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Increased connectivity with the mainland has led to the arrival of many invasive species to the Galápagos
Islands, including novel pathogens, threatening the archipelago’s unique fauna. Here we consider the
potential role of the mosquito Aedes taeniorhynchus in maintaining the flavivirus West Nile virus [WNV]
should it reach the islands. We report on three components of vectorial capacity - vector competency,
distributional abundance and host-feeding. In contrast to USA strains, Galápagos A. taeniorhynchus is a
competent and efficient WNV vector, capable of transmission at 5 days post-exposure. Based on 25
blood-meals, mammalian feeding suggests a potential bridge vector role should contact with key
amplification taxa occur. Vector population abundance is driven primarily by climatic factors, peaking
between January and March. As a ubiquitous competent vector, A. taeniorhynchus may facilitate future
WNV establishment, therefore it is vital to ensure the biosecurity of Galápagos to prevent introductions of
pathogens such as WNV.

T
he Galápagos Islands hold immense conservation value. The archipelago, famous for its unique range of
endemic fauna and flora which has evolved in isolation over millennia, is recognised as a United Nations
Education Scientific and Cultural Organisation [UNESCO] World Heritage site1 and generates considerable

economic income for Ecuador through ecotourism. However, as increasing connectivity with the continental
Americas, primarily driven by a rapidly expanding tourism industry and growing human population, diminish
geographic barriers, the Galápagos ecosystem is threatened by invasive species and novel pathogens2–4. Here we
quantify epidemiological factors key to the establishment and transmission of West Nile virus [WNV] should this
mosquito-borne virus be introduced to Galápagos, focusing on Aedes taeniorhynchus, a native species and the
most abundant and widely-distributed mosquito on the islands5.

West Nile virus (Flaviviridae) is maintained in an avian host - mosquito vector enzootic cycle, but affects a
broad range of hosts6. After emergence in the USA in 1999, WNV showed unprecedented severity and range
expansion6,7. It was associated with high rates of mortality with subsequent declines of several US bird species,
leading to concern over potential impacts in the rest of the Americas8. Although WNV has yet to be detected in
continental Ecuador, the virus is known to have reached South America by 20049,10. While this region has not
experienced the same impact on people and wildlife from WNV as seen in the USA, possibly due to a degree of
cross-protection from related viruses already in circulation, the impact of WNV incursion to Galápagos could be
grave. Critically, the endemic fauna of Galápagos have evolved in the absence of any native flaviviruses and
therefore lack previous exposure to the genus (authors’ unpublished data11). As such, the endemic fauna are
immunologically naı̈ve and consequently may show heightened susceptibility to WNV infection and disease12.

Predicting the likely infection dynamics of WNV in Galápagos is useful to both conservation and public health
practitioners. Understanding the relative importance of candidate vector species could guide interventions, such
as mosquito control, to limit the threat of WNV. Currently, little is known of the ecology of Galápagos mosqui-
toes, or their potential role in WNV transmission.

The introduced mosquitoes, Aedes aegypti and Culex quinquefasciatus have been present on Galápagos since
the 1980s. Aedes aegypti feeds almost exclusively on humans, and therefore is not a concern for wildlife disease.
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Previously, we discussed the WNV vector competency of the invasive
Culex quinquefasciatus, a notorious vector of wildlife disease else-
where, and showed it to be moderately competent3. However, its
distribution is limited to habitats heavily modified by humans, and
it is far less abundant than A. taeniorhynchus3,13. Here, we focus on
the latter species since, if a competent vector, it is likely to be the most
important species for WNV epidemiology in Galápagos.

Aedes taeniorhynchus is a salt marsh-associated coastal species
that can swarm in large numbers14. The Galápagos strain colonised
the Islands naturally around 200,000 years ago, and is believed to
occur throughout the archipelago in both human modified and nat-
ural habitats, including the highland interiors5,15. Although A. tae-
niorhynchus is not considered to be an important WNV vector
elsewhere16, the Galápagos strain shows deep genetic divergence
from populations in the rest of the Americas to the extent that it
may constitute a distinct, locally adapted species5 with diverged vec-
tor ecology.

