values of the OS-sequences from model values. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 20. The results of the analysis - by the oligomer sums method - the nucleotide sequence of the epi-chain of the third order N3,; (Fig. 18d), which consists of
nucleotides with serial numerations 1-4-7-10-13- ... in the DNA sequence of the human chromosome N° 1. The top row demonstrates that the model hyperbolic
progressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, or T,
or C, or G in this epi-chain correspondingly. The bottom row shows in percent slight alternating deviations of real values of the OS-sequences from model values. All
denotations are the same as in Fig. 19. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 21. The results of the analysis - by the oligomer sums method - the nucleotide sequence of the epi-chain of the 4th order Ny4,;, which consists of nucleotides with
serial numerations 1-5-9-13- ... in the DNA sequence of the human chromosome N2 1. The top row demonstrates that the model hyperbolic progressions Sa/n, St/n,
Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, or T, or C, or G in this epi-
chain correspondingly. The bottom row shows in percent slight alternating deviations of real values of the OS-sequences from model values. All denotations are the
same as in Fig. 19. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

the columns of which are numbered in accordance with oppositional
indicators “3 or 2 hydrogen bonds” (C =G =1, A=T = 0), and the rows
in accordance with oppositional indicators “amino or keto” (C = A =0,
G =T =1). In such tables, all letters, doublets, and triplets automatically
occupy their strictly individual places (Fig. 25).

These three tables (Fig. 25) are not only simple tables but they are
members of the tensor family of matrices: the second and the third
tensor (Kronecker) powers of the matrix [G, T; C, A] generate similar
arrangements of 16 doublets and 64 triplets inside matrices [G, T; C,
Al @ and [G, T; C, A] ® as shown in Fig. 25. One can note here that the
classes of Gp-, T1-, C;-, and Aj-oligomers, analyzed in the previous

Section as related to the hyperbolic rules, are connected by a special
manner with the tensor family of the matrices [G, T; C, A] ™ where the
symbol (n) refers to an appropriate tensor power. More precisely, in
Fig. 25, each of (2*2)-quadrants of the matrix [G, T; C, A](z) contains a
complete set of 4 doublets, which start with one of nucleotides G, T, C,
and A; each of (22"22)-quadrants of the matrix [G, T; C, Al ® contains a
complete set of 16 triplets, which start with one of the nucleotides G, T,
C, and A. In general, each of (2"’1*2"’1)-quadrants of the matrix [G, T;
C, A]™ contains a complete set of 4! n-plets, which start with one of
the nucleotides G, T, C, and A.

The genetic code is called a “degenerate code” because 64 triplets
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Fig. 22. The results of the analysis - by the oligomer sums method - the nucleotide sequence of the epi-chain of the 10th order N;¢,1, which consists of nucleotides
with serial numerations 1-11-21-31-41- ... in the DNA sequence of the human chromosome N© 1. The top row demonstrates that the model hyperbolic progressions
Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, or T, or C, or G in
this epi-chain correspondingly. The bottom row shows in percent slight alternating deviations of real values of the OS-sequences from model values. All denotations
are the same as in Fig. 19. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 23. The results of the analysis - by the oligomer sums method - the nucleotide sequence of the epi-chain of the 50th order Nsq,;, which consists of nucleotides
in the DNA sequence of the human chromosome N© 1. The top row demonstrates that the model hyperbolic pro-
gressions Sa/n, St/n, Sc/n, Sg/n (red lines) almost completely cover the OS-sequences of real total amounts of those n-plets, which start with a nucleotide A, or T, or
C, or G in this epi-chain correspondingly. The bottom row shows in percent slight alternating deviations of real values of the OS-sequences from model values. All
denotations are the same as in Fig. 19. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

with serial numerations 1-51-101-151-201- ...

Fig. 24. The normalized values Sp/(Sa + St + Sc + Sg) of amounts Sa, St, Sc, and Sg of each nucleotide A, T, C, and G are practically identical in all considered epi-

Epi-ch. | Sx/(SatS1+Sc+S¢) | S1/(Sa+S1+Sc+Se) | Sc/(Sa+S1+Sc+S¢) | Se/(Sa+St+Sc+Se)
Nin 0.2910 0.2918 0.2085 0.2087
Nojy 0.2910 0.2917 0.2085 0.2088
Ns; 0.2910 0.2917 0.2084 0.2088
Nus 0.2910 0.2917 0.2085 0.2088
Nios 0.2910 0.2918 0.2084 0.2088
Neos 0.2910 0.291 0.2086 0.2088

chains of different orders 1, 2, 3, 10, and 50 in the human chromosome N2 1, that is, they are independent of the epi-chain orders.
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Fig. 25. The square tables of DNA-alphabets of 4 nucleotides, 16 doublets, and 64 triplets with a strict arrangement of all components. Each of the tables is con-
structed in line with the principle of binary numeration of its column and rows on the basis of binary-oppositional indicators of nucleobases G, T, C, and A (see

explanations in the text).

encode 20 amino acids and stop-codons so that several triplets can
encode each amino acid at once, and each triplet necessarily encodes
only a single amino acid or a stop-codon. The (8*8)-matrix of 64 triplets
(Fig. 25) was built formally without any mention of amino acids and
stop-codons. Nothing data preliminary exist on a possible correspon-
dence between triplets and amino acids. How can these 20 amino acids
and stop-codons be located in this matrix of 64 triplets? There are a huge
number of possible options for the location and repetition of separate
amino acids and stop-codons in 64 cells of this matrix. More precisely,
the number of these options is much more than 10'°° (for comparison,
the entire time of the Universe existence is estimated in modern physics
at 107 s). But Nature uses - from this huge number of options - only a
very specific repetition and arrangement of separate amino acids and
stop-codons, the analysis of which is important for revealing the

111 110 | 101 100 | 011 010 001 000
ITTf PRO | PRO| HIS | GLN| THR | THR | ASN | LYS
CCC | CCA | CAC | CAA | ACC | ACA | AAC | AAA
ITOJ PRO | PRO | GLN | HIS | THR | THR | LYS | ASN
CCG | CCT J CAG | CAT ] ACG | ACT J AAG | AAT
101 JARG | ARG LEU | LEU | SER | STOP| ILE | MET
CGC | CGA | CTC | CTA | AGC | AGA | ATC | ATA
100 ARG | ARG | LEU | LEU | STOP | SER | MET | ILE
CGG | CGT ) CTG | CTT | AGG | AGT | ATG | ATT
Ol f ALA | ALA] ASP | GLU] SER | SER | TYR | STOP
GCC | GCAJ GAC | GAA| TCC | TCA | TAC | TAA
010 f ALA | ALA]JGLU | ASP | SER | SER ]| STOP | TYR
GCG | GCT | GAG | GAT | TCG | TCT | TAG | TAT
001 fGLY | GLY | VAL | VAL | CYS | TRP | PHE | LEU
GGC | GGA ] GTC | GTA | TGC | TGA | TTC | TTA
000 f GLY | GLY | VAL | VAL | TRP | CYS | LEU | PHE
GGG | GGT | GTG | GTT | TGG | TGT } TTG | TTT

Fig. 26. The location and repetition of 20 amino acids and 4 stop-codons
(denoted by bold) in the matrix of 64 triplets [C, A; G, TI® (Fig. 25) for the
Vertebrate Mitochondrial Code. The symbol “stop” refers to stop-codons.
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structural organization of the information foundations of living matter.

