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Abstract
Background: Current efforts within the biomedical ontology community focus on achieving
interoperability between various biomedical ontologies that cover a range of diverse domains.
Achieving this interoperability will contribute to the creation of a rich knowledge base that can be
used for querying, as well as generating and testing novel hypotheses. The OBO Foundry principles,
as applied to a number of biomedical ontologies, are designed to facilitate this interoperability.
However, semantic extensions are required to meet the OBO Foundry interoperability goals.
Inconsistencies may arise when ontologies of properties – mostly phenotype ontologies – are
combined with ontologies taking a canonical view of a domain – such as many anatomical
ontologies. Currently, there is no support for a correct and consistent integration of such
ontologies.

Results: We have developed a methodology for accurately representing canonical domain
ontologies within the OBO Foundry. This is achieved by adding an extension to the semantics for
relationships in the biomedical ontologies that allows for treating canonical information as default.
Conclusions drawn from default knowledge may be revoked when additional information becomes
available. We show how this extension can be used to achieve interoperability between ontologies,
and further allows for the inclusion of more knowledge within them. We apply the formalism to
ontologies of mouse anatomy and mammalian phenotypes in order to demonstrate the approach.

Conclusion: Biomedical ontologies require a new class of relations that can be used in conjunction
with default knowledge, thereby extending those currently in use. The inclusion of default
knowledge is necessary in order to ensure interoperability between ontologies.

Background
As the volume of biomedical data and knowledge pre-
sented in scientific papers increases, there is an increasing
need to support formal analyses of these data and to pre-
process knowledge for further use in solving problems

and developing and testing hypotheses. The precise cap-
ture of biological data and knowledge and their correct
and consistent representation in computational form is a
basic pre-requisite for achieving these goals. Ontologies
may provide a basis for integrating, processing and apply-
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ing biomedical data. Their integration into a common
ontological framework is an indispensible step towards
the development of expressive knowledge bases. Interop-
erability between these ontologies would facilitate the
consistent use of biomedical data in the form of annota-
tions, allow for queries over multiple ontologies and form
a rich knowledge resource for biomedicine that could be
further used in solving problems and stating hypotheses.
Different ontologies have been developed by different
groups with different intentions. As a result, translating a
statement or transferring an annotation from one ontol-
ogy to another may not always yield the correct results.
The absence of clear principles for achieving interopera-
bility between different ontologies hinders the develop-
ment of advanced applications and analysis tools based
on these ontologies. A number of biomedical ontologies
exist, which cover domains such as anatomy [1], cell struc-
ture, biological processes, functions [2], diseases [3],
development [4], experimental conditions, phenotypes,
qualities [5] and relationships [6]. A subset of these are
unified under the umbrella of the Open Biomedical
Ontologies (OBO) Foundry [7]. The OBO Relationship
Ontology [6], together with the principles set forth in the
OBO Foundry [8] have contributed to better interopera-
bility between a large number of these ontologies. We
address here several remaining problems.

One particular difficulty in making these ontologies inter-
operable results from the existence of two particular types
of biomedical ontologies. The first group describes a
canonical or idealized view on a domain, such as an ontol-
ogy of canonical anatomy. The other group describes phe-
notypes, properties or phenomena, that – when
exemplified by individuals – may contradict knowledge
represented in the first group. We call the former group
canonical ontologies and the latter phenotype ontologies. An
example of a canonical ontology is the Foundational
Model of Anatomy [9] (FMA), which describes an ideal-
ized domain, i.e., it describes a prototypical, idealized
human anatomy. Many ontologies describing structure,
such as cell structure, histology or anatomy, are canonical
in this sense. On the other hand, a phenotype ontology
describes phenomena whose exemplification by individu-
als may lead to deviations from this idealized structure.
For example, the Mammalian Phenotype Ontology [10]
contains the term "absent tail" as a specific type of "abnor-
mal tail morphology". When a researcher would like to
refer to an individual mouse with an "absent tail", this
mouse does not comply with the canonical, idealized
mouse anatomy that excludes such abnormalities.

The integration of ontologies of these different types can-
not be achieved using methods developed hitherto, and a
new set of methods transcending the framework of classi-
cal logic must be introduced to avoid inconsistencies

while preserving the specificity of both types of knowl-
edge. We present an approach that uses nonmonotonic
reasoning to integrate canonical and phenotype ontolo-
gies.

Methods and Results
GFO-Bio
Integrating ontologies is a powerful means for achieving
interoperability. We adopt John Sowa's definition of
ontology integration [[11], p. 494], which he character-
ized as the process of finding commonalities between dif-
ferent ontologies A and B and deriving a new, integrated
ontology C that facilitates interoperability between infor-
mation systems based on ontologies A and B. There are
several approaches to achieving such an integration [12],
but there is no generally accepted solution.

