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Lung cancer is the second most common and the most lethal malignancy

worldwide. It is estimated that lung cancer in never smokers (LCINS) accounts

for 10-25% of cases, and its incidence is increasing according to recent data,

although the reasons remain unclear. If considered alone, LCINS is the 7thmost

common cause of cancer death. These tumors occur more commonly in

younger patients and females. LCINS tend to have a better prognosis, possibly

due to a higher chance of bearing an actionable driver mutation, making them

amenable to targeted therapy. Notwithstanding, these tumors respond poorly

to immune checkpoint inhibitors (ICI). There are several putative explanations

for the poor response to immunotherapy: low immunogenicity due to low

tumor mutation burden and hence low MANA (mutation-associated neo-

antigen) load, constitutive PD-L1 expression in response to driver mutated

protein signaling, high expression of immunosuppressive factors by tumors

cells (like CD39 and TGF-beta), non-permissive immune TME (tumor

microenvironment), abnormal metabolism of amino acids and glucose, and

impaired TLS (Tertiary Lymphoid Structures) organization. Finally, there is an

increasing concern of offering ICI as first line therapy to these patients owing to

several reports of severe toxicity when TKIs (tyrosine kinase inhibitors) are

administered sequentially after ICI. Understanding the biology behind the

immune response against these tumors is crucial to the development of

better therapeutic strategies.
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Introduction

Lung cancer is the second most common malignancy

diagnosed annually worldwide, close behind breast cancer,

with more than 2.2 million new cases each year. It is also

responsible for approximately 1.8 million deaths a year,

representing the leading cause of cancer-related death (1).

Tobacco smoking is the main risk factor associated with this

malignancy and is responsible for about two-thirds of lung

cancer deaths (1). Smokers have a 10-20-fold increase in lung

cancer risk when compared to never-smokers (2). Current anti-

tobacco policies have reduced this habit globally, especially in

high income countries (HIC), with over 80% of current

smokers ≥ 15 years-old living in low to middle income

countries (LMIC) (3). In spite of that, it is expected that lung

cancer incidence will increase worldwide by 64.4% by 2040, for

reasons yet to be defined (4). Apart from known environmental

risk factors, recent studies have investigated the potential

carcinogenic effect of genetic alterations in the development

and proliferation of lung cancer cells. In fact, lung cancer in

smokers and never-smokers have different molecular profiles, as

well as distinct tumor microenvironments (TME) (5) which

impact the susceptibility to novel treatments, such as targeted-

therapies and immunotherapy.

The aim of this review is to discuss the different aspects of

lung cancer in never smokers, with a focus on tumor

immunology and the current evidence on the use of

immunotherapy for this subgroup of patients.
Epidemiology and risk factors

Lung cancer in never smokers

Lung cancer in never smokers (LCINS) corresponds to 10-

25% (6) of all lung cancer cases, with an even higher proportion,

up to 65%, in women from Asia and Middle Eastern countries

(2). It is more common in women, with adenocarcinoma

histology (7) and tends to be diagnosed at more advanced

stages, possibly due to a lack of suspicion in patients without

history of tobacco use (8). However, the age at diagnosis varies

according to geographic location. In Asia, LCINS tends to occur

at a younger age (9, 10), while in the United States and Europe it

appears to be diagnosed at the same or older ages than in

smokers (11, 12). Nevertheless, LCINS has a better prognosis

than tobacco-related lung cancer, which may be related to a

higher frequency of mutations in actionable driver genes (7) and

a different composition of immune cells in the tumor

microenvironment, which are related to better clinical

outcomes (13). In fact, never smokers with lung cancer appear

to have a better survival independent of stage, treatment and

other factors (14).
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In spite of that, this malignancy is still an important public

health issue, as it is considered the 7th most common cause of

cancer death, ahead of cervical, pancreatic and prostate

cancer (14).

There are several risk factors that have been associated with

lung cancer development apart from tobacco smoking, although

none were found exclusively among never-smokers, suggesting a

heterogeneous carcinogenic process (15). The most commonly

associated factors are: outdoor air pollution, domestic fuel

smoke (wood burning), chronic pulmonary diseases,

occupational exposure to carcinogenic chemicals (silica,

arsenic, chromium, cadmium, nickel), ionizing radiation (such

as residential radon), alcohol consumption (5, 14) and family

history/genetics.
Environmental tobacco exposure
(passive smoking, secondhand smoke)

Several studies worldwide have associated secondhand

smoke to the risk of lung cancer. An American multicenter

study found a 30% increase in the risk of lung cancer in never-

smokers with a smoking spouse (adjusted OR to all types of lung

carcinoma = 1.29, p < 0.05) (16). Although passive smoking

increases the risk of developing lung cancer by 20-24%, it is

estimated that only 16-24% of lung cancers in never smokers are

attributable to this cause (17). It has been considered a weak

carcinogen compared to active smoking, and genomic studies

have failed to detect smoking mutational signatures, such as

SBS4 (Single Base Substitution Signature 4), above the threshold

of 15% among these tumors, suggesting alternative carcinogenic

processes (18).
Radon

Radon is a radioactive gas produced from the decay of

uranium present in soil and rocks (10.1200/JCO.2006.06.8015.).