Vectorial capacity provides a quantitative summary of the basic
ecological attributes of a vector population in relation to parasite
transmission17,18. It has been used to describe the relative importance
of ticks and mosquitoes in the transmission of diseases such as mal-
aria, filariasis and dengue19–21. We present three key components of
WNV vectorial capacity of Galápagos A. taeniorhynchus. Firstly, we
look at mosquito-virus interaction. Elsewhere A. taeniorhynchus is a
known vector for zoonotic viral pathogens, including Venezuelan
equine encephalitis virus22, however non-Culex species are infre-
quently considered important for WNV transmission due to poor
vector competency (or inappropriate feeding behaviour)16,23. In the
USA, despite being found in WNV-positive surveillance pools since
2002, experimental infection of A. taeniorhynchus showed infection
rates of no greater than 12% and zero transmission23,24. There can
however, be extensive geographical variation in WNV vector com-
petency for the same mosquito species25. Secondly, we look at the
distribution of A. taeniorhynchus populations in Galápagos and test
ecological and environmental correlates of temporal and spatial vari-
ation in their abundance. Thirdly, we examine feeding patterns,
comparing blood-meal fractions against the host community com-
position. Previous research suggests that Galápagos A. taenior-
hynchus utilises both reptile and mammal blood5; we hypothesise
that avian species would also be included in its diet and that A.
taeniorhynchus could act as an enzootic bridge vector for WNV
transmission in Galápagos.

Kilpatrick et al (2006) previously evaluated the introduction risk
of WNV posed by natural and human mediated transport routes
to Galápagos, based on an assumption that WNV would invade
and persist in Galápagos (i.e. R0 would be . 1)26. Data were not
then available to make an informed assessment of the likelihood of
establishment or spread of WNV on the islands. Here, through the
evaluation of vector competence, distribution, abundance and host-
feeding behaviour of the predominant mosquito species on the
Islands, we provide local data on parameters essential to inform
impact risk assessments and mitigation measures for WNV reaching
the Galápagos archipelago.

Results
Vector competency. Galápagos A. taeniorhynchus demonstrated
evidence of both midgut infection (52%) and ability to transmit
(11%) WNV at 5 days EIP. At 10 days, transmission rates were
over 30%. Detection of infection (x2 5 8.1, df 5 2, P 5 0.015) and
dissemination (x2 5 25.0, P 5 0.000004) differed significantly across
the three EIP time-points, however transmission rates were not
significantly different (x2 5 4.1, df 5 2, P 5 0.13) (figure 1).
Galápagos A. taeniorhynchus showed a high efficiency for WNV
infection to disseminate beyond the midgut (43%, 95% and 100%
of infected mosquitoes, at 5, 10 and 14 days post-exposure
respectively). Moderate transmission efficiency was demonstrated;
21.4%, 35% and 40.9% of mosquitoes with infections, and 50%,
36.8% and 40.9% of those with disseminated infections, could
transmit at days 5, 10 and 14 respectively.

Abundance and distribution. A total of 26,683 mosquitoes were
captured on Santa Cruz Island in the five-year period, January
2006 to February 2011, in a total of 1,073 individual overnight
collections. Aedes taeniorhynchus represented 88% of all
mosquitoes captured (Culex quinquefasciatus was the only other
mosquito species caught) and trap-counts ranged from 0 to over
3,000 individuals per night. Large numbers of A. taeniorhynchus
were frequently observed, often with aggressive biting behaviour,
at coastal sites outside urban areas. The species was encountered at
all of the 131 sample sites across Galápagos at least once during the
course of monitoring, including the five inhabited islands (Santa
Cruz, Baltra, San Cristobal, Floreana and Isabela) plus the islands
of Santiago, Española and Santa Fe. A map of the sampled

Figure 1 | West Nile virus vector competency rates of Galápagos Aedes taeniorhynchus. All groups were exposed to the WNV02-1956 strain of WNV

with mean titer of 7.9 log10 PFU/mL blood.
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distribution of A. taeniorhynchus across the archipelago is shown in
figure 2.