Our approach to integration is based on top-level ontolo-
gies [13]. For our study, we use the top-level ontology
General Formal Ontology (GFO) [14]. GFO has several
features that distinguish it from other top-level ontologies
such as BFO [15,16] and DOLCE [17]. Among the rele-
vant features are the inclusion of a theory of levels of real-
ity [18], and the explicit incorporation of an ontological
theory of higher-order categories (see figure 1 for an over-
view of selected categories and an explanation of higher-
order categories). We have developed GFO-Bio [19], a
core ontology [20] for biology. It is formalized in the Web
Ontology Language [21] (OWL) and includes aspects of
faceted classification [22] combined with GFO's theory of
ontological levels of reality [18].

GFO-Bio comprises an ontology of individuals, similar to
other established upper biomedical ontologies. "Biologi-
cal individual" is introduced as a subclass of GFO's "Indi-
vidual" category. The classes are defined or restricted using
description logic statements. For example, a "Molecule" is
a subclass of "Material object", which has as part at least
two atoms. In addition, GFO-Bio contains another
branch, in which categories themselves are further
described and defined. This is an ontology of categories
within the biomedical domain. It is this part of GFO-Bio
that can directly represent directed acyclic graphs, which
are commonly used for many biomedical ontologies. For
an overview of the modules of GFO-Bio, see figure 2. In
the remainder of this section, the basic ontology used can
be considered to contain only two categories, "Individual"
and "Category". We prefix relationships between catego-
ries with CC and relationships between individuals with
II. Relationships between categories and individuals are
prefixed with CI or IC respectively. For example, the rela-
tionship IC-instance-of is the instantiation relation, and
the relation CC-isa is the is-a relation.
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Default rules and default logic
Using GFO-Bio as a framework for integrating biomedical
ontologies, we address the problem of accurately repre-
senting canonical and phenotype ontologies. A canonical
anatomy ontology such as the Foundational Model of
Anatomy [9] (FMA) establishes rules such as:

Every instance of a human body has as part an appendix.
(1)

This does not necessarily apply to every real human body:
an individual human body may lack an appendix as part.
However, the rule describes an idealized or canonical
human. Phenotype ontologies describe phenomena,
whose exemplification by individuals can be deviations
from these idealizations. For example, an individual may
be both an instance of a prototypical human body as
described in the FMA (which implies an appendix as part)
and an instance of the category "human body with absent
appendix". In a classical logical framework, such as those
commonly used in biomedical knowledge representation,
e.g. in the form of OWL [21], a formalization of the con-

junction of these two statements would lead to an incon-
sistency. A human body in the former case has an
appendix as a part, while in the latter case it does not.
Instantiating both categories creates the inconsistency. A
logical inconsistency in the formal sense can only arise
when the logical functor of negation is used. This functor
is hidden in concepts such as "absent X", as used in the
Mammalian Phenotype Ontology [10]. The formal detec-
tion of logical inconsistencies by inferences needs an
explication of negation.

In order to avoid terms such as "absent X" and make the
negation explicit, we adopt a modified form of the lacks
relation [23], which we explicitly define as:

Individual p lacks category C with respect to relation R, if
and only if there does not exist an x such that: pRx and x
is an instance of C.

We use binary relations of the kind x lacks-R C instead of
x lacks C with respect to R. For example, the fact that some
individual x lacks a category C with respect to the relation
has-part will be denoted as x lacks-part C.

Using the lacks relation may cause an inconsistency when
a canonical ontology and a corresponding phenotype

The modules of the biological core ontology GFO-BioFigure 2
The modules of the biological core ontology GFO-Bio. GFO-
Bio comes in two modules. The first focuses on individuals 
and defines categories of individuals like "Cell" or "Organism" 
in the Web Ontology Language (OWL). It contains 168 cate-
gories and 73 relations. The second treats categories as 
instances in OWL and describes interrelations between 
domains or whole domain ontologies. It is based on a theory 
of levels of reality and contains 43 categories and two addi-
tional relations. Both modules are related using the Semantic 
Web Rule Language [44] and DLVHEX rules.

The main categories of the General Formal Ontology (GFO) as outlined in [14, p. 70]Figure 1
The main categories of the General Formal Ontology (GFO) 
as outlined in [14, p. 70]. The basic distinction of GFO rele-
vant for this work relates to items and is between individuals 
and categories. Individuals are items that cannot be instanti-
ated. Categories are items that can have instances and may 
be predicated of other entities. The instances of categories of 
first order are individuals, while higher-order categories have 
categories as instances. For all items, the instance-of rela-
tionship is a relation of major importance, linking items 
(including categories) to the categories of which they are an 
instance.
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ontology are used in a classical logic formalism, such as
first order logic [24] or description logic [25]. The reason
is that classical formalisms enforce very strict interpreta-
tions, e.g. of quantifications like "every human", which
results in monotonicity of these formalisms: the inferences
drawn from a classical logical theory T remain true in
every extension of T with additional facts.