It was defined as a human carcinogen by the International Agency

for Research on Cancer (IARC) in 1988 and epidemiological

studies (19–21) have successfully correlated radon exposure to

lung cancer both in miner workers and other environmentally

exposed populations (15). It is considered the second most

important risk factor for the development of lung cancer after

tobacco and the main risk factor amongst never smokers (22).
Occupational exposure to carcinogenic
chemicals or ionizing radiation

Occupational exposure to different kinds of carcinogenic

chemicals or ionizing radiation is thought to be associated with

5-10% of lung cancer cases, and asbestos exposure is currently
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the most important factor, with a 5-fold increased risk of lung

cancer (15). Other related carcinogens are arsenic exposure, with

a lung cancer odds ratio up to 8.9 depending on the water

concentration (23), chromium, nickel (24), silica (25) and

solvents, paints or thinners (OR = 2.8) (26).
Air pollution

Outdoor air pollution is a mixture of various pollutants

originating from natural and anthropogenic sources, such as

transportation, industrial activity, power generation, among

others (27). The carcinogenic effects of outdoor air pollution

has been observed in various studies, such as epidemiological

research, experimental studies in animals and in cohort and

case-control studies from different continents (27). In 2013,

IARC classified outdoor air pollution and particulate matter

from outdoor air pollution as carcinogenic to humans (27).
Family history/genetics

More recently, studies have also investigated the possibility

of inherited predisposition to lung cancer, and it is estimated

that 5.8% of lung cancer patients present germline mutations in

hereditary cancer genes (28). Familial aggregation studies have

estimated an increased risk of developing lung cancer of up to 4-

fold according to family history of lung cancer in first degree

relatives and respective age at diagnosis (29, 30). Genome-wide

association studies have suggested a susceptibility locus for lung

cancer at 15q25.1, which contains nicotinic acetylcholine

receptors genes (31–33). Hung et al. (33) observed an

increased risk of lung cancer in non-smokers associated to the

chromosome 15q25 locus, which suggested a different disease

mechanism, not related to tobacco addiction, since it was not

associated to smoking-related head and neck cancers. Other

susceptibility loci, such as chromosomes 6q (34), 13q31.3

(GPC5), have also been described (35). Many studies have

identified specific germline pathogenic mutations in lung

cancer patients that could be associated with its development,

such as ATM, EGFR, TP53, BRCA, PARK2, YAP1 and HER-2.

These alterations, however, are rare, and most still lack evidence

of the association to the development of this specific malignancy

(36–39).
Carcinogenesis and molecular
characteristics of lung cancer in
never smokers

The tumorigenesis of LCINS is poorly understood, but

genomic studies suggest that the pathways activated during
Frontiers in Immunology 03
LCINS carcinogenesis are different from tobacco-related lung

cancer. Tobacco exposure is associated with genome-wide C to A

transversions. Lung cancer in never smokers has a low fraction

of C to A transversions, and additionally these tumors are

enriched in mutations in EGFR and PIK3CA, in-frame

insertions in EGFR and ERBB2, and frameshift indels in RB1

(40, 41).

One of the first studies that directly compared lung cancer

from smokers and never smokers, performed whole genome

sequencing (WGS) in tumor and normal tissue samples obtained

from 17 lung cancer patients, five of whom were never smokers.

As demonstrated previously by Ding et al. (2009) (41), these

tumors had a 10-fold lower mutation burden compared to

tumors from smokers (0.6 mut/Mb x 10.5mut/Mb), as well as

EGFR mutations, and ALK and ROS1 fusions (42).

Chen et al. (43) performed a proteogenomics analysis of

patient-paired tumor and normal adjacent tissue of 103 patients

with treatment-naive lung cancer from Taiwan. In this cohort,

83% of patients were non-smokers, 89% were adenocarcinoma,

80% were stage IA or IB and 58% were female. Genetic

mutations were most commonly found in EGFR (85%), TP53

(33%) and RBM10 (20%). KRAS and ATM alterations were more

notable among patients with a history of tobacco use. They

identified over 23,000 nonsynonymous somatic single nucleotide

variants (SNVs), which had different proportions when

compared to the TCGA (The Cancer Genome Atlas) cohort,

mainly composed of smokers. Non-smokers in both cohorts

showed similar proportions of C>T transitions, while C>A

transversions, which are smoking-related, were more common

in the TCGA cohort. In the non-smoking cohort, the study also

identified five mutational signatures, not observed in the TCGA

cohort. The APOBEC mutational signature, with a high

proportion of C>T transitions, was associated with a potential

role in the development of lung cancer in female never-smoker

patients (43).

More recently, 46 NSCLC samples from never (36 patients)

or light smokers (<5 pack-years and >20 years smoking-free

interval, 10 patients) were submitted to low-coverage WGS and

whole exome sequencing (WES) in parallel with WES from

blood. These tumors displayed low tumor mutational burden

(TMB) (0.8 mut/Mb) and less somatic copy number alterations

(sCNAs) than tumors from smokers. Tumors from never

smokers and light smokers had comparable TMB and silent to

non-silent mutation ratio, suggesting these are similar entities.

Additionally, in both subgroups, mutational signature 4

(associated with tobacco mutagens exposure) was absent,

excluding second-hand tobacco exposure as a causative

exposition in never smokers and suggesting that smoking does

not significantly contribute to carcinogenesis in light smokers.

On the other hand, these tumors were enriched in Signatures 16

(unknown) and 8, 3 (associated with DNA double-strand break

repair by homologous recombination), 1 (spontaneous methyl-

cytidine deamination associated with aging), and 2 and 13
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(associated with activity of the cytidine deaminases AID and

APOBEC). In this cohort, the most frequently mutated genes

were EGFR (40%) and TP53 (27%), and, interestingly, except for

three tumors, all had amplification or mutation in EGFR or

MYC. An ingenuity pathway analysis (IPA) was performed

integrating data from mutated genes and CNAs and the

affected pathways were related to cancer, epithelial cell

adhesion and HER2 signaling (44).

A higher frequency of clinically actionable genomic

alterations was detected among never smokers (N=160) in

comparison to smokers (N=299) (65% vs. 35%, respectively).

Samples were collected from patients coming from three

American cancer institutions. Genomic data available from

TCGA and from the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) was also analyzed. Institutional samples

were submitted to WES (both in tumor and peripheral blood

mononuclear cells) (N=88) or a Clinical Laboratory

Improve Amendments (CLIA) validated targeted sequencing

(N=17) and RNA sequencing of tumor samples from 69

patients. A model that incorporated TMB and mutation

signatures characteristic of tobacco exposure was used to infer

smoking status, apart from the self-reported smoking status.