Fig. 26 shows the real repetition and location of amino acids and
stop-codons in the case of the Vertebrate Mitochondrial Code, which is
the most symmetrical among known dialects on the genetic code. This
genetic code is called the most ancient and “ideal” in genetics (Frank--
Kamenetskii, 1988) (other dialects of the genetic code have small dif-
ferences from this one, which is considered in the theory of symmetries
as the basis from the structural point of view).

The location and repetition of all amino acids and stop-codons in the
matrix of 64 triplets have the following algebraic feature (Fig. 26):

e Each of sixteen (2*2)-sub-quadrants, forming this genetic matrix and
denoted by bold frames, is bisymmetrical: each of its both diagonals
contains an identical kind of amino acids or stop-codon.

Such bisymmetric (2*2)-matrices [a, b; b, a] are well known in
algebra as matrix representations of two-dimensional hypercomplex
numbers called hyperbolic numbers: a+bj where “a” and “b” are real
numbers, and the imaginary unit j satisfies j> = +1 (Kantor, Solo-
dovnikov, 1989). Hyperbolic numbers are used in physics and mathe-
matics and they have also synonymical names: “split-complex numbers”,
“double numbers” and “perplex numbers”. The collection of all hyper-
bolic numbers forms algebra over the field of real numbers (Harkin,
Harkin, 2004; Kantor, Solodovnikov, 1989). The algebra is not a division
algebra or field since it contains zero divisors. Addition and multipli-
cation of hyperbolic numbers are defined by the expressions (10.1):

a,b
a*l+b¥*j <« b,a

0,1
1,0

Lo
0,1]+b

=a

Fig. 27. The decomposition of the bisymmetric matrix [a, b; b, a] into two
sparse matrices representing real and imaginary units of hyperbolic numbers
correspondingly.
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@x 4+ )+ + )= + w)+j@y + v); (¢ + jy)  + jv)=xu + yv)+jxv + yu)

This multiplication is commutative, associative, and distributes over
addition.

Hyperbolic numbers have the matrix form of their representation in a
form of bisymmetric matrix [a, b; b, a]. Fig. 27 shows the decomposition
of such matrix into two sparse matrices, the first of which is the matrix
representation of the real unit and the second one is the matrix repre-
sentation of the imaginary unit j.

a, b
b a

_ 0
a*l +b*je 7a‘0 1 0

0, 1

ol

Regarding the hyperbolas from the hyperbolic rules formulated
above (Figs. 1 and 2, etc.), it can be noted the following:

- 1) the transformation of one point of the hyperbola to another point
is determined by the transformation of the hyperbolic rotation, in
which the hyperbole glides along with itself. Such a transformation is
determined by a special bisymmetric matrix [a, b; b, a] representing
a special form of hyperbolic numbers (the hyperbolic rotations are
known in the special theory of relativity under the name of the
Lorentz transformation);

2) in the hyperbolic sequence S/n, each its member can be consid-
ered as a point at the hyperbolic plane and interpreted as a corre-
sponding hyperbolic number S/n + nj having its matrix
representation [S/n, n; n, S/n].

If each amino acid and stop-codon is represented by some charac-
teristic parameter (for example, the number of carbon atoms in these
organic formations or numbers of protons in its molecular structure,
etc.), then a numerical (8*8)-matrix arises (Fig. 28) with bisymmetric
(2*2)-sub-quadrants representing hyperbolic numbers a+bj. In other
words, this phenomenologic arrangement of amino acids and stop-
codons in the matrix of 64 triplets is associated to the multiblock
union of matrix presentations of 16 two-dimensional hyperbolic
numbers.

An additional confirmation of the relationship of DNA alphabets with
bisymmetric matrices, representing hyperbolic numbers, is given by
returning to the tensor family of genetic matrices (Fig. 26), which were
constructed very formally on the basis of binary-oppositional attributes
of the four nucleotides A, G, C, and T. Taking into account that two
nucleotides are purines (A and G) and the other two are pyrimidines (C
and T), one can replace in these matrices the nucleotides A and G with
the traditional symbol of purines R, and the nucleotides C and T with the
traditional symbol of pyrimidines Y. In such representation of the
considered genetic matrices, a tensor family of bisymmetric matrices
arises, whose entries are combinations of purines R and pyrimidines Y
(Fig. 29). These bisymmetric matrices represent 2-dimensional, 4-

5|15]16[5] 4 4 4 6
515156 4 4 6 4
6| 6]16[6]3 0 6 5
61 616[6]0 3 5 6
31314513 3 9 0
313151413 3 0 9
2 1215|513 119 6
210215 (5]11 3 6 9

Fig. 28. The numeric analog of the symbolic (8*8)-matrix of amino acids and
stop-codons from Fig. 26 for the case of representing each of amino acids by
numbers of its carbon atoms (stop-codons are conditionally represented
by zero).
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(10.1)

dimensional, and 8-dimensional hyperbolic numbers (10.2):

R +jY; RR + jIRY + YR + j3YY; RRR + j;RRY + j,RYR + jsRYY +
j4YRR + jsYRY + jsYYR + j;YYY (10.2)

where all jx are imaginary units of these hyperbolic numbers with the
property j# = +1. The algebras of these 2-, 4-, and 8-dimensional hy-
perbolic numbers, which are called also as hyperbolic matrions, have
corresponding multiplication tables for their basis units (Petoukhov,
2008; Petoukhov, He, 2010).

It should be noted two following aspects. Firstly, the multiplication
table of the algebra of 2"-dimensional hyperbolic numbers has a fractal-
like character since it contains multiplication tables of the algebras of
2"’1-, 2"’2-, ..., 2-dimensional hyperbolic numbers (Fig. 29 shows an
example of this). 2"-dimensional hyperbolic numbers can be generated
by the tensor power (n) of the 2-dimensional bisymmetric matrix [R, Y;
Y, R] ™, Secondly, coordinates of hyperbolic numbers in (25) have some
relation to analysis of genomes by the oligomer sums method and by its
modifications. For example, in 2-dimensional hyperbolic number R +
j1Y, the coordinate R is equal to total number of purines A and G, and the
coordinate Y is equal to total number of pyrimidines C and T in the
considered DNA sequence. The coordinate RY in the expression (10.2) is
equal to the total amounts of doublets, which start with purines A and G
and end with pyrimidines C and T, and so on.

The presented algebraic features of the genetic coding system sup-
plement the following statement in a number of author’s publications
(Petoukhov, 2008, 2016, 2018a; Petoukhov, He, 2010, etc.). The genetic
code is not just a mapping of one set of elements to other sets of elements
by type, for example, of a phone book in which phone numbers encode
names of people. But the genetic code is inherently an algebraic code,
akin to a certain degree to those algebraic codes that are used in modern
communication theory for noise-immune transmission of information.
Algebraic features of the genetic code are related to the noise-immune
properties of this code and the whole genetic system.