In order to prevent inconsistencies, while at the same time
preserving the intuition behind statements such as "a
human has an appendix as part", the interpretation of
such statements in the canonical ontology must be modi-
fied. We propose to use a nonmonotonic logic that treats the
statements provided in a canonical ontology as true by
default. Adding further knowledge, e.g. by referring to a
phenotype ontology or using a statement involving the
lacks relation (and therefore negation), may invalidate
previously drawn conclusions.

Several ways of treating default rules and exceptions in
logics have been proposed. The most popular among
these proposals are default logic [26], circumscription
[27,28] and autoepistemic logic [29,30]. We use default
logic for our application, because it admits a transparent
representation, and allows a semantically correct transla-
tion to a form of nonmonotonic, declarative logic pro-
grams called answer set programs [31].

In default logic, a default rule has the following form:

This means that if A( ) is true (prerequisite), and it is con-

sistent to assume that B( ), then C( ) can be derived.

Intuitively, A( ) is a prerequisite, and assuming B( )

adds justification for deriving C( ) from A( ). Thus, as

long as B( ) can be assumed, default logic concludes

C( ). In order to formalize our example of humans nor-

mally having an appendix as part, we would use the fol-
lowing default rule:

Here, the precondition is Human(x), the fact that x is a
human. Then, if it is consistent to assume that x has as part
an instance of Appendix, it is concluded that x has as part
an instance of Appendix. The definition of the relation IC-
has-part follows the schema in table 1.

Nonmonotonicity arises from "it is consistent to assume
that x IC-has-part Appendix", which means that if x IC-
has-part Appendix cannot be proven false from the given
facts, its addition to the knowledge base does not lead to
a contradiction. Adding the statement that x does not have
an appendix as part (x IC-lacks-part Appendix) would lead
to an inconsistency with x IC-has-part Appendix; therefore,
this rule could no longer be used to derive that x has an
appendix as part.

Answer-set programming, the formalism we use for our
implementation, can mimic default rules. It uses two
kinds of negation, called strong and weak negation. Strong
negation is the classical (monotonic) negation, as used in
the definition of the lacks relation. Weak negation, often
denoted as not A, corresponds to the above statements "it
cannot be proven that A is true", or "it is consistent to
assume that A is false".

Formalizing defaults in biomedical ontologies
In a canonical ontology, relationships between its catego-
ries can be interpreted as default relations. By default, a
human has some appendix as part. However, an instance
of a human, such as John, may lack an appendix as a part;
therefore, John is an instance of both "human" and
"human without an appendix" (or "absent appendix"). In
order to include canonical relationships between two cat-
egories, new relations must be introduced, such as CC-

A x B x

C x

( ) : ( )

( )
(2)

x
x x

x x
x x

x
x

Human x x Appendix

x Appendix

( ) :  - -  

 - -  

IC has part
IC has part

(3)

Table 1: Schema of introduced relations

Relation Domain:Range Definition

x II-R y Individual:Individual The individuals x and y stand in the relationship II-R.
x IC-R y Individual:Category There exists an individual z, such that: z IC-instance-of y and x II-R z.
x CC-R y Category:Category For all individuals a such that: a IC-instance-of x, a IC-R y.
x CC-canonical-R y Category:Category For all individuals a such that: a IC-instance-of x, by default, a IC-R y.
x II-lacks-R y Individual:Individual The individuals x and y do not stand in the relationship II-R.
x IC-lacks-R y Individual:Category The individual x does not stand in the relationship IC-R to y.
x CC-lacks-R y Category:Category For all individuals a such that: a IC-instance-of x, a IC-lacks-R y.

For each relation used in a biomedical ontology, a number of relations between categories, individuals and between individuals and categories can be 
created. The CC-canonical-R relationship is a default relation that is accompanied by axioms in an answer set program to describe its semantics as 
a default.
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canonical-has-part. Then, the relationship between
"human" and "appendix" becomes "human CC-canoni-
cal-has-part appendix". Further, this relationship corre-
sponds to a default rule:

Using a class of lacks relationships as introduced by [23],
we formalize the default operator in the rule above as:

In general, for each relation R between the categories in an
ontology, we create several new relations: CC-R for the
monotonic relationship between the categories, CC-
canonical-R for the nonmonotonic default relationship
between categories, IC-R for the monotonic relationship
between an individual and a category, such as "John IC-
has-part Appendix", meaning that John has some appen-
dix as part, and II-R for the monotonic relationship
between individuals. In addition, we introduce a class of
lacks relationships. A schematic view of the new relation-
ships introduced is shown in table 1. The schema is some-
what incomplete, because the introduction of canonical
relations can be extended to the class of lacks relation, in
the sense that some category may canonically lack some
other category with respect to a relation R. In this case, the
relation R must be replaced by lacks-R. This allows the
treatment of exceptions between categories. For example,
the category "Mouse with absent tail" can be defined as a
mouse which lacks a tail as part.