Never smokers showed a higher frequency of alterations in

EGFR, CTNNB1, SETD2, MET, and RB1. The occurrence of

pathogenic or likely pathogenic germline variants was similar

between smokers and never smokers (6.4% vs. 6.9%,

respectively), nevertheless mutations in cancer predisposition

genes (BRCA1, BRCA2, FANCG, FANCM, HMBS, MSH6, NF1,

POLD1, TMEM127, andWRN) were observed only among never

smokers. Single base substitution (SBS) mutation signatures 1

(aging), and 2 and 13 (APOBEC) were seen in samples from

never smokers as well, as described above, along with signature 6

(associated with mismatch repair deficient tumors).

Interestingly, 5.9% of never smokers also showed smoking-

related mutation signatures, suggesting second-hand smoking

exposure (45).

The largest genomic cohort comes from the Sherlock-Lung

study that performed high-coverage WGS in tumor and

matched germline DNA from 232 never smokers lung cancer

patients. Alterations in genes in the RTK-Ras pathway were

identified in 54.3% of tumors. These tumors had higher numbers

of SNVs/indels, sCNAs, structural variants, kataegis, whole

genome doubling and BRCA2 loss of heterozygosity, but lower

tumor/normal telomere length ratio. SBS 18, associated with

damage by reactive oxygen species, was seen in 46% of tumors,

SBS 2 and SBS13 (58%), and SBS8, related to nucleotide excision

repair deficiency and late replication, was observed in 13%,

mainly in carcinoids. Unsupervised clustering of arm-level

sCNAs defined three subtypes with increasing levels of sCNA:

piano, mezzo-piano and forte. Piano was the predominant

subtype (49.6% of samples and the most common subtype

among non-smokers) and was characterized by frequent UBA1

mutations, germline AR variants, and stem cell-like properties
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like low TMB, high intratumor heterogeneity, long telomeres,

frequent KRAS mutations and slow growth. In contrast, the

mezzo-forte subtype (corresponding to 30.2%) was enriched in

specific amplifications and EGFR mutations while the forte

subtype was characterized by WGD. The Forte subtype

represented 20.3% of samples and was enriched among

smokers (18). The most recurrent molecular features reported

in LCNIS are depicted in Figure 1.
Immune landscape in never-smoker
lung cancer patients

As discussed above, studies reveal that the genomic

landscape in NSCLC is distinct between smokers and

nonsmokers. NSCLCs from smokers have among the highest

tumor mutational burdens (TMBs) of all cancers (46, 47). A high

mutational smoking signature is associated with higher levels of

immune infiltration, higher production of inflammatory

cytokines such as IL-1beta and IL-17, higher cytolytic activity

and interferon-gamma pathway signaling (48). In non-smokers,

carcinogenesis is often linked to the presence of somatic

molecular alterations in specific oncogenic drivers, like EGFR

and ALK (49–51).

Immunosurveillance by host immune effectors imposes

continuous selective pressure on tumor cells throughout the

evolution of lung cancer, independent of the smoking status.

Although both innate and adaptive immune responses are

involved in antitumor immunity, host T cell recognition of tumor

antigens represents the central tenet of immunosurveillance and

immunoediting. Genomic mutations in lung cancer can give rise to

mutant proteins that, when processed, result in the generation of

neoantigens (52). CEA (carcinoembryonic antigen) is an oncofetal

antigen produced during fetal life that disappears after birth.

Oncofetal proteins reappear in some cancer patients, indicating

that certain genes are reactivated during malignant transformation.

Smokers have higher serum CEA levels than nonsmokers. CEA

could serve as an ideal tumor-associated antigen (TAA), because

immunizing cancer patients with TAA is expected to induce

effective tumor immunity while not triggering serious

autoimmune diseases (53).

In patients with early-stage NSCLC, investigators have

identified CD8+ tumor infiltrating lymphocytes (TILs) that are

reactive to tumor clonal neoantigens (50). Established lung

cancers have escaped host immune surveillance through a

variety of mechanisms. Tumors can directly suppress host

immune responses by activating negative regulatory pathways

known as immune checkpoints by tumor cells, such as

expression of PD-L1. Lung tumors also restrict host

immunosurveillance through suppression of functional antigen

presentation. Lung tumors can also alter the composition of the

TME to establish an immunosuppressive milieu characterized by

an abundance of inhibitory molecules, such as TGF-beta, IL-6,
frontiersin.org
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PGE2 and VEGF, and an accumulation of immunosuppressive

cells, such as Treg and MDSCs (47).

Differences in prognosis between smoking status groups may

relate to the higher tumor immunogenicity, higher gene

mutations, and more vigorous immune microenvironment

observed in smokers. Results using CyTOF to characterize the

immune TME found that the immune TME of lung cancer

among smokers have higher expression of immune positive

regulatory chemokines, and higher abundance of activated

immune cells, including follicular helper CD4+ T cells, gamma

delta CD4+ T cells, activated DC, and activated CD8+ T cells. In

contrast, the immune microenvironment of tumor from the

non-smoking group is enriched for immunosuppressive related

cells, including regulatory T cells and M2 macrophages. Finally,

the non-smoking group also contained higher fractions of

CD45RAhigh CD4+ T cells and CD45RAhigh CD8+ T cells,

typically characteristic of naïve T cell subpopulations (54).

Other evidence that the immune TME in non-smokers may

be more suppressive than in smokers was seen examining

infiltrating CD8+ T cells in non-smokers with lung

adenocarcinoma. Potentially immunoregulatory CD8+FOXP3+

T cells and immune-dysfunctional CD8+GATA3+ T cells are

increased in adenocarcinoma of non-smokers. CD4+FOXP3+

regulatory T cells expressing CCR4 and CCL17-expressing

CD163+ M2-like macrophages also accumulated correlatively

and significantly in adenocarcinoma of non-smokers. These

immunosuppressive cells may promote tumor progression by
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creating a suppressive TME that inhibits effective anti-tumor

responses in never-smokers with lung adenocarcinoma (55).