Mosquito abundance generated non-normal count data (Shapiro-
Wilks test; W 5 0.23, P , 0.001). In constructing a predictive model
of abundance, the backward selection procedure yielded a zero-
inflated GLM which was found preferable to a standard GLM
(Vuong test V 5 2.698, P 5 0.003). The significant influences on
A. taeniorhynchus abundance (model summarized in table 1) were
identified as ‘vegetation zone’, ‘lunar cycle’, concurrent ‘maximum
tide height’, ‘mean temperature’, ‘prior average rainfall’, and ‘dis-
tance to urbanisation (logged)’. Simultaneously, lower ‘mean tem-
perature’ and lower ‘prior average rainfall’ controlled zero-counts,
i.e. when absence of A. taeniorhynchus was expected. Temporal
evolution of the meteorological parameters can be seen against pre-
dicted vector population in Supplementary figure S1 online.
Although certain vegetation habitats were predicted to have rela-
tively higher abundance (agricultural, urban and mangrove), min-
imal spatial dependence existed, verified visually by exponential
variograms of model residuals and site latitude-longitude, and by a
geostatistical model fitted to an object including latitude and longit-
ude (range 5 0.14, partial sill 5 0.21, nugget 5 1.64). The model
performed adequately when tested at novel sites; a paired t-test
showed no significant difference (t 5 21.46, df 5 329, P 5 0.146)
when both model-predicted abundance and field-observed counts
were transformed to the ‘relative abundance risk’ score. The relative
abundance of A. taeniorhynchus varied in a bimodal distribution
across months of the year (Wilcoxon signed rank test on means; V
5 78, P 5 0.0005). Peak abundance occurred between February and
March, with a secondary increase around September (figure 3).

Feeding behaviour. Nearly half of blood-meal samples came from
Santa Cruz Island, in the vicinity of Vivienda 10 in the Galápagos
National Park (a coastal site around 15 metres above sea level) or

Loyola lodge (a highland site in the transitional/agricultural zone).
Additional collections were made elsewhere on Santa Cruz, on San
Cristóbal (near Puerto Baquerizo), Baltra (FAE airbase) and Isabela
Islands (Puerto Villamil and one highland site), figure 4. From a total
of 121 engorged or gravid mosquitoes collected from the field, 25
vertebrate DNA amplifications were successfully sequenced to
provide host data for Galápagos A. taeniorhynchus. The fraction of
mosquito blood-meals from each host species according to major
habitat is shown in figure 5.

The majority of blood-meals identified were derived from mam-
mals (84%, n 5 21). One reptilian blood-meal (marine iguana,
Amblyrhynchus cristatus) was detected, and three from avian species
– all poultry (two chicken, Gallus gallus and one turkey, Meleagris
gallopavo) in the highlands. Human beings and Bos taurus (domestic
or wild cow) were the most commonly bitten hosts, each providing
24% (n 5 6) of the blood-meals. No mixed species blood-meals were
detected.

Forage indices (Fi) indicate a significant avian feeding aversion by
A. taeniorhynchus. Finch species (Geospiza spp), flycatchers and
mockingbirds each constituted at least 8% of the vertebrate com-
munity, yet no blood-meals were derived from them (F , 1; P ,

0.01). In contrast, mammals were preferentially fed on in fractions
significantly greater than their abundance, for example in the high-
lands A. taeniorhynchus had a forage ratio of 3.8 (P , 0.01) for pigs
(Sus scrofa) and of 7.5 (P , 0.001) for cows (Bos taurus). On the
coast, the domestic dog (Canis familiaris) was a more predominant
host (F 5 6.8; P , 0.01).

Discussion
A fundamental component of investigating emerging pathogens in a
new ecosystem is to identify factors which influence their establish-
ment and infection dynamics. Such knowledge assists in public
health policies and the design of control and mitigation measures

Figure 2 | Sampled habitat distribution of Aedes taeniorhynchus in Galápagos; larger circles indicate a greater average abundance (mean number of
mosquitoes captured per night)
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that can be implemented before disease impacts occur. In this study
we aimed to quantify the WNV vector competence, relative abund-
ance, distribution and local feeding behaviour of Aedes taenior-
hynchus, the most widespread mosquito in Galápagos. Although
further components of vectorial capacity exist, useful epidemiologi-
cal predictions can still be made by considering dominant entomolo-
gical variables44, and in combination, these components define the
epidemiological role of A. taeniorhynchus for WNV in Galápagos,
should this pathogen reach these islands. Whilst West Nile virus has
not yet emerged in Galápagos, it is important to assess the threat of
novel pathogens reaching this region of high conservation and evolu-
tionary significance1,3. Although further evidence of interaction with
competent vertebrate hosts is required, our results indicate that, in
the event of WNV introduction to Galápagos, A. taeniorhynchus has
several characteristics favourable to supporting cycling of the virus,
including the capacity to act as a ‘bridge-vector’ such as broad feeding
habits, high species distribution and abundance and an ability to
transmit the pathogen3,45.