Implementation
We have used a technique known as DL-programs [32] to
implement rules together with the OWL version of GFO-
Bio. The system DLVHEX allows for a bidirectional flow of
information between an answer-set program and a
description logic knowledge base or ontology; thus, it is
well suited for our purposes. DLVHEX is based on the
well-established datalog system DLV [33].

Relationships that are used in GFO-Bio are made available
in the DLVHEX system. It then becomes possible to
express the necessary axioms for relations of the kind CC-
canonical-R. For example, for the relationship CC-canon-
ical-has-part, the following axiom is added, correspond-
ing to formula (5) in DLVHEX:

IC-has-part(X,Y) :-
ind(X),class(Y),class(Z),inst(X,Z),

CC-canonical-has-part(Z,Y),

not IC-lacks-part(X,Y).

This means that if two categories Z and Y stand in the rela-
tion CC-canonical-has-part, and it cannot be proven that X
IC-lacks-part Y (not IC-lacksPart(X,Y)), then it is con-
cluded that an individual X, which is an instance of Z,
stands in the relation IC-has-part to the category Y. A sim-
ple example illustrating this reasoning is shown in figure
3.

A plot showing the performance of our implementation
for a common type of query on a mid-sized ontology is
shown in figure 4. The sample test indicates that queries
can be answered, but require several minutes. While this
may be insufficient in practice for some applications, we
believe that it shows that our implementation works, but
needs further improvement. An extensive performance
evaluation of the proposed method after some improve-
ments on the implementation is subject to future work.

Ontology integration with GFO-Bio
Integrating biological ontologies using GFO-Bio involves
several steps. First, an OWL-DL version of each ontology
must be aquired or produced. OWL-DL is a sufficiently
expressive language because negation is available and log-
ical inconsistencies can be formally detected in the OWL-
DL framework. For the purpose of this conversion, we
provide a tool [19] that converts OBO format files [34]
into OWL-DL. This conversion yields correct results for
ontologies that are built according to the OBO Foundry
principles, but may provide incorrect conversions for
other ontologies available in the OBO format. The gener-
ated OWL-DL file must then be imported by GFO-Bio.
Each top-level class of the imported ontology is then
defined, at least partially, using categories from GFO-Bio's
individual tree. For example, the "Cell" category of the
Celltype Ontology [35] must be declared a subclass of (or
an equivalent of) GFO-Bio's "Cell" category. Further, a
second OWL-DL file can be produced for each integrated
ontology containing the ontology's categories as instances
of GFO-Bio's category branch. We also provide a tool for
performing this conversion for OBO files. This file must
be imported by GFO-Bio as well. In this file, relationships
between categories, as directly expressed in the OBO-style
directed acyclic graphs (DAGs), are modelled as relation-
ships between OWL instances.

For example, the relationship expressed in the DAG of the
Gene Ontology's cellular component ontology, "Mem-
brane part-of Cell", is represented twice in GFO-Bio: First,

forall 

if  - - -   and  -

x C C

C C x

, , :1 2

1 2CC canonical has part IC insttance of

IC instance

-  then

by default

there exists a  -

C

y y

1,

:

: --   and  - -of II has part C x2 y

(4)

forall 

if  - - -   and  -

x C C

C C x

, , :1 2

1 2CC canonical has part IC insttance of

IC lacks part

-   and

it cannot be proven that  - -  

C

x C
1

22

2

,

:

then

there exists a  - -   and  - -y y C xIC instance of II has paart y

(5)
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"Membrane" and "Cell" are created as classes in OWL, and
the following restriction created (in line with [36]):

SubClassOf(Membrane restriction(II-part-
of someValues From(Cell)))

In addition, the Gene Ontology's "Cell"
category is declarevalent to GFO-Bio's
"Cell" category. Second, "Mem brane" and
"Cell" are treated as instances of GFO-
Bio's "Cat egory" class, and a relation CC-
part-of ('CC' indicating thcategory-cate-
gory reading of the relation) between "Mem
brane" and "Cell" is asserted:

Individual(Membrane value(CC-part-of
Cell))

While neither the first nor the second step alone require
more than the description logic fragment of OWL, in con-
junction they result in an OWL-Full [21] ontology.