One can explain the meaning and possibilities of algebraic codes by
the example of transmitting a photograph of the Martian surface from
Mars to Earth using electromagnetic signals. On the way to the Earth,
these signals travel millions of kilometers of interference and arrive at

RRR | RRY | RYR | RYY ] YRR | YRY ] YYR | YYY
RRY | RRR | RYY | RYR | YRY | YRR | YYY | YYR
RR [ RY YR [ YY] | RYR [RYY | RRR [RRY [ YYR [ YYY | YRR [ YRY

] Iry [RR Yy [ vR] [RyY [RYR [RRY [RRR | YYY | YYR | YRY | YRR
Y[R [YRTYY[RR [RY | [ YRR [ YRY [ YYR | YYY | RRR | RRY | RYR | RYY
vy [ YR|RY [RR | | YRY [ YRR | YYY [ YYR [ RRY | RRR | RYY | RYR
YYR | YYY | YRR | YRY | RYR | RYY | RRR | RRY
YYY | YYR | YRY | YRR [ RYY | RYR | RRY | RRR

Uljv do [js lia |Js e |7
L[ gr Jio s Qs |ds |6 |7
i | L s | o )ds | Jalir | Je
jz jz j3 1 jl jﬁ j7 j4 jS
Jalliad dol i L Q7 | Je | js | ja
JallalJs |de d7 [ L] ji| o] Js
Js|[ds | da iz [ de | dn| 1| js o
Jo|de | d7 | Jalds | ol 3| 1 |
J7liz | de | Js [ja | 3 ljo [Ji | 1

Fig. 29. Top: the tensor family of bisymmetric genetic matrices [R, Y; Y, R]®
received from the tensor family of matrices in Fig. 26 by the replacement there
of purines A and G by the symbol R, and of pyrimidines C and T by the symbol
Y. Bottom: the multiplication table of basis units 1 and ji of the algebra of 8-
dimensional hyperbolic numbers, which contains multiplication tables,
marked by bold lines, of the algebras of 2- and 4-dimensional hyperbolic
numbers (Petoukhov, 2008; Petoukhov, He, 2010).
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the Earth in a very weakened and distorted form. But, magically, based
on these mutilated signals on Earth, a high-quality photograph of the
surface of Mars is recreated. The secret of this magic lies in the fact that
from Mars not the information signals about this photo are sent, but
algebraically encoded versions of these signals that are quite other. At
receivers on Earth, these algebraically encoded signals are algebraically
decoded into signals, which recreate the original photographic image of
the surface of Mars. It should be emphasized that algebraic coding of
information in the theory of noise-immune communication actively uses
the mathematical apparatus of matrices, which is also used in quantum
informatics and quantum mechanics as matrix operators. The author’s
works are aimed at studying algebraic properties of the genetic coding
system for revealing hidden information rules algebraically encoded in
the molecular genetic system. This article is part of a set of long-term
author’s studies of the genetic system by the methods of matrix anal-
ysis and modeling combined under the general name “matrix genetics”
(Petoukhov, 2008, 2011, 2016, 2017, 2019b,c; Petoukhov, He, 2010;
Petoukhov, Petukhova, 2017a,b).

Let’s continue the presentation of confirmational data on the exis-
tence of hyperbolic (or harmonic) rules in the cooperative oligomeric
organization of the eukaryotic and prokaryotic genomes.

11. The quantum-information model of the oligomer
cooperative organization in genomes and its confirmed
predictions

The Section is devoted to the connections of the described
phenomenological hyperbolic (harmonic) rules in genomes with the
concepts and mathematical formalisms of quantum informatics.

One of the creators of quantum mechanics P.Jordan in his work on
quantum biology claimed that life’s missing laws were the rules of
chance and probability of the quantum world (Jordan, 1932; McFadden,
Al-Khalili, 2018). From the standpoint of Jordan’s statement, the study
of probabilities or frequencies of n-plets (monoplets, doublets, triplets,
etc.) in long DNA sequences is important for discovering hidden bio-
logical laws and for developing quantum biology. The phenomenolog-
ical hyperbolic rules about the total amounts of certain oligomers in the
genomes described above allow us to study their connection with the
probability rules of these groups of oligomers in the genomes. Let us
explain this.

Till now we considered the total amounts Xy of certain n-plets,
which start with the first nucleotide N (A, T, C, or G), and we discovered
that, in different genomes, these amounts correspond to hyperbolic OS-
sequences Sy/n with a high accuracy, where Sy refers to the total
number of the nucleotide N. The whole sequence of all nucleotides in a
long single-stranded DNA can be considered as a sequence of oligomers
of a certain length n, whose amount is equal to S/n. Each such oligomer
starts with one of four nucleotides A, T, C, or G. Therefore the total
amount S/n of consecutive oligomers of length n in the analyzed DNA
sequence is the sum of all oligomers of length n starting with A, or T, or
C,or G:

Sin = Zan1 + Z1a1 + Zcnt + Zoal (11.1)

The collective probability (percentage, or frequency) P,(N1) of all Xy,
n,1 N-plets starting with the nucleotide N, relative to the amount S/n
(11.1), is determined by the expression (11.2):

P,(N1) = ZN,,,1/(S/n) = (Sn/n)/(S/n) = Sn/S = P(N) (11.2)

The expression (11.2) shows that the collective probability P,(N;) is
independent of n and is approximately equal to the probability (fre-
quency) P(N) = Sn/S of the nucleotide N in the genomic sequence
having S nucleotides.

For example, the human chromosome N°1, which was considered
above (Figs. 1-3), has the total amount of nucleotides S = Sy + St + S¢
+ Sg = 67,070,277 + 67,244,164 + 48,055,043 + 48,111,528 =

20

BioSystems 198 (2020) 104273

230,481,012. The probability P(A) of the nucleotide A is equal to Sp/S =
67,070,277/230,481,012 =~ 0.2910. From the data in Fig. 3, one can
verify that, in this chromosome, the collective probabilities P,(A;) of
total amounts of n-plets (n = 2, 3, ..., 20) starting with the nucleotide A
are also equal to this value P(A) = 0.2910 with a high level of accuracy
independently of n. A similar situation holds with respect to the nucle-
otides T, C, and G.

It is also useful to note the opposite: if, for a genome, the phenom-
enological probabilities of n-plets P,(N;) (where n = 1, 2, 3, ...) are
initially known, and their compliance with the rule - of type P(N) =~
P,(N;) - of approximate equality of collective probability of n-plets is
also known, then connection (11.2) allows us to construct a hyperbolic
0OS-sequence of the sums Xy 1 of n-plets (11.3):

ZNn,1 = Pu(N)*S/n (11.3a)

This is noted here because the author previously discovered and
published (Petoukhov, 2018b) the rules of the approximate equality of
the collective probabilities of n-plets for n = 1, 2, 3, ... Given the ex-
pressions (11.2) and (11.3), the hyperbolic rules of the OS-sequences
and these rules for the approximate equality of the collective probabil-
ities of n-plets are equivalent. Both of them reflect in different languages
the oligomer cooperative organization of genomes. This is useful to note
because the author has published an effective mathematical model for
the rules of collective probability, which is obviously applicable also to
the above formulated hyperbolic rule N2 1 (Petoukhov, 2018b; Petou-
khov et al., 2019).