Firstly, we found that Galápagos A. taeniorhynchus is a highly
competent vector; 30% could transmit WNV within 10 days of expo-
sure to a biologically relevant dose. In contrast, USA strains of A.
taeniorhynchus have been demonstrated to be inefficient WNV

vectors, with no transmission and low infection rates 12-15 days
after exposure to 7.2 log10 PFU/mL22. Furthermore, whilst USA A.
taeniorhynchus appears to have a midgut escape barrier to WNV
infection (3% dissemination rates; although 93% transmission when
inoculated intrathoracically), Galápagos A. taeniorhynchus shows no
indication of this barrier (dissemination efficiency of up to 100%)
and thus is a more efficient vector. This disparity in vector compet-
ence (although we used a more recent clade of WNV dominating the
Americas, WN02, and not NY99) could be a phenotypic expression
of the strong genetic divergence between Galápagos and continental
A. taeniorhynchus5. A further consideration is the absence of
Wolbachia symbionts in Galápagos A. taeniorhynchus29, a bacterium
which elsewhere has been demonstrated to reduce the flavivirus
transmission ability of vectors46. Importantly, Galápagos A. taenior-
hynchus can transmit WNV as early as 5 days post-exposure.
Considered alongside gonotrophic length for this mosquito
(approximately 5 days between blood-meals; Eastwood, unpub-
lished data), this finding has implications for infection dynamics.
Potentially, early transmission could increase the number of hosts
infected, perpetuate epidemics and inflate the pathogen reproductive
rate (R0). Rapid WNV development has been reported in USA Culex
pipiens, with transmission ability being a product of time and

Table 1 | Summary of determinants of (female) Galápagos Aedes taeniorhynchus abundance

Zero-inflated GLM Regressors Parameter Coeff. Std. Error Z-value P

Population abundance
of Galápagos Aedes
taeniorhynchus

COUNT MODEL Intercept 26.77 1.01 26.69 ,0.001 ***
VEGETATION ZONE
(X25137, P,0.001)

Arid 22.52 0.22 211.54 ,0.001 ***
Coast 21.29 0.24 25.42 ,0.001 ***
Mangrove 20.94 0.21 24.50 ,0.001 ***
Scalesia/Miconia 21.61 0.29 25.64 ,0.001 ***
Transition 21.86 0.26 27.05 ,0.001 ***
Urban 20.23 0.30 20.74 0.457

[AtF] TIDE Tide height (same day, m) 1.01 0.29 3.47 0.001 ***
MOON Lunar phase 20.40 0.19 22.10 0.036 *
LOCATION (Log) distance to urbanisation (m) 0.32 0.06 5.64 ,0.001 ***
CLIMATE Mean temperature(uC) 0.30 0.03 8.13 ,0.001 ***

Average rainfall (mm) over
previous 20 days

0.03 0.02 2.48 0.013 *

(negative binomial with logit link) ZERO-INFLATION Intercept 5.62 2.57 2.18 0.029 *
CLIMATE Mean temperature(uC) 20.07 0.03 22.37 0.018 *

Log(theta) 5 20.97
(P,0.000 ***)

Average rainfall (mm) over
previous 20 days

20.47 0.11 24.12 ,0.001 *

Figure 3 | The mean abundance of female Galápagos Aedes taeniorhynchus by month of year (based on Santa Cruz specimens). Line indicates model

predictions.
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temperature; mosquitoes held at 32uC showed transmission at 12, 36
and 60 hours47.