For an adequate integration of canonical and phenotype
ontologies, nonmonotonically treated formulas must be
added. This requires the addition of an answer set pro-
gram for each relation CC-canonical-R and the corre-
sponding relations IC-R and IC-lacks-R:

IC-R(X,Y) :-
ind(X),class(Y),class(Z),inst(X,Z),

CC-canonical-R(Z,Y),

not IC-lacks-R(X,Y).

Additions to the OBO Relationship Ontology
The OBO Relationship Ontology [6] requires several addi-
tions for our proposal to succeed. First, the classes of lacks
relations, as described in table 1, must be added. This will
allow lacking body parts to be defined in ontologies such
as the Mammalian Phenotype Ontology [10].

In the description logic variant of the Web Ontology Lan-
guage [21,25] (OWL-DL), lacks relations can be expressed
using negated statements. However, lacks relations are
reduced to relations between individuals in a different
way compared to what is done for most other relations in
the OBO Relationship Ontology (cf. table 1). Ontologies
developed directly in OWL-DL could use negation to
avoid reference to lacks relations at all.

Second, canonical-R relations must be included as rela-
tions between categories, using the semantics introduced
here. In particular, the canonical-R relations require a
nonmonotonic knowledge representation formalism, and

cannot be formalized using any form of classical logic. We
presented one possible implementation using answer set
semantics, but there are other alternatives. At its core,
however, the definition of the canonical-R relations
remains the same in all possible formalisms dealing with
defaults: if it is consistent to assume that some relation
holds, this relation holds.

Use case: Integration of Mouse Anatomy and Mammalian 
Phenotype Ontology
The method we propose can be used in conjunction with
existing tools and ontologies. Little effort is required to
modify current ontologies to fit within our proposed
methodology. Below, we demonstrate how to re-interpret
the Adult Mouse Anatomy Ontology [1] (MA) and the
Mammalian Phenotype Ontology [10] (MP) to fit within
our proposed framework, and discuss problems with the
current formalization in the MP.

Mouse Anatomy
The Adult Mouse Anatomy Ontology (MA) uses two rela-
tionships, is-a and part-of. We introduce one new rela-
tionship to the MA, which we call canonical-has-part,
and automatically add for each statement of the type

X part-of Y (6)

the new statement

Y canonical-has-part X. (7)

We believe that this will result in most cases in correctly
interpreted default rules, but this method will generate
some inadequate statements. Therefore, manual verifica-
tion will be necessary. In addition, some of the generated
statements may not contain default rules, but are univer-
sally true, while some of the currently present statements
involving part-of may not be universally true, but repre-
sent default rules. Therefore, automatically generating
default rules from existing statements can only be the first
step, and in the continued development of the MA, a dis-
tinction must be made between default rules and univer-
sally true statements. This may make it necessary to
include additional relationships between categories in the
MA, e.g. canonical-part-of and has-part.

Mammalian Phenotype Ontology
The Mammalian Phenotype Ontology (MP) defines,
among others, categories labelled by terms such as absent-
X. In these terms, the hidden negation must be made
explicit. The MP is available in two versions, one contain-
ing only is-a relations, and another experimental version
that attempts to define terms using relationships such as
inheres-in [17] and categories from PATO [37] (an ontol-
ogy of phenotypic properties), MA and others. The MP
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(page number not for citation purposes)



BMC Bioinformatics 2007, 8:377 http://www.biomedcentral.com/1471-2105/8/377
provides property concepts such as absent_tail, although
we believe that it would be more adequate to term this
property absence of a tail, because absent_tail suggests a
reading as an object concept, namely as a tail which is
absent. These properties can be composed with object
concepts, e.g. adult mouse, in order to refer to more specific
object concepts like an adult mouse without a tail (without
explicating all of these in advance). Formally, the category
absent_tail is defined as the intersection of PATO:lacking
physical parts, inheres-in MA:adult mouse, and towards
MA:tail. The translation to OWL [36] yields

EquivalentClasses(absent_tail

intersectionOf(

PATO:lacking_physical_parts

restriction(inheres-in someValues
From(MA:adult_mouse))

restriction(towards someValues-
From(MA:tail))))

Such formalization has the problem that a reduction of
absent_tail to relationships between individuals is inap-
propriate. It becomes manifest in restriction(towards
someValuesFrom(MA:tail)), which enforces the existence
of an instance of MA:tail in the OWL model [38] – yet,
ontologically, there is no instance of tail if the mouse does
not have a tail. If "absent tail" is taken literally, i.e., a "vir-
tual" tail with a property of "absence" is accepted in the
OWL model, the immediate objection is weakened. How-
ever, this would either imply that the towards link points
to an arbitrary tail of some other entity, or that the mouse
with the absent tail does have a tail (which may have the
propery of being "absent"). This causes at the very least