One should emphasize the following important aspect of the OS-
representations of genomic sequences. Each nucleotide of a DNA
sequence is a participant of those sets of its different n-plets (doublets,
triplets, etc.), whose total amounts are members of OS-sequences of this
DNA; in other words, each DNA nucleotide makes its small contribution
immediately to many members of the OS-sequences. Figuratively
speaking, each DNA nucleotide is “smeared” (or distributed) over many
members of the DNA OS-sequence (this “smearing” over many members
of the OS-sequence is also true for each DNA doublet, triplet, etc.).
Correspondingly, OS-sequences reflect a sort of an interrelation over all
n-plets in DNA sequences. Or, in other words, the oligomer sums method
represents any long nucleotide sequence as a multi-partite (or many-
body) system having a cooperative state regarding many its interre-
lated oligomers of different lengthsn =1, 2, 3, ...

This has some analogies with the well-known problem of multi-
partite entanglement in quantum informatics described, for example,
in (Walter et al., 2017; Horodecki et al., 2009; Giihne, T6th, 2009;
Amico et al., 2008).

Quantum entanglement is the physical phenomenon that occurs
when a pair or group of particles is generated, interact, or share spatial
proximity in a way such that the quantum state of each particle of the
pair or group cannot be described independently of the state of the
others. In quantum informatics, entangled states play very important
roles. The study and use of entangled states are one of the main problems
of quantum computing: “... entanglement is a key element in effects such as
quantum teleportation, fast quantum algorithms, and quantum error-
correction. It is, in short, a resource of great utility in quantum computa-
tion and quantum information. ... entangled states play a crucial role in
quantum computation and quantum information” (Nielsen, Chuang, 2010,
p. XXIII and p. 96).

Quantum systems with many degrees of freedom are ubiquitous in
nature, particularly in the context of condensed matter theory. “It is
hence not surprising that important classes of states, such as ground states of
local Hamiltonians, are multi-partite entangled states. ... Recent years have
seen an enormous increase in interest at the intersection of quantum infor-
mation and condensed matter theory that stems from the insight that notions
of entanglement are crucial in the understanding of quantum phases of matter
.... Another family of quantum many-body states that can be efficiently
described is the classes of bosonic and fermionic Gaussian states. They both
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arise naturally in the context of quantum many-body models in condensed
matter physics, but their bosonic variant is also highly useful in quantum
optics when it comes to describing systems constituted of several quantum
modes of light .... Relatedly, multi-partite entangled states serve as resources
to a number of important protocols in quantum information theory in which
more than two parties come together. A prominent example of such a multi-
party quantum protocol is quantum secret sharing, in which a message is
distributed to several parties in such a way that no subset is able to read the
message, but the entire collection of parties is. .... Multi-partite entanglement
does not only facilitate processing or transmission of information but also
allow for applications in metrology” (Walter et al., 2017, pp. 15, 18, 20,
23). The entanglement refers to the nonlocal properties of quantum
states that cannot be explained classically.

Distinguish entanglement of distinguishable and indistinguishable
(identical) particles. The state of system K of distinguishable particles in
a pure state is determined by the state vector |y> in the Hilbert space H,
which is the tensor product of the subspaces corresponding to each
particle:

H=H ®QH,®...® Hg (11.3b)

If the particles are not entangled, then the state of the system is
defined as the tensor product of the state vectors |y/(’)> of the
subsystems:

> = "> ep?> .. oy®> 114

If the vector cannot be expressed in this form (11.4), then they say
that the particles are quantum entangled.

The tensor product gives a way of putting separate vector spaces
together to form larger vector spaces and it is one of the basis in-
struments in quantum informatics. The following quotation speaks
about the meaning of the tensor product: “This construction is crucial to
understanding the quantum mechanics of multiparticle systems” (Nielsen,
Chuang, 2010, p. 71) But above Section 3 described that the DNA al-
phabets of 4 nucleotides, 16 doublets, 64 triplets, ..., 4" n-plets, which
have binary-oppositional systems of molecular traits, are interrelated by
the tensor product of matrices representing them: these genetic matrices
of DNA alphabets are members of a single tensor family [G, T; C, A]™
(Fig. 25). This fact is one of the arguments in favor of the adequacy of the
quantum-information approach to the study of genetic informatics and
living bodies as informational entities.

The author believes that in eukaryotic and prokaryotic genomes we
have some special case of multi-partite entangled states in genomic
systems of many oligomers (in some analogy with the case of groups of
many particles). This can be termed as “the genomic entanglement” or as
“the genomic tetra-entanglement” since genomic sequences contain 4
kinds of nucleotides A, T, C, and G. It should be emphasized that the
author doesn’t declare an existence of ordinary physical quantum
entanglement in the genomes, but only that the mathematical apparatus
of the theory of quantum informatics is suitable for a modeling the
considered genetic sequences. Any long DNA sequence of nucleotides
can be analyzed as a multicomponent quantum system, whose quantum
state is determined by the tensor product of the quantum states of its
subsystems, represented by sets of oligomers of different fixed length n
wheren=1,2, 3, ...

Let us turn to the above-mentioned author’s model of properties of
genomic sequences expressed by the expressions (11.2) and (11.3)
(Petoukhov, 2018b; Petoukhov et al., 2019). This model is based on the
tensor products and some other formalisms of quantum informatics and
concerns, first of all, the hyperbolic rule N1 of the oligomer cooperative
organization of genomes. The model introduced the notion “genetic
qubits” based on different pairs of binary-oppositional molecular traits
of adenine A, guanine G, cytosine C, and thymine T. Appropriate
2n-qubit systems in separable pure states were constructed, where nu-
cleotides A, T, C, and G (and also DNA doublets and other n-plets) were
represented by appropriate computational basis states in Hilbert spaces
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of corresponding dimensionalities. For example, cytosine C was repre-
sented as the computational basis state |00> of the 2-qubit system in the
4-dimensional Hilbert space, thymine T - as the computational basis
state |01>, guanine G — as the computational basis state |10>, and
adenine A - as the computational basis state |11> of the same 2-qubit
system. Correspondingly, 16 doublets were represented as 16 compu-
tational basis states of the 4-qubit system in the 16-dimensional Hilbert
space: for example, the doublet CC was represented as the computa-
tional basis state |0000>, the doublet CT - as |0001>, ..., etc. This
model can be used for a deeper understanding of the genomic
entanglement.

An effective model should not only explain known phenomenolog-
ical data but also predict unknown data to search them in natural sys-
tems. Let us show now that the proposed quantum-informational model
has predictive power, allowing us to open previously unknown proper-
ties of genomic DNA sequences. Really, the noted model allowed a
prediction not only the hyperbolic rule N21 described above but also
many other non-trivial interrelations in genomic structures. In a limited
volume of this article, the author can show only a few following brief
examples.