These characteristics may help explain why NSCLC

adenocarcinomas in never smokers typically do not

demonstrate durable responses with immune checkpoint

blockade despite PD-L1 expression (smokers have a higher

PD-L1 expression) (56). Interestingly, PD-L2 gene

(PDCD1LG2) single nucleotide polymorphisms (SNPs) are

associated with lung adenocarcinoma risk in female never-

smokers, and 3 of these SNPs were negatively associated with

PD-L2 expression in non-tumor tissue, but not in tumor tissue

(57). Although PD-L1 expression has been shown to be

associated with carcinogenesis, tumor differentiation and

vascular invasion, the role of PD-L2 is still poorly explored.

Mechanistically, at low antigen concentrations the interaction

between PD-L2 and PD-1 inhibits strong B7-CD28 signals,

while at high concentrations, the interaction between PD-L2

and PD-1 reduces cytokine production, but not T cell

proliferation, but the correlation between these PDCD1LG2

SNPs and PD-L2 expression requires further investigation,

which might provide further insight into the PD-1/PD-L2 axis

in T cell function and lung carcinogenesis (57).

There are a series of other risk factors that may play an

important role in the immune response amongst non-smoker

lung cancer patients (58). In particular, air pollution and

oxidative stress can lead to DNA damage, ROS release by

resident lung macrophages and subsequent immunopathology
FIGURE 1

Molecular characteristics of lung cancer in non smokers (LCINS). The figure compile the recurrent molecular characteristics reported in studies
that used whole exome sequencing (WES) and whole genome sequencing (WGS) to identify mutational processes end genomic characteristics
in LCINS. Triangles tips point to the direction of the less frequent or less abundant alteration. TMB, tumor mutational burden; SBS, single base
substitution mutational signature; sCNA, somatic copy number alterations; ROS, reactive oxygen species.
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and tissue damage via NF-kB and AP-1 pathways (59).

Moreover, occupational exposure and inhalation of chemicals

like silica and asbestos particles can result in an increase in

collagen-producing fibroblasts and fibrous tissue remodeling

surrounding the inhaled particles. This leads to reduced

antitumor immunity due to the induction of macrophage and

neutrophil infiltration into the lung tissue, resulting in an

enhanced secretion of cytokines, chemokines and ROS (60).

Despite the abundance of IL-12, silica dust causes FasL

overexpression in lung tissue. Fas/FasL affects macrophage

function, rendering them unable to activate neither

themselves, nor other cells that are critical to recognize and

remove malignant cells. Moreover, FasL overexpression due to

silica can lead to an increased release of TNF-alpha and other

proinflammatory cytokines. While this TME could lead to

recruitment of new immune cells, an accompanying increase

in TGF-beta production can result in a shift from an

inflammatory function of FasL to a suppressive one (61). The

inhalation of asbestos fibers can alter the function of NK cells

and CD8+ cytotoxic T-lymphocytes leading to an impaired anti-

tumor immune response and rendering these individuals at high

risk for lung and pleural carcinogenesis (62).

Another serious risk factor for never-smoker lung cancer is

pulmonary fibrosis. In this case, fibrosis of the lung originates

from repeated and excessive connective tissue remodeling in

response to recurring alveolar microinjuries. In these situations,

fibroblasts respond to excessive and aberrant wound healing by

entering hyperproliferation and change to a pro-fibrotic

phenotype resistant to apoptosis. Activated fibroblasts are highly

responsive to growth factors and cytokines, e.g. TGF-beta,

connective tissue growth factor, platelet-derived growth factor

and IL-6 (63, 64). This chronic low-level inflammatory process

leads to an increased risk of lung carcinogenesis in patients with

pulmonary fibrosis. Macrophages, as a source of proinflammatory

and pro-fibrotic cytokines, have been linked to lung fibrogenesis

as well (65), and neutrophils play a role in chronic inflammation

in general (IL-8/CXCL8) (66). Lastly, pulmonary infections and

the lung microbiome can modify the immune dynamics in lung

cancer. Patients with a history of pulmonary infections caused by

Mycobacterium tuberculosis (inflammation and fibrosis) have an

increased risk of lung cancer (67).

A pathogenic lung microbiome may impact the likelihood of

lung cancer, in smokers and non-smokers alike, contributing to

tumor initiation and progression through production of

bacteriotoxins and other proinflammatory factors (68), but

more research is needed to decipher potentially beneficial vs.

pathogenic microbiota with respect to lung cancer development

and progression.

In conclusion, the immune landscape of never-smoker lung

cancer is influenced by several potential environmental factors

that in general create a TME with potentially more

immunosuppressive characteristics than smokers, and these
Frontiers in Immunology 06
contribute to a scenario where never-smoker patients may not

respond as well to immune checkpoint inhibitors. Figure 2

summarizes the immune landscape in smoker and never-

smoker lung cancer patients. More research is necessary to

unravel potential targets for activation of the immune

response in these patients, or adjuvant therapy strategies that

could make them more response to immune checkpoint

inhibitors in the future.
Clinical implications

Immunotherapy for lung cancer in never
smokers

Studies that investigated the use of immunotherapy (IO) in

patients diagnosed with lung cancer without previous history of

smoking have shown conflicting results, despite PD-L1

expression, and smoking history has been proposed as a

biomarker associated with response to this therapy in NSCLC

(69). Gainor et al. (2021) investigated the association between

smoking history and the activity of immune checkpoint

inhibitors in patients with metastatic NSCLC PD-L1 high-

expressors. Outcomes were not significantly different among

smokers (>10pack-years), light smokers (≤10pack-years) and

never smokers (≤100 lifetime cigarettes), although a numerically

smaller overall response rate (27% vs. 40% vs. 40%) and shorter

progression free survival (3.0 vs. 4.0 vs. 5.4 months) and

duration of response (6.9 vs. 10.8 vs. 17.8 months) were

observed among smokers, never and light smokers,

respectively (70). Similar results were reported by Popat et al.