In figure (a), the left side shows five individuals (instances of GFO-Bio's "Individual" category) and the right side contains four categories (instances of GFO-Bio's "Category" category)Figure 3
In figure (a), the left side shows five individuals (instances of GFO-Bio's "Individual" category) and the right side contains four 
categories (instances of GFO-Bio's "Category" category). In addition, a number of relations are illustrated between the individ-
uals, between the categories, and between individuals and categories. The relation R, denoted as II-R, is transitive. Figure (a) 
and the transitivity of II-R should be seen as the input ontology. In figure (b), the result of a classification using a description 
logic reasoner is illustrated. Here, the transitivity of the CC-isa relation and the relation II-R is resolved, reflected by the addi-
tional links. Figure (c) shows the result from applying the answer set rules formulated in DLVHEX. In this step, the default rela-
tionship between two categories, denoted by CC-canonical-R, is resolved. Two additional IC-R links are created for one 
individual. For the other individual, which instantiates the same category, these links are not created, because the IC-lacks-R 
relation blocks them.
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some inconveniences, e.g. when querying such a model
for tails, one must pay attention to exclude all virtual tails.
We expect that a general application of this approach to
many object classes cannot be controlled with reasonable
effort. The underlying problem here is a different kind of
concept composition compared to that which is com-
monly employed in description logics and the semantics
of the OBO file format [36]. For composing the concept
absent_tail with recourse to tail, a direct link from
absent_tail to the OWL class MA:tail would be required
instead of a link to instances of the class MA:tail. However,
links on the class level are not available if the formaliza-
tion is supposed to adhere to the decidable description
logic variant of OWL.

Other problems occur if the lack of a certain part is con-
sidered with respect to (sub-)parts of it. For example, a
caudal vertebra is a part of a tail. The logical definition for
absent caudal vertebra can be formulated similarly to the
one for the absent_tail. Then the question arises to which
entity the PATO property inheres-in should link. If tail is

chosen, this definition cannot be applied to mice lacking
a tail, because then there is nothing to inhere in. Another
option is to link to mouse instead. In both cases, when-
ever a mouse lacks a tail as part, it also lacks all parts of the
tail as part. Since each instance of caudal vertebra which is
a part of a mouse is part of its tail, a mouse without tail
lacks a caudal vertebra. This conclusion cannot be drawn in
the approach currently taken by the MP. Moreover, we do
not want to conclude that a mouse has a caudal vertebra as
part when it lacks a tail.

Therefore, our suggestion is to introduce the relationship
lacks-part and to define terms of the type absent_X as
standing in the lacks-part relationship to X. Then,
absent_X terms refer to categories of objects instead of
properties, and those categories can be viewed as a reifica-
tion of the binary lacks-part relation. For example,
absent_tail would be defined as

[Term]

id: MP:0003456

name: absent tail

relationship: lacks_part MA:0000008 ! tail

By design, this use of lacks-part does not have the prob-
lem of non-existent instances. It also does not permit the
conclusion that a mouse has a caudal vertebra as part when
a mouse lacks a tail.

Discussion
Meaningful integration of the numerous biomedical
ontologies is a major task with many challenges. Cur-
rently, the infrastructure for such integration is developed
in the form of top-level ontologies, biomedical core
ontologies and logic-based inference systems.

Concept conversion
The formalism we introduced requires reformulating the
definitions for the categories expressed in phenotype
ontologies. Categories in the form "absent-X" should be
defined by, e.g., CC-lacks-part X, where X is a category in
some canonical ontology. In some cases, this conversion
can be done automatically using simple pattern matches.
The Mammalian Phenotype Ontology [10] contains 395
categories of the type "absent-X", which indicate a CC-
lacks-part relationship. However, it is likely that an
amount of manual curation will be required to convert
relevant concepts into the required form. We believe that
the advantages gained by having a common framework
for integrating a large number of biomedical ontologies
justifies this effort, in particular since it also allows for a
semantically richer definition of terms.