11.1. About additional confirmations of the model predictions

For example, the model predicts the following. Till now we consid-
ered OS-sequences, whose members are total amounts of n-plets, which
start with a certain « attributive » nucleotide, for example, with the
nucleotide A. In this case, we calculate the total amounts of oligomers in
the following sets: 4 doublets AT, AC, AG, AA; 16 triplets ATT, ATC,
ATG, ACC, ...; and so on. But what results arise if one calculates, in the
same genome, the total amounts in quite other sets of n-plets having the
same attributive nucleotide A at their second positions, that is the
following sets: 4 doublets TA, CA, GA, AA; 16 triplets TAT, TAC, TAG,
CAGC, ...; and so on for n = 2, 3, 4, ...? And what results arise if one
calculates, in the same genome, total amounts in the sets of n-plets,
which have the same nucleotide at their third positions, that is the
following sets: 16 triplets TTA, TCA, TGA, CCA, ...; 64 tetraplets TTTA,
TCTA, TGCA, ...;and soon forn = 3, 4, 5, ...? The quantum-information
model predicts that in all such cases the resulting OS-sequences will be
practically identical to the hyperbolic-like OS-sequence of the total
amounts of n-plets with the same attributive nucleotide at their first
position. These model predictions also apply to cases of sets of n-plets,
which have the same attributive nucleotide at their 4th, 5th, 6th, ..., kth
positions for n = k, k+1, k+2, ...(here k is not too large compared to the
full length of the genomic sequence).

These model predictions are confirmed by direct calculations of total
amounts of corresponding sets of n-plets in different genomes. Figs. 30
and 31 show examples of such confirmations by the comparisons of
different OS-sequences calculated for the human chromosome N°1 in
three cases of locations of attributive nucleotides in its n-plets: 1) at the
first position in n-plets (data on the appropriate OS-sequences are taken
from Fig. 3); 2) at the second position; 3) at the third position. One can
see from the shown results that the differences A% of the corresponding
members of these three OS-sequences from each other are less than
0.1%, that is these OS-sequences are practically identical. These differ-
ences were calculated for each n by formulas A% = 100 (1 - Posl/
P0s2)% and A% = 100 (1 - Pos1/Pos3)% where Posl, Pos2, and Pos3
refer to values indicated in the rows Pos. 1, Pos. 2, and Pos. 3. Here the
results are presented only for n = 2, 3, 4, ..., 10 but similar situations of
practical coincidences of the corresponding members of the considered
0OS-sequences are also true for larger n.

These predictions about the oligomer cooperative organization and
their confirmations in eukaryotic and prokaryotic genomes give a sig-
nificant extension to the hyperbolic rule N°1 regarding the hyperbolic-
like OS-sequences of the total amounts of n-plets, which have the same
attributive nucleotide at their kth position (not only in their first posi-
tion). These results and the extended rules additionally open up the deep



S.V. Petoukhov

BioSystems 198 (2020) 104273

n 1 2 3 4 5 6 7 8 9 10
A ]

Pos. 1 | 67070277 | 33537501 | 22360413 | 16768845 | 13413532 | 11179286 | 9584038 | 8383461 | 7453552 | 6706672
Pos. 2 - 33532776 | 22353979 | 16767465 | 13413514 | 11174459 | 9578118 | 8383936 | 7452356 | 6704047
A% 0.014 0.029 0.008 0.000 0.043 0.062 -0.006 0.016 0.039

T
Pos. 1 | 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359
Pos. 2 - 33623666 | 22411166 | 16811071 | 13445910 | 11206100 @ 9610249 | 8405351 | 7472348 | 6724456
A% 0.009 -0.008 0.013 0.004 -0.010 0.036 0.004 0.029 0.001
C .

Pos. 1 | 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919
Pos. 2 - 24030140 | 16021444 | 12015843 | 9615911 | 8012553 | 6865662 | 6005986 | 5338638 | 4808410
A% 0.022 0.055 0.018 0.038 0.085 -0.004 -0.037 0.031 0.093

G
Pos. 1 | 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156
Pos. 2 - 24053922 | 16040412 | 12025875 | 9620866 | 8020389 | 6871831 | 6014853 | 5345656 | 4811187
A% -0.015 -0.003 -0.025 -0.044 -0.011 0.039 0.024 -0.050 -0.041

Fig. 30. The comparison of the OS-sequences of the total amounts of n-plets, which have the nucleotide N (A, T, C, or G) at their first position (the row “Pos. 1”) and
at their second position (the row “Pos. 2”) in the human chromosome N21. A% shows the percentage of differences between the corresponding total amounts of n-
plets from each other. The comparison begins with doublets, since there is no second position in monoplets.

n 1 2 3 4 5 6 7 8 9 10
A
Pos. 1 | 67070277 | 33537501 | 22360413 | 16768845 | 13413532 | 11179286 | 9584038 | 8383461 | 7453552 | 6706672
Pos. 3 B - 22355885 | 16768656 | 13414900 | 11178695 | 9578685 | 8383657 | 7450656 | 6710255
A% 0.020 0.001 -0.010 0.005 0.056 -0.002 0.039 -0.053
T
Pos. 1 | 67244164 | 33620498 | 22412993 | 16808862 | 13445360 | 11207274 | 9606748 | 8405040 | 7470145 | 6724359
Pos. 3 - - 22420005 | 16811636 | 13448900 | 11208158 | 9604848 | 8406144 | 7472996 | 6723773
A% -0.031 -0.017 -0.026 -0.008 0.020 -0.013 -0.038 0.009
C
Pos. 1 | 48055043 | 24024903 | 16012711 | 12013624 | 9612227 | 8005708 | 6865944 | 6008215 | 5336968 | 4803919
Pos. 3 3 - 16020888 | 12011279 | 9611721 | 8010304 | 6867877 | 6005835 @ 5342246 | 4803498
A% -0.051 0.020 0.005 -0.057 -0.028 0.040 -0.099 0.009
G
Pos. 1 | 48111528 | 24057606 | 16040889 | 12028924 | 9625086 | 8021235 | 6869132 | 6013412 | 5348337 | 4813156
Pos. 3 - - 16030227 | 12028682 | 9620676 | 8016348 | 6874449 | 6014493 | 5343102 | 4810570
A% 0.066 0.002 0.046 0.061 -0.077 -0.018 0.098 0.054

Fig. 31. The comparison of the OS-sequences of the total amounts of n-plets, which have the nucleotide N (A, T, C, or G) at their first position (the row “Pos. 1) and
at their third position (the row “Pos. 3”) in the human chromosome N21. A% shows the percentage of differences of the corresponding total amounts of n-plets from
each other. The comparison begins with triplets since there is no third position in monoplets and doublets.

connections of genomic sequences with the harmonic progression (2.4)
and discover new aspects of the algebraic harmony of living bodies.
Another large bunch of predictions about genomic sequences is given
by the quantum-information model for quantitative interrelations of
different n-plets, which start from the same doublet, or from the same
triplet, etc. The model predicts, in particular, that the amount S5 of any
of 16 doublets NN is algebra-harmonically interrelated with the total
amounts Sg, S4, Ss, ...of oligomers in the following sets: 4 triplets, which
start with this attributive doublet NN; 16 tetraplets, which start with this
attributive doublet NN; 64 pentaplets, which start with this attributive
doublet NN; and so on. This interrelation is again based on the harmonic
progression (2.4). More precisely, according to the model prediction, the
ratios of these total amounts S,/S3, So/S4, So/Ss, ...should be corre-
spondingly equal to the ratios of the second member 1/2 of the harmonic
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progression (2.4) to its subsequent members 1/3, 1/4, 1/5, ... that is to
values 3/2, 4/2,5/2, ....