(2022) in a retrospective cohort of 1,160 patients treated with ICI

monotherapy of which 91 patients were never smokers. Never

smokers were mostly female, older and were diagnosed with

non-squamous histology. OS was equivalent between ever

smokers and never smokers (12.1 vs. 12.5 months,

respectively). However, after adjusting OS for patient

characteristics, OS among ever smokers was almost twice as

long as amongst never smokers (12.8 vs. 6.5 months,

respectively) (71).

Cortellini et al. (2021) (72) evaluated the outcomes of

smokers versus never-smokers with advanced NSCLC and

high PD-L1 ≥ 50% treated with pembrolizumab monotherapy

in the first line in a retrospective multicenter cohort of 962

patients. They observed a higher risk of disease progression

(hazard ratio [HR] = 1.49 [95% CI: 1.15–1.92], p = 0.0022) and

death (HR = 1.38 [95% CI: 1.02–1.87], p = 0.0348) among never-

smokers. A random case-control matching was performed and

patients without a history of smoking maintained a higher risk of

disease progression (HR = 1.68 [95% CI: 1.17–2.40], p = 0.0045)

and a nonsignificant trend towards a reduced overall survival

(OS) (HR = 1.32 [95% CI: 0.84–2.07], p = 0.2205).
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Li et al. (2020) (69) performed a prospective real-world

analysis of 268 patients with advanced NSCLC treated with

anti-PD-1 monotherapy (IO) at the Princess Margaret Cancer

Center and used logistic regression to test factors associated

with response to treatment, including PD-L1 tumor

proportion score (TPS) and smoking status. The cohort included

78 patients considered to be never smokers. They were more

frequently female and had lung adenocarcinomas, 32% of tumors

hadEGFRmutations, 2.8%hadALK fusions, 58.3%hadPD-L1TPS

≥50%. Almost 90% of patients were treated with IO in ≥2nd line.

Smokers or former smokers were predominantly of male sex and

adenocarcinoma histology, without EGFR/ALK alterations,

over 50% had PD-L1 TPS ≥ 50% and were also most commonly

treated with IO as ≥ 2nd line (69.4% and 84.8%, for current and

former smokers, respectively). Overall response rates (ORR)

to immunotherapy were significantly higher in current and

former smokers than never smokers (36% vs 26% vs 14%;

p=0.02), even in patients with PD-L1 TPS ≥50% (current

smokers 58% vs never-smokers 19%; p=0.03). One year survival

rates, evaluated as an exploratory analysis, were also higher in

smokers (p=0.003).
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Another interesting fact is that never-smokers have a different

genomic profile than smokers, with a higher prevalence of

actionable driver gene alterations, such as EGFR mutations and

ALK fusions, while KRAS mutations occur more often among

smokers (73). Mazieres et al. (2019) (74) conducted a retrospective

analysis of 551 patients with advanced NSCLC with at least one

oncogenic driver alteration (EGFR, KRAS, ALK, BRAF, ROS1,

HER2, RET or MET) treated with immune checkpoint inhibitor

(ICI) monotherapy in 24 centers from 10 countries. All patients,

except the ones with KRAS, BRAF orMET mutations, were more

frequentlynever-smokers. TheORRbydriver alterationwas:KRAS

26%, BRAF 24%, ROS1 17%, MET 16%, EGFR 12%, ERBB2 7%,

RET6%, andALK0%. In the study,medianPFSwas 2.8months,OS

13.3 months, and the best response rate 19%, mainly driven by the

KRAS cohort. Overall, patients with actionable driver mutations

(EGFR, ALK, ROS1) had inferior outcomes with ICImonotherapy,

and PD-L1 expression did not appear to correlate with a better

result in most cohorts.

Therefore, strategies to enhance response to ICI are urgently

needed for LCINS, since the current strategies yield poor results.

In cases where actionable driver gene mutations are detected, if
FIGURE 2

Immune landscape in smoker and never-smoker lung cancer patients. NSCLCs from smokers have high TMB and a higher mutational smoking
signature and neoantigens generation are associated with higher levels of immune infiltration, higher production of inflammatory cytokines such as
IL-1beta and IL-17, higher cytolytic activity and interferon-gamma pathway signaling. On the other hand, the immune microenvironment of the
non-smoking group is significantly enriched for immunosuppressive related cells, including Treg cells, suppressor CD4+ or CD8+ T cells and M2
macrophages. In addition to the lower expression of PD-L1, the interaction between PD-L2 (APCs) and PD-1 (T cells) inhibits strong B7-CD28
signals and reduces cytokine production. In particular, air pollution and oxidative stress can lead to DNA damage and ROS release by resident lung
macrophages and subsequent immunopathology and tissue damage. Macrophages can be a source of proinflammatory, and pro-fibrotic cytokines
and neutrophils play a role in chronic inflammation in general (CXCL8). Finally, fibroblasts respond to excessive and aberrant wound healing by
entering hyperproliferation and change to a pro-fibrotic phenotype resistant to apoptosis. Figure designed using Biorender.com.
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available, targeted therapies should be exhausted before

considering immunotherapy.
Never smokers with actionable
driver gene alterations and
sequential immunotherapy

LCINS presents with a higher frequency of actionable driver

gene alterations, such as EGFR and ALK, for which the use of

tyrosine kinase inhibitors (TKI) has shown great benefit in

several outcomes and should be the first choice of treatment

(10). Nevertheless, many patients may also receive

immunotherapy along the course of their disease, and there is

great concern related to possible severe adverse events after

sequential ICI and TKI (75). Schoenfeld et al. (2019) (76)

performed a retrospective analysis of NSCLC patients with

EGFR mutations who were treated with ICI and EGFR-TKI.