This test uses the Adult Mouse Anatomy Ontology with 2740 classesFigure 4
This test uses the Adult Mouse Anatomy Ontology with 
2740 classes. For testing, a fixed number of instances of Adult 
mouse is generated for a single run. Moreover, each of the 
mouse instances is assigned a single exception by means of a 
lacks-part tail statement. Using this dataset, a query for all 
parts of each mouse is run, which yields 2729 parts per 
mouse (derived from applicable canonical relationships). As 
intended, tails are not contained, and neither are any parts of 
tail like caudal vertebra. The graph shows the number of sec-
onds for test runs with 0 to 80 mouse instances. For some 
numbers of instances, the time consumption is considerably 
less than for others. The difference of over 300 seconds is 
caused by the answer set solver DLV. We have been unable 
to examine the source code in order to determine the rea-
son for this behaviour. The dataset used for this test can be 
accessed from the project webpage [45].
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Defaults and canonical knowledge
We introduce the notion of "default knowledge" as a tech-
nical term within the formalism we propose. We do not
discuss what a "default" is, or when a piece of knowledge
becomes a default, in contrast to merely contingent
knowledge. Developers of domain ontologies must
decide this. Widespread acceptance of some fact, its sanc-
tion by scientific discourse, or its implicit use in scientific
writing may provide starting points for finding defaults.
These principles have been used to construct the Founda-
tional Model of Anatomy [9] (FMA). The Mammalian
Phenotype Ontology classifies categories almost exclu-
sively under categories named "abnormal-X". The ontol-
ogy of phenotypic properties (PATO) contains the
property of being "abnormal". Each of the corresponding
categories and annotations can be investigated and the
corresponding default rule identified. Not all pieces of
information contained in ontologies such as the FMA will
be default knowledge, but we expect that a significant
number of facts can be translated to the formalisms we
propose, thereby making the nature of the fact as a default
explicit.

There is a difference between canonical and default
knowledge, in particular in the context of anatomy.
Canonical human anatomy, for example, describes an
idealized, prototypical human being. This does not neces-
sarily coincide with a normal human being, i.e. in the
sense of statistically averaged values. Defaults, on the
other hand, tend to capture in their commonsense usage
the normal cases of a category. We believe that the frame-
work of default logic, compared with other systems, pro-
vides the most adequate interpretation for canonical
knowledge. However, while certainly needed, a precise
distinction between normal, default and canonical
knowledge is out of the scope of this study.

Comparison with other approaches
The important role of accommodating exceptions and
defaults in biomedical knowledge representation has
been recognized previously [39], where patterns to deal
with a variety of cases were introduced and discussed.
These cases are based on the description logic fragment of
OWL [21], and therefore monotonic logic. In [39], three
types of exceptions that occur in biomedical knowledge
bases are distinguished:

1. Single exceptions: "Arteries carry oxygenated blood"
except for the pulmonary artery. In [39], it is proposed to
reformulate this statement to "Arteries except the pulmo-
nary artery carry oxygenated blood".

2. Exceptions due to context: "The normal human manus
has five digits", with "human" and "normal" being treated
as explicit contexts.

3. Unpredictable number of exceptions, exceptions from
exceptions, etc., such as drug uses, contraindications and
interactions.

We offer a method for representing these types of excep-
tions using a nonmonotonic knowledge representation
formalism. We use answer set programs to provide the
semantics for treating knowledge in OWL as default
knowledge with additional exceptions. This does not
exclude the possibility to treat these types of exceptions
exclusively in a monotonic logic such as OWL where
appropriate, for which [39] provides a solution. The solu-
tion in [39] to the example of arteries carrying oxygenated
blood, except the pulmonary artery, has the problem that
it must be explicitly known that some artery is not the pul-
monary artery, in order to conclude that this artery carries
oxygenated blood. There may be cases where this is not
wanted, especially if the exception occurs very rarely. In
particular, if there is only one rare exception to a rule and
some statement influencing the property which changes
with this exception is asserted, then the knowledge engi-
neer will usually make this exception explicit, and ignore
it otherwise. Then, a question whether an artery carries
oxygenated blood evaluates to true, except when it is
proven that this artery is the pulmonary artery. On the
other hand, the solution proposed by [39] is guaranteed
to provide the correct inference in every case. Depending
on the users and uses of a knowledge base or ontology,
different representations for this case may be selected, and
in many cases the treatment in [39] is adequate.

Case two is solved by explicitly introducing a context argu-
ment, in the form of additional properties, e.g., by intro-
ducing some relation hasAnatomicalStatus which maps to
"normal". Then, a Mouse that has an anatomical status
"normal" could have, e.g., a tail and a head as part. If a
mouse had no tail, it can be concluded that it is an ana-
tomically abnormal mouse. However, then it would be
impossible to conclude that it still has a head. An exten-
sion to the solution in [39] would be to make the context
more fine-grained, by specifying mouse with anatomically
normal tails, heads, and so on. This comes down to spec-
ifying an enormous number of exceptions in a monotonic
logic, and in order to obtain a correct answer to a query for
all the parts of some individual mouse, all these excep-
tions must be explicitly excluded. It would not be possible
to simply state that some entity is a mouse in order to
obtain its parts. Instead it is required to specify explicitly
which parts are normal and abnormal, which means in
essence to add the answers to the query asked.