Fig. 32 presents the confirmation of this model prediction by the
comparison of the amount Sy of each of 16 doublets to the total amounts
Ss, S4, Ss of n-plets (n = 3, 4, 5), which start with this doublet, in the
human chromosome N21.

The rows in the left part of Fig. 32 shows very different numeric
series of total amounts, which are individual in each of rows. But the
right part shows that in each row its amounts are interrelated identically
based on the numeric series of the ratios 1.5, 2.0, and 2.5, which serves
here as a general invariant for the cases of all 16 doublets. But this
sequence of ratios exists in the harmonic progression (2.4): 1, 1/2, 1/3,
1/4, 1/5, ..., where the ratios of its second member 1/2 to its third,
fourth and fifth members (that is, 1/3, 1/4, and 1/5) give this series 3/2,
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DOUBLETS | TRIPLETS | TETRAPLETS | PENTAPLETS _ |[S,/S; | S,/S, | S,/Ss

S;=X(AA) | S;=X(AAN); | Si=X(AANN);; | Ss=S(AANNN)g

10952057 7300222 5476855 4381298 1.50 | 2.00 | 2.50
S,=X(AT) | S;=X(ATN), | S;=S(ATNN);; | Ss= S(ATNNN)g

8561194 5706906 4280647 3420561 1.50 | 2.00 | 2.50
S,=X(AC) | S:= %(ACN); | S;= S(ACNN); | Ss= S(ACNNN)

5799729 3868541 2899991 2322063 1.50 | 2.00 | 2.50
S,=(AG) | S;=(AGN); | Si=Z(AGNN);s | Ss=X(AGNNN)y

8224510 5484720 4111320 3289579 1.50 | 2.00 | 2.50
S,=X(TA) | S;=X(TAN), | S;=X(TANN);s | Ss=X(TANNN)g,

7274275 4849731 3636741 2909412 1.50 | 2.00 | 2.50
S,=X(TT) | S;=X(TTN); | S;=X(TINN);s | Ss=(TTNNN)g

11026157 7346507 5511908 4409900 1.50 | 2.00 | 2.50
S,=X(TC) | S:=X(TCN); | S;=X(TCNN);s | Ss=(TCNNN)g

6923689 4617788 3461837 2768794 1.50 | 2.00 | 2.50
S,=X(TG) | S;=%(TGN); | Si= X(TGNN); | Ss= (TGNNN)g

8396349 5598933 4198342 3357218 1.50 | 2.00 | 2.50
S,=%(CA) | S;=%(CAN), | S;= %(CANN),; | S:= %(CANNN)

8382478 5591208 4191829 3354600 1.50 | 2.00 | 2.50
S,=X(CT) | S;=X(CTN); | Si=2(CTNN);s | Ss=X(CTNNN)g

8221421 5477836 4111963 3289510 1.50 | 2.00 | 2.50
S,=3(CC) | S3=X(CCN); | Si=X(CCNN)js | Ss=X(CCNNN)g,

6233384 4153642 3117570 2492824 1.50 | 2.00 | 2.50
S,=X(CG) | S:=X(CGN); | Si=X(CGNN);s | Ss=X(CGNNN)g

1187593 789995 592235 475262 1.50 | 2.01 | 2.50
S,=X(GA) | S:=%(GAN), | Si= %(GANN);; | Ss= S(GANNN)g,

6923938 4612792 3462012 2768171 1.50 | 2.00 | 2.50
S,=X(GT) | S3=X(GTN); | Si=X(GTNN)j; | Ss=2(GTNNN)g

5814874 3879880 2906516 2325903 1.50 | 2.00 | 2.50
S,=%(GC) | S;=2(GCN); | Ss=X(GCNN);s | Ss= X(GCNNN)g;

5073325 3381454 2536422 2032200 1.50 | 2.00 | 2.50
S,=%(GG) | S:=%(GGN); | Si= %(GGNN);s | Ss= %(GGNNN)g,

6245451 4166742 3123944 2498784 1.50 | 2.00 | 2.50

Fig. 32. The comparison of total amounts S; = X(NN) of each of 16 doublets
NN to the total amounts S3 of 4 triplets, S4 of 16 tetraplets, and Ss of 64 pen-
taplets, which start with such attributive doublet NN, is shown for the human
chromosome N21. The left part of the table indicates the values of the corre-
sponding total amounts. The right part contains appropriate values of the ratios
S2/S3, S2/S4, and S,/Ss, which are equal to the same magnitudes 1.5, 2.0, and
2.5 for the cases of all 16 doublets. Here N refers to any of nucleotides A, T, C,
and G.

4/2, and 5/2. Similar results are true for all other human chromosomes
and for all those genomes, which were analyzed by the author.

The model predicts similarly the following numeric interconnections
in the complete genomic sequences:

e The amount S; of any of 64 triplets NNN is algebra-harmonically
interrelated with the total amounts S4, Ss, S, ... of oligomers in
the following sets: 64 tetraplets, which start with this attributive
triplet NNN; 256 pentaplets, which start with this attributive triplet
NNN; 1024 six-plets, which start with this attributive triplet NNN; ....
The ratios of these total amounts S3/S4, S3/Ss, S3/Se, ...should be
correspondingly equal to the ratios of the third member 1/3 of the
harmonic progression (2.4) to its subsequent members 1/4,1/5, 1/6,
..., that is to values 4/3, 5/3, 6/3, ...

e The amount S4 of any of 256 tetraplets NNNN is algebra-
harmonically interrelated with the total amounts of Ss, Se, Sy, ...of
oligomers in the following sets: 256 pentaplets, which start with this
attributive tetraplet NNNN; 1024 six-plets, which start with this
attributive tetraplets NNNN; 4906 seven-plets, which start with this
attributive tetraplets NNNN, .... The rations of these total amounts
S4/Ss, S4/Se6, S4/S7, ... should be correspondingly equal to the ratios
of the fourth member 1/4 of the harmonic progression (2.4) to its
subsequent members 1/5, 1/6, 1/7, ..., that is to values 5/4, 6/4, 7/
4, ...

e And so on (the length of attributive oligomers NN...N in the
considered sets of n-plets should not be too large compared to the full
length of the genomic sequence).

Similar model predictions exist not only for the listed cases, when the
considered attributive nucleotides, or attributive doublets, or attributive
triplets, etc. occupy the first positions in n-plets of the considered sets,
but also for cases when these attributive nucleotides or oligomers
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occupy there the second positions, or the third positions, etc (see cor-
responding rules about collective probabilities in oligomer tetra-groups
for cases of locations of attributive oligomers in different positions of n-
plets in the article (Petoukhov, 2018b)).

Most of the long list of predictions, stemming from this quantum
information model, is still awaiting their checking through analysis of
various genomes. So far, the author has conducted only a relatively
small number of checks of such predictions and has not found a single
case of a phenomenological refutation of these predictions. The author
will be grateful to those members of the scientific community who will
try to find in the full-length sequences of different genomes such cases
where these model predictions are not fulfilled.