15% (6/41) of patients treated with ICI followed by Osimertinib

presented with severe adverse events, which demanded

corticosteroids use and, in some cases, hospitalization. The

adverse events were more frequent among those who initiated

Osimertinib within 3 months of prior ICI use. On the other

hand, no patient treated with Osimertinib followed by ICI

presented with severe adverse events. Lin et al. (2019) (75)

identified 11 patients who had oncogenic alterations in ALK,

ROS or MET and were treated with ICI followed by crizotinib.

45.5% (5/11) of patients presented with grades 3 or 4 increase in

transaminases levels. All hepatotoxicity cases were reversible and

non-fatal. Another example was the LIBRETTO-001 trial (77),

in which NSCLC patients with RET mutations were treated with

selpercatinib. The authors evaluated the frequency of severe

adverse events among patients who were previously treated with

ICI versus patients who were ICI-naïve. Among 329 patients, 22

presented with adverse events attributable to selpercatinib,

which were more common in ICI-pretreated cohort (N = 17;

77%) than ICI-naïve cohort (N = 5, 23%).

Hence, the toxicity related to the sequential use of ICI and

TKI is a great concern and should be carefully pondered before

offered to NSCLC patients.
Future perspectives

Future perspectives for treatment of LCINS with

immunotherapy lie in enhancing immunologic activity,

something that can be achieved by a myriad of different

approaches. Currently, the majority of data is based, since

trials that relied on smoking status as a surrogate biomarker

for the presence of driver mutations, especially EGFR. By June

2022, there is only one trial recruiting non-smokers, and the

population of this trial was mixed with EGFR mutant patients.
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Table 1 shows data trials that evaluated exclusively (or at least

mostly) LCINS from 2010 to 2022 on.
Combination therapy - chemotherapy,
anti-PD-1/PD-L1 plus anti-CTLA4

As previously mentioned, the use of ICI monotherapy for

LCINS has conflicting results in the literature and additional

strategies to improve these results are in order. One possible

approach is to associate chemotherapy with immunotherapy. In

the KEYNOTE189 trial (78), patients with advanced

nonsquamous NSCLC who were treated with platinum-based

chemotherapy and pembrolizumab had a significant benefit in

overall survival (OS), progression free survival (PFS) and ORR

when compared to chemotherapy alone. Among the entire

cohort, approximately 10% were never-smokers, and, in the

subgroup analysis, these patients also benefited from the

combination treatment, with an HR 0.23 (0.10-0.54 for OS). In

the IMPOWER150 trial (79), which evaluated the benefit of

adding atezolizumab to bevacizumab and platinum-based

chemotherapy for advanced nonsquamous NSCLC, never-

smokers, who represented approximately 20% of the cohort,

had a trend towards better overall survival with the combination,

with a median OS 22.3 months versus 18.2 months, HR 0.75

(0.49-1.14).

In the FDA pooled analysis of outcomes of anti-PD-(L)1

therapy (IO) with or without chemotherapy (chemo) for first line

treatment of patients with NSCLC and PD-L1 score ≥50% (80),

never-smokers appeared to have better results with the association

of IO-chemo in all the outcomes evaluated: median OS NE vs 14.4

months (HR 0.39, 0.15-0.98), median PFS 10.2 vs 3.7 months (HR

0.46, 0.23-0.92) and ORR 69% vs 28% (OR 4.6, 1.5-14.5).

Combination of ICIs, especially of anti-PD-(L)1 and anti-

CTLA4 antibodies, is another strategy currently available for

prescription. However, results in non-smokers are based on

subgroup analysis and are somewhat heterogeneous. The

Checkmate227 trial (81) evaluated the benefit of nivolumab

plus ipilimumab versus chemotherapy for patients with

previously untreated advanced NSCLC. Although the study

resulted in longer overall survival for the ICI combination in

the intention to treat the population regardless of PD-L1 status,

in the subgroup analysis, never-smokers, which represented 13%

of the cohort, did not appear to derive benefit from this

treatment approach, with an OS HR 1.23 (0.76-1.98). The

Checkmate 9LA trial (82) investigated the benefit of

nivolumab plus ipilimumab and two cycles of chemotherapy

versus chemotherapy alone for patients with advanced NSCLC,

and despite the benefit observed in overall survival for the entire

cohort in the experimental arm, the subgroup analysis of never-

smokers showed a trend towards better outcome with

chemotherapy alone, with an OS HR 1.14 (0.66 - 1.97).
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TABLE 1 List of clinical trials in non-small cell lung cancer that focused on non-smokers.

Trial Design Results Status

N: 5 patients.
Results: no results posted, study interrupted.

Completed.
Last update posted
March 4, 2010.

N: 70 patients (39 patients for Gefitinib + Chemo versus 31 patients
for chemo alone).
PFS: 9.9 months for Gefitinib + Chemo versus 6.8 months for Chemo.

Completed.
Last update posted
September 9, 2010.

N: 20 patients.
Results: no results posted, study interrupted.

Completed.
Last update posted
October 6, 2010.

N: 315 patients.
Results: no results posted.

Completed.
Last update posted
October 25, 2010.

N: 247 patients (81 for Erlotinib + Pemetrexed, 82 for Erlotinib, 84 for
Pemetrexed).
Results: PFS 7.4 months for Erlotinib + Pemetrexed, 3.8 months for
Erlotinib, 4,4 months for Pemetrexed.

Completed.
Last update posted
February 13, 2013

N: 10 patients (5 for Arm A and 5 for Arm B).
Results: PFS 4.5 months for Arm A versus PFS 15.5. More serious
adverse events for Arm B – related to Erlotinib.

Completed.
Last update posted
May 30, 2014.

N: 236 patients (118 in each group).
Results: PFS 8.3 months for gefitinib + chemo versus 9.6 months for
gefitinib alone. OS 26.9 months for gefitinib + chemo versus 27.9
months for gefitinib alone. No statistically significance difference
found between groups.