The third case in [39] is closest in spirit to our work, as one
of the proposals is to use a hybrid reasoning system in
order to deal with it. We have extended this idea by giving
a formal account of our treatment of exceptions, which is
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based on a well-studied nonmonotonic logic, and is
implemented in a computationally tractable framework.
It can also be used in conjunction with appropriate upper
ontologies. Further, we have shown how to use this for-
malism to achieve interoperability between canonical and
phenotype ontologies in biology. And finally, we give an
implementation of our ontology and support for reason-
ing over exceptions. This could be achieved because recent
years have seen an increasing effort in developing reason-
ers for the Semantic Web and extending them in various
ways, among them the implementation we are using,
DLVHEX.

We believe that our solution to the problem of exceptions
and deviations from a canonical ontology is more general
than the proposal in [39]. In our opinion, the knowledge
contained in a canonical ontology is inherently default
knowledge. There is no adequate solution for representing
this type of knowledge in a monotonic knowledge repre-
sentation formalism. Representation in monotonic logic
requires exceptions to be encoded in the ontology either
as a list of exceptions to an axiom, or using a general
"abnormality" predicate. For example, the fact that mice
usually have some tail as part can be represented as
"Mouse has-part Tail except when ..." followed by a com-
plete list of exceptions. Alternatively, "Mouse" can be
replaced by "normal mouse" in the rule, and a mouse
without a tail is not normal. The first solution requires
complete knowledge of all known exceptions. These must
additionally be explicitly excluded in every query for parts
of the mouse. The second way does not require this
knowledge of exceptions, but allows for no further infer-
ences once a mouse is known to be not normal. Defaults
and exceptions cannot be dealt with in a monotonic logic
without substantially modifying the canonical ontology,
and limiting the ability to query the ontology.

Limitations
A major drawback of the system we are using, DLVHEX, is
its use of RACER [40] as a description logic reasoner and
of DLV [33] as a datalog system. RACER and DLV are pro-
prietary software. In order to be of general use and high
quality, an implementation entirely based on free soft-
ware is beneficial, if not necessary [41,42].

A number of formalisms have been proposed as a solution
to handling defaults in Semantic Web representation lan-
guages or other knowledge representation formalisms.
Many require modifying the language, and therefore
changing tools that are used to develop ontologies. Many
biomedical ontologies are developed using tools such as
OBO-Edit [43] by biology experts, but not necessarily
experts in logic or formal ontology. The solution we pro-
pose requires no changes to existing tools, since we are
using a hybrid reasoning mechanism. Tools that are cur-

rently in use can be used further by the ontology develop-
ers. The additional semantic features that allow for the
treatment of canonical relations as defaults are main-
tained separately from the ontologies in which they are
used.

Conclusion
In this paper we tackle the problem of integrating biomed-
ical ontologies to facilitate interoperability among them
and thus among information systems based on them. We
particularly focus on adequately treating two kinds of
ontologies, namely canonical and phenotype ontologies,
e.g., the Mouse Anatomy ontology and the Mammalian
Phenotype ontology. Given this distinction, we have
argued that canonical ontologies represent default knowl-
edge. Their integration with ontologies covering pheno-
types may thus lead to inconsistencies if used within a
classical logic framework, because some phenotypic
descriptions are exceptions to defaults. We have shown
how existing techniques from knowledge representation
can be used to resolve these problems. Moreover, our
solution uses the biological core ontology GFO-Bio as an
ontological foundation, which provides support for our
solution through higher order categories and relations.
Integrating canonical and phenotype ontologies, how-
ever, requires both an appropriate ontological basis as
well as a nonmonotonic representation formalism.

Our work primarily extends the OBO Relationship Ontol-
ogy [6], and requires few changes to domain ontologies.
In particular, our proposal does not require modifications
in the tools that domain ontology developers use for
curating ontologies, or changes in the way these ontolo-
gies are developed and stored. Our solution remains fully
compatible with the OBO representation format, and
addresses all logical, formal and computational require-
ments in our proposed extension to the OBO Relation-
ship Ontology. It is there that nonmonotonic semantics
must be made available to users. In its current form, based
on a classical, monotonic logic, the OBO Relationship
Ontology cannot support interoperability between all
ontologies that will become part of the OBO Foundry, in
particular between anatomy and phenotype ontologies.
Our proposal aims to bring about effective interoperabil-
ity and integration between the ontologies in the OBO
Foundry without the need to modify the representation
formalism or the tools used in ontology curation and
analysis.

Availability and Requirements
Project name: GFO-Bio/NMR

Project homepage: http://bioonto.de/pmwiki.php/Main/
NonmonotonicReasoning
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Operating systems: GFO-Bio and axiomatization are plat-
form independent, reasoning using DLVHEX requires
GNU/Linux or Mac OS X.

Programming languages: OWL, Semantic Web Rule
Langue (SWRL), datalog, Java Other requirements: Parts
of our implementation require DLVHEX, DLV and
RACER.

License: Modified BSD License. DLVHEX requires RACER
and DLV. Both are proprietary software.
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