These and other confirmed predictions of the model enlarge signifi-
cantly the list of hyperbolic rules in genomes and lead to new tools and
opportunities to study genetic structures. The obtained phenomeno-
logical data and the set of confirmed predictions of the quantum-
information model testify that the eukaryotic and prokaryotic ge-
nomes represent a regular algebraic fractal-like net with important
participation of the harmonic progression (2.4) in interconnections of its
parts. This allows us to say about the algebraic harmony in living bodies.
In theoretical biology, the quantum-information model has appeared,
which allows predicting with high accuracy a large number of quanti-
tative interconnections between different kinds and sets of oligomers in
eukaryotic and prokaryotic genomes (predictions “at the tip of the pen™).

12. Regarding the application of the oligomer sums method to
long protein sequences

Till now we considered applications of the oligomer sums method to
the analysis of long single-stranded DNA sequences of nucleotides. Such
DNA sequences consist of 4 kinds of nucleotides, and corresponding 4
equivalency classes of A;-, Tq-, C1-, Gj-oligomers are analyzed. This
Section discusses opportunities to apply this method for the similar
revealing of possible algebra-harmonic features of primary structures of
sequences of 20 amino acids in long proteins.

Each long sequence of amino acids (for example, ArgSerThrGly-
PheLysLeuSer MetAla ...) can be also represented in the form of frag-
mented sequences of different kinds: as a sequence of monomers (Arg-
Ser-Thr-Gly-Phe-Lys-Leu-Ser-Met-Ala- ...), or as a sequence of amino
acid doublets (ArgSer-ThrGly-PheLys-LeuSer-MetAla- ...), or as a
sequence of amino acid triplets (ArgSerThr-GlyPheLys-LeuSerMet- ...) ,
and so on. Analyzing above long DNA sequences of nucleotides, which
consist of 4 kinds of nucleotides A, T, C, and G, we considered 4
equivalency classes of A;-, T1-, C1-, Gi-oligomers. By analogy, in the case
of sequences of 20 types of amino acids, we will analyze 20 equivalency
classes, each of which is defined by corresponding amino acid and
combines all oligomers, which start with this amino acid. For example,
the amino acid Ala defines the equivalency class of Alaj-oligomers,
which includes all n-plets starting with this amino acid: the set of Ala;-
doublets contains all 20 doublets, which start with the Ala (AlaAla,
AlaArg, AlaAsn, ..., AlaCys); the set of Ala;-triplets contains all 400
triplets, which start with the Ala (AlaAlaAla, AlaAlaArg, ...., AlaCysCys),
and so on.

The application of the oligomer sums method to the analysis of any
long amino acid sequence and their 20 classes of the oligomer equiva-
lency is as follows (by analogy with the above-described application of
the method to analyze long nucleotide sequences and their 4 classes of
the oligomer equivalency):

e Firstly, a considered amino acid sequence is represented in the form
of a set of its fragmented sequences of oligomers (that is, fragments)
of certain lengthsn=1, 2, 3, ...;

e Secondly, phenomenological quantities of each of 20 types of amino
acids are calculated in the considered sequence;

e Thirdly, in each of the fragmented representations of the amino acid
sequence under n = 2, 3, 4, ..., for any of the 20 classes of the
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Fig. 33. Graphs of analysis results of the human protein Titin by the oligomer sums method for each of 20 equivalency classes, which are defined by its 20 types of
amino acids. Each graph shows a sequence (in blue) of real total amounts of n-plets, which start with this amino acid, and also a model hyperbolic sequence %/n (in
red), where X refers to a number of this amino acid (n =1, 2, ..., 10). The abscissa axes show the values n; the ordinate axes show total amounts of the corresponding
n-plets, which start with this amino acid. Initial data on this protein are taken on the site https://www.ncbi.nlm.nih.gov/protein/ACN81321.1. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)
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n 1 2 3 4 5 6 7 8 9 10

Ala

Real |2026 | 1016 |698 |506 394 343 | 287 |261 |232 |206
Model | 2026 |1013 | 675 [506.5 |405 |338 [289 |253 |225 |203
A% -0.3 -3.4 0.1 |28 -16 /08 |-31 |-31 |-1.7 [-0.3
Arg

Real |1623 |777 564 | 379 346 | 254 234 |177 |192 |170
Model | 1623 | 812 541 | 406 325 | 271 |232 |203 |180 |162
A% 0 4.3 -43 | 6.6 -66 |61 [-09 [128 |-65 |-4.7

Fig. 34. Examples of numeric data about OS-sequences concerning two
equivalency classes of Ala;-oligomers and Arg;-oligomers in the human protein
Titin. Graphic representations of corresponding OS-sequences are shown in
Fig. 33 at the very top.

oligomeric equivalency, the total amount X of its defining amino acid
and also total amounts of all those n-plets (n = 2, 3, 4, ...), that have
this acid in their first position (or in other fixed position), are
calculated;

e The sequence of these phenomenological amounts is compared with
the model hyperbolic sequence X/n of this equivalency class, where
n=1,23,..

Let us explain the proposed application of the OS-method by an
example of the analysis of the primary amino acid sequence of the
protein Titin, which is one of the longest proteins. Titin is important in
the contraction of striated muscle fibers and is the third most abundant
protein in the muscle (after myosin and actin). Below some results of the
author’s analysis of the human protein Titin by the OS-method are
presented. Fig. 33 shows 20 graphs demonstrating the OS-sequences for
each of 20 amino acids combined in the single general amino acid
sequence of the Titin. Each of these 20 graphs presents data for one of
the types of amino acids and shows number X of this amino acid in Titin
and also two sequences: one of them (in blue) corresponds to the
sequence of the real total amounts of those n-plets, which start with this
amino acid, and the second sequence (in red) corresponds to the model
hyperbolic sequence X/n (heren=1, 2, 3, ..., 10).

One can see from Fig. 33 that, in the protein Titin, for each of all 20
amino acids its sequence (in blue) of phenomenological values of total
amounts of those n-plets, which start with this amino acid, approxi-
mately coincides with the corresponding model hyperbolic sequence
Y/n (in red) or slightly fluctuates around it. In the considered case of
Titin, the accuracy of the coincidence of the sequences of phenomeno-
logical and model values is lower than in the case of genomes described
above. This seems to be due to the relatively short length of the titin
amino acid sequence compared to the lengths of genomic nucleotide
sequences. The graphs in Fig. 33 show that the largest deviations of the
sequences of real values from sequences of model values occur in cases
of amino acids, whose number is minimal: the number of amino acids
His is 463, Met - 384, Trp - 462, Cys - 498. Moreover, the deviations of
the phenomenological values of oligomer sums from model values are
relatively small for small values n = 2, 3, but with an increase in the
length of oligomers atn =4, 5, ..., 10, these deviations can increase (the
number of corresponding n-plets decreases with increasing n).

Fig. 34 gives examples of phenomenological and model numeric
values for the classes Alaj-and Argj-oligomers from the first graphs in
Fig. 33.

The study of the amino acid sequences of long proteins by this OS-
method should be continued to allow the comparative analysis of
various proteins.