Completed.
Last update posted
July 8, 2015.
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NCT00456716
A Phase II Trial of Sorafenib in BAC or Never-Smokers With
Any Lung Adenocarcinoma

Intervention: Sorafenib 400 mg BID.
IC: any line of treatment, smoking history of < 100
cigarettes.
1EP: ORR.

NCT00409006
A Phase 2 Trial of Pemetrexed and Cisplatin Followed Sequentially by
Gefitinib Versus Pemetrexed and Cisplatin in Asian “Never Smoker”
Patients With Advanced Non-Small Cell Lung Cancer

Intervention: Cisplatin + Pemetrexed + Gefitinib versus
Cistplatin + Pemetrexed.
IC: no previous treatment, smoking history of < 100
cigarettes.
1EP: PFS.

NCT00430261
Phase II Trial of Sunitinib in Bronchoalveolar Carcinoma or Never-
Smokers With Any Lung Adenocarcinoma

Intervention: Sunitinib 50 mg q42d (28 days on, 14 days
of).
IC: any line of treatment, smoking history of < 100
cigarettes.
1EP: PFS.

NCT00455936
A Randomized Phase III Study of Gefitinib (IRESSATM) Versus Standard
Chemotherapy (Gemcitabine Plus Cisplatin) as First-line Treatment for
in Never Smokers Advance or Metastatic Adenocarcinoma of Lung

Intervention: Gefitinib 250 mg daily versus Cisplatin 80
mg/m2 D1 + Gemcitabine 1250 mg/m2 D1, D8 q21d.
IC: no previous treatment, smoking history of < 100
cigarettes.
1EP: OS.

NCT00550173
A Randomized Phase 2 Study Comparing Erlotinib-Pemetrexed,
Pemetrexed Alone, and Erlotinib Alone, as Second-Line Treatment
for Non-Smoker Patients With Locally Advanced or Metastatic
Nonsquamous Non-Small Cell Lung Cancer

Intervention: Erlotinib 150 mg/daily versus Pemetrexed
500 mg/m2 q21d + Erlotinib 150 mg daily versus
Pemetrexed 500 mg/m2 q21d.
IC: second line of therapy, smoking history of < 100
cigarettes.
1EP: PFS.

NCT00976677
Randomized Double-Blind Placebo Controlled Phase II Trial Evaluating
Erlotinib in Non-Smoking Patients With (Bevacizumab-Eligible and
Ineligible) Advanced Non-Small Cell Lung Cancer (NSCLC)

Intervention: Carboplatin + Paclitaxel +/- Bevacizumab
(Arm A) versus Carboplatin + Paclitaxel +/-
Bevacizumab + Erlotinib (Arm B).
IC: smoking history of < 100 cigarettes, previously
untreated.
1EP: PFS.

NCT01017874
A Randomized Ph 3 Study Comparing First-Line Pemetrexed/Cisplatin
Followed by Gefitinib With Gefitinib Alone in East Asian Never Smoker or
Light Ex-Smoker Patients With Locally Advanced or Metastatic
Nonsquamous NSCLC

Intervention: Gefitinib 250 mg daily versus Cisplatin 75
mg/m2 D1 + Pemetrexed 500 mg/m2 D1 q21d +
Gefitinib 250 mg daily.
IC: no previous treatment, smoking history of < 100
cigarettes.
1EP: PFS.
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TABLE 1 Continued

Trial Design Results Status

9 (109 patients for Gefitinib + chemo and 110 patients for
o alone).
ts: PFS 9.7 months for Gefitinib + chemo versus 4.2 months for
o alone.

Completed.
Last update posted
January 27, 2017.

patients.
ts: PFS 12.6 months. OS: 20.3 months.

Completed.
Last update posted
October 30, 2017.

patients.
ts: ORR 7.7%, no serious adverse events reported.

Completed.
Last update posted
October 31, 2018.

patients.
ts: PFS in 4 months 76.9%.

Completed.
Last update posted
January 8, 2019.

patients.
ts: PFS in 6 months: 0%. OS: 8.8 months.

Completed.
Last update posted
March 6, 2019.

patients.
ts: OS 29.8 months. PFS 7.4 months. ORR 50%. PD: 12%.

Completed.
Last update posted:
March 5, 2020.

patients.
ts: ORR 5.9%. SD 35.3%. PD 58.8%.

Completed.
Last update posted:
August 4, 2020.
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NCT01404260
Intercalating and Maintenance Use of Iressa vs. Chemotherapy in Selected
Advanced NSCLC: a Randomised Study

Intervention: continuous or intercalated Gefitinib +
Carboplatin + Gemcitabine versus Carboplatin +
Gemcitabine.
IC: no previous treatment, smoking history of < 100
cigarettes or former light smokers (between > 100
cigarettes AND ≤ 10 pack-years AND quit ≥ 1 year ago).
1EP: PFS.

N: 2
chem
Resu
chem

NCT01344824
A Multicenter Phase II Trial of Carboplatin, Pemetrexed, and Bevacizumab
Followed By Pemetrexed and Bevacizumab Maintenance Therapy in
Patients With a Light or Never Smoking History

Intervention: Carboplatin + Pemetrexed + Bevacizumab
+ Erlotinib.
IC: smoking history of < 100 cigarettes or former light
smokers (between > 100 cigarettes AND ≤ 10 pack-years
AND quit ≥ 1 year ago), previously untreated.
1EP: PFS.

N: 3
Resu

NCT01829217
A Phase II Trial of Sunitinib in Never-
smokers With Lung Adenocarcinoma: Identification of Oncogenic
Alterations Underlying Sunitinib Sensitivity

Intervention: Sunitinib 50 mg q42d (28 days on, 14 days
of).
IC: one previous line of therapy, wild-type for KRAS,
EGFR and ALK, smoking history of < 100 cigarettes, or
RET positive tumors and other genomic alterations
defined by protocol.
1EP: ORR.