Secondly, along with the results of the vector competency experi-
ments, the widespread and abundant nature of Galápagos A. taenior-
hynchus suggests that sustained WNV transmission on Galápagos
will be feasible. Particularly when the vector to host ratio is low, the
foci and prevalence of infection with a vector-borne pathogen is
strongly dependent upon changes in vector density48. By identifying

the spatio-temporal drivers of vector populations, predictions of the
occurrence of vector-borne disease can therefore be improved. This
knowledge can assist vector control measures to intervene in disease
outbreaks. Since an active mosquito presence was detected through-
out the year, one presumes that blood-feeding continues and that
there is potential for year-round WNV transmission; however with a
likely higher risk between January and April (‘rainy season’) when A.
taeniorhynchus was found with the greatest abundance across the

Figure 4 | Map of the Galápagos Islands showing the collection sites of blood-engorged Aedes taeniorhynchus mosquitoes (for which vertebrate host
DNA was successfully identified). Numbers in brackets are the number of specimens.

Figure 5 | Proportion of Galápagos Aedes taeniorhynchus blood-meals by vertebrate host species at highland and coastal sites. Sample sizes shown in

parentheses.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1519 | DOI: 10.1038/srep01519 5



archipelago. Swarming, i.e. very high localised abundance, and
aggressive biting behaviour was observed for A. taeniorhynchus,
which could increase the rate of infection transmission to new verte-
brate hosts and mosquitoes.

We showed an influence of tide on A. taeniorhynchus abundance;
this likely is a trigger for egg eclosion. Tide was indicated by Bataille et
al (2010) to be a determinant of coastal abundance of this species,
however the inland abundance could also be affected by tide as this
species has a strong flying ability and can disperse widely15,49.
Nevertheless, in Galápagos, ecological differences in habitat have
been suggested to drive a genetic differentiation of the inland and
coastal A. taeniorhynchus populations5, and during this study we
identified larvae in water bodies of highland interiors supporting
the notion of independent populations15. Agricultural zones (habitat
located in the highlands) of Galápagos are particularly associated
with A. taeniorhynchus, possibly related to breeding site availability
from water provision for livestock or from the heavier rainfall that
occurs in the Galápagos highlands33. Darker lunar phase has been
shown elsewhere to augment light-trap catches of mosquitoes50.
Although A. taeniorhynchus is the predominant mosquito across
the Galápagos Islands, 12% of mosquitoes captured during longit-
udinal monitoring were Culex quinquefasciatus, which we have
already shown to be a moderately competent laboratory vector of
WNV3 and in southern USA states this species is a renowned WNV
vector. Since feeding patterns of Cx. quinquefasciatus in Galápagos
do include passerine birds (Eastwood et al., unpublished data), i.e.
supporting interaction with probable virus amplification hosts, it is
possible that, despite its lower abundance and more-restricted dis-
tribution, this mosquito species also could represent a risk of WNV
transmission in Galápagos.

Finally, our blood-feeding analyses showed Galápagos A. taenior-
hynchus to feed on mammals, reptiles and birds. Broad feeding habits
would provide a mechanism for WNV to extend beyond a bird-
mosquito cycle to infect a wide range of hosts, including human
beings. As in its continental range, this mosquito is primarily mam-
mophillic, but feeding on reptiles is corroborated5. Bataille et al
(2009) showed Galápagos A. taeniorhynchus to take blood-meals
from tortoises and marine iguanas with clear support for reptile
feeding5. Galápagos has over 22 species of endemic reptile, many
of which are classified by the IUCN as threatened51. Although not
having a widely recognized role in the amplification of WNV infec-
tion, reptiles are not immune to WNV infection or disease52,53.
Assessing the susceptibility and/or host competency of Galápagos
reptiles would help to elucidate their potential role in the epidemi-
ology of WNV on the archipelago. Birds however are the typical
reservoir for WNV. In the current study, the only avian blood-hosts
we detected for A. taeniorhynchus were domestic poultry. These are
not competent hosts for WNV as they are only capable of maintain-
ing viremic levels great enough to infect mosquitoes when very
young, although they can serve as WNV sentinels54,55.

The limited proportion of avian blood-meals detected here
questions the role of A. taeniorhynchus in WNV epidemiology.
Nonetheless, Bataille et al (2012) report a single blood-meal from
a flightless cormorant (Phalacrocorax harrisii)29, and there are
anecdotal accounts of Galápagos seabirds abandoning their nests
due to molestation by A. taeniorhynchus56. Furthermore, a variety
of wild bird species in Galápagos are infected with pathogens such
as hemoproteus and filarial pathogens that are probably vectored
by mosquitoes2,57,58. Therefore it seems likely