Some concluding remarks

As is known, mutations and the pressure of natural selection influ-
ence the genomic sequences of nucleotides. For these reasons, one can
assume that as a result of many millions of years of biological evolution,
genomic sequences, due to various influences, receive a completely
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random structure as a whole. This article provides pieces of evidence
that, despite mutations, the pressure of natural selection, and other
evolutionary factors, the nucleotide sequences of the eukaryotic and
prokaryotic genomes have universal algebraic invariants. One can
believe that the algebraic unity of living organisms is found (this should
be tested further and further on more and more number of genomes).
New mathematical tools and approaches for an in-depth study of this
genetic world and its evolution appear.

The discovery of the algebraic genomic invariants gives new
knowledge about the unity of the world of all living organisms and the
features of biological evolution. This concerns additionally the problem
of the origin of life, since the following natural question arises: where
and how did these genomic algebraic invariants come from, which are
expressed in the described hyperbolic (harmonic) rules and related to
the quantum-information model if they exist even in the genomes of
archaea and bacteria? The received results are interesting also for dis-
cussions concerning various well-known theories of biological evolu-
tion: Darwinism, nomogenesis, orthogenesis, etc. Some of these results
are briefly described in the author’s letter (Petoukhov, 2020d).

Living matter appears as an algebraic-harmonic entity. One can
separately note the result on that the cooperative system of oligomers in
the genomes are associated with the harmonic progression, which is
widely known in connection with musical harmony and the frequency
system of musical overtones. But the harmonic progression is important
not only in music. At least from the time of the Pythagorean doctrine of
the aesthetics of proportions, the following idea exists: “the aesthetic
principle is the same in every art; only the material differs” (Schumann,
1969). In light of this, architecture has long been interpreted as frozen
music, and music as dynamic architecture. Additional speculation about
the possible genetic basis of some aesthetic parallels in various arts
arises though the very idea of the connection between the feeling of
beauty and the genetic system is not new: it is reflected, for example, in
the title of the article “Beauty is in the genes of the beholder” about a
connection of some parameters of the DNA double helix with the golden
section (Harel et al., 1986). These problems are discussed at the Inter-
national interdisciplinary seminar “Algebraic Biology and Theory of
Systems” in Moscow (Petoukhov, Tolokonnikov, 2020).

The genomic invariants, described in the article, are connected with
hyperbolic sequences and transformations of hyperbolic rotations that
shift the hyperbolic sequence along with itself. Hyperbolic rotations,
which are also called Lorentz transformations and known in the special
theory of relativity, draw attention to the structural connection of ge-
netic phenomena with the hyperbolic geometry of the Minkowski plane.
One of the well-known models of two-dimensional hyperbolic geometry
is the Poincaré disk model, also called the conformal disk model. The
Poincaré disk model is connected with split-quaternions by J. Cockle and
seems to be interesting for studying some genetic structures and
inherited physiological phenomena as it was mentioned in previous
author’s publications on matrix genetics (see, for example (Petoukhov,
2012)).

Living organisms are informational entities, in which everything is
subordinate to the task of reliably transmitting genetic information to
descendants. All inherited physiological systems, as parts of a whole
organism, must be structurally coupled with a genetic code for trans-
mission to descendants in encoded form. The question on a possible deep
connection of physiology and brain functioning with principles of
quantum informatics is considered in publications on many authors
(Abbott et al., 2008; Altaisky, Filatov, 2001; Fimmel, Petoukhov, 2020;
Igamberdiev, 1993, 2004; Matsuno, Paton, 2000; Patel, 2001a-c; Pen-
rose, 1996; Petoukhov, 2018a, 2019b). The results presented in this
article give new essential materials to this perspective direction of
thoughts. For such thoughts about possible connections of brain activ-
ities with the mathematics of quantum mechanics, these oligomer sums
method, algebra-harmonic hyperbolic rules, and the mentioned author’s
quantum-information model give new effective research instruments
and phenomenological materials.
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Researchers of the genetic system study the Nature system of storage,
processing, and transmission of information, which has no direct anal-
ogies in modern science and technology, but which is studied on the
basis of analogies with their achievements. The disclosure of informa-
tional patents of living nature can make an important contribution to
scientific and technological progress.

It should be noted that the genomic hyperbolic rules are cardinally
different from well-known hyperbolic Zipf's law. Zipf's law was origi-
nally formulated in terms of quantitative linguistics, stating that given
some corpus of natural language utterances, the frequency of any word
is inversely proportional to its rank in the frequency table (see, for
example (Fagan, Gencay, 2010; Manin, 2013a,b)). In linguistics and
other fields, Zipf’s law speaks on the frequency of encounter of separate
words or other separate objects. In contrast, the hyperbolic rules of the
genomes focus on OS-sequences of the total amounts of n-plets and the
genomic tetra-entanglement, that is, on the relative number of not
separate oligomers, but the whole sums of sets of different n-plets
distributed inside the genomic sequence, where each separate nucleo-
tide is a part of many oligomers set existing simultaneously (each
nucleotide is a distributed participant of many members of the appro-
priate genomic OS-sequence at once and makes a contribution to each of
them). From the quantum-information model, OS-sequences serve as
quantum-information characteristics of genomic sequences.

The proposed oligomer sums method and the quantum-information
model give new opportunities to study genetic systems and the inheri-
ted algebra-harmonic organization of living bodies. The modern situa-
tion in the theoretic field of genetic informatics, where many millions of
nucleotide sequences are described, can be characterized by the
following citation: “We are in the position of Johann Kepler when he first
began looking for patterns in the volumes of data that Tycho Brahe had spent
his life accumulating. We have the program that runs the cellular machinery,
but we know very little about how to read it.” (Fickett and Burks, 1989).
Kepler did not make his astronomic observations, but he found — in the
huge astronomic data of Tycho Brahe - his Kepler’s laws of symmetric
movements of planets relative to the Sun along ellipses. The author is
convinced that further studies of symmetries in genetic and other
physiological structures will reveal many more wonderful secrets of
living matter.

The presented study is a continuation of the author’s researches on
symmetries in biological objects described in his publications (see Ref-
erences below). This study further illustrates the effectiveness of sym-
metry analysis in natural systems. No wonder the theory of symmetries
is one of the foundations of modern mathematical natural science. The
presented results reveal the existence of a new broad class of symmetries
in eukaryotic and prokaryotic genomes. They are connected with pre-
vious rules of a generalized symmetry for collective probabilities of sub-
alphabets of n-plets in long DNA sequences, which were described by the
author in the article (Petoukhov, 2018b) and whose importance were
noted in the article “Petoukhov’s rules on symmetries in long DNA-texts”
(Darvas, 2018). In this article, the head of the International Institute
“Symmetrion” (Budapest, Hungary) proposed to launch a corresponding
international project: “Now, Petoukhov’s above rules of symmetries are
candidates for the role of universal rules of long DNA-texts in living bodies.
Further researches are needed to determine the degree of universality of these
rules. Taking into account the huge number of species and long DNA-texts to
be tested in these relations, I propose to launch an international project to
study these genetic symmetries. Symmetrion initiates and can take part as a
center of such an international project” (Darvas, 2018).
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