N: 1
Resu

NCT00818441
A Phase 2, Open-Label Trial Of Dacomitinib (PF-00299804) In Selected
Patients With Advanced Adenocarcinoma Of The Lung

Intervention: Dacomitinib
IC: no previous treatment, EGFR mutant NSCLC or
smoking history of < 100 cigarettes.
1EP: PFS in 4 months.

N: 8
Resu

NCT00754923
A Phase II Study of Single Agent Sorafenib in Non-small Cell Lung
Cancer Patients Who Never Smoked or Were Former Light Smokers.

Intervention: Sorafenib 400 mg BID.
IC: at least 1 previous line of therapy, smoking history of
< 100 cigarettes or former light smokers (between > 100
cigarettes AND ≤ 10 pack-years AND quit ≥ 1 year ago).
1EP: PFS in 6 months.

N: 1
Resu

NCT00445848
A Phase II Trial of the Combination of OSI-774 (Erlotinib; NSC-718781)
and Bevacizumab (RHUMAB VEGF; NSC 704865) in Never-Smokers With
Stage IIIB and IV Primary NSCLC Adenocarcinomas

Intervention: Erlotinib 150 mg/daily + Bevacizumabe 15
mg/kg q21d.
IC: smoking history of < 100 cigarettes, previously
treated.
1EP: OS.

N: 8
Resu

NCT01833143
A Phase 2 Trial of Bortezomib in KRAS-Mutant Non-Small Cell Lung
Cancer in Never Smokers or Those With KRAS G12D

Intervention: Bortezomib 1.3 mg/m2/dose D1, D4, D8,
D11 q21d.
IC: smoking history of < 100 cigarettes, KRAS G12D,
previously treated NSCLC.
1EP: ORR.

N: 1
Resu
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Virotherapy

Recent studies have also been investigating the potential

benefit of oncolytic virotherapy to improve response to

immunotherapy in solid tumors (83). In a mouse model of

small cell lung cancer, a modified oncolytic myxoma virus

(MYXV) was associated with immune cell infiltration and

increased survival, after low-dose cisplatin (84).
Adoptive cell therapy and CAR-T-cells

Another possible way to overcome immunotherapy resistance

in “cold” tumors is adoptive cell therapy (ACT), using tumor

infiltrating lymphocytes (TIL) cultured from a patient’s tumor. In

order to evaluate its benefit in patients with advanced NSCLC,

Creelan et al. (2021) (85) conducted a single armopen-label phase I

trial of TIL administered with nivolumab to 20 patients with

advanced NSCLC who had initially progressed on nivolumab

monotherapy. Thirteen patients had evaluable disease. Of these,

threehad confirmed responses,with2patients presenting complete

responses ongoing 1.5 year later (one of which was a patient with

lung adenocarcinoma and EGFRdelExon19mutation refractory to

nivolumab). Eleven patients had reduction in tumor burden, with a

median best change of 35%. In exploratory analysis, they found T

cells recognizing multiple types of cancer mutations that were

detected after TIL treatment, and were enriched in responding

patients. The neoantigen-reactive T cell clonotypes increased and

persisted in the peripheral blood after treatment, suggesting this

strategy may be promising for patients with advanced lung cancer.

Modified-T-cell therapy, especially using chimeric antigen

receptors (CAR-T cells) which can recognize specific molecular

patterns on the surface of tumor cells, has been approved for the

treatment of hematological malignancies and has been studied for

solid tumors (86). Hu et al. (2020) (87) conducted a preclinical

analysis of a CAR-T-cell based strategy to target specific

neoantigens called LungX (s BPIFA1, PLUNC, and SPLUNC1)

which are overexpressed in lung cancer cells. This strategy (called

CARLunX) showed enhanced toxicity in vitro towards NSCLC

lines and enhanced production of cytokines, as well as specific

recognition of NSCLC cells. Adoptive transfer of these cells

induced regression of established metastatic lung cancer

xenografts and prolonged survival. This study suggested that

CAR-T-cells could be a possible strategy to treat lung cancer

patients and should be further analyzed, especially in never-

smokers where recurrent molecular alterations are more

frequently detected.
Dendritic cells vaccines

Overall, studies have suggested that neoantigens, which are

derived from tumor-specific somatic mutations, are related to
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responses to ICI therapy and ACT (88). There have been

increasing efforts to identify these neoantigens in order to

develop possible novel therapies, such as neoantigen-based

RNA vaccines, which mainly use dendritic cells as vectors.

Ding et al. (2021) performed a single-arm (88), pilot study, to

evaluate the benefit of neoantigen vaccines for 12 patients with

heavily pretreated advanced lung cancer. Four of these patients

were never-smokers, three of which had EGFR or MET

alterations. Candidate neoantigens were identified from whole-

exome sequencing and RNA sequencing of fresh biopsy tissues

as well as bioinformatics analysis, and 12–30 peptide-based

neoantigens were selected for each patient. The ORR in this

study was 25% and the disease control rate was 75%. Median

progression free survival was 5.5 months and median OS was 7.9

months. In the study, four of the patients recruited had received

ICI and either had no response to the treatment or had already

relapsed. After combining the ICI therapy with the vaccines, all

patients achieved disease control, with 2 partial responses of up

to 80%, and showed a trend to better PFS (11.2 months versus

2.2 months, p = 0.045) and OS (11.2 months versus 7.6 months,

p = 0.40). These results warrant further investigation of dendritic

cell vaccines and may represent a therapeutic opportunity to

improve ICI treatment results for lung cancer.
Conclusion

Lung cancer in never smokers represent a different entity,

with specific epidemiological features, genomic profile and

tumor immune microenvironment. These patients more often

present tumors that bear driver gene alterations potentially

targeted by specific tyrosine kinase inhibitors. The majority of

them, however, will be treated with immunotherapy as first or

later lines of treatment, and the results of current trials in this

specific population are still controversial. A better understanding

of immunological features related to LCINS is paramount to aid

the development of novel therapeutic strategies that may

enhance immunotherapy responses in this subgroup of

patients, and many are already under investigation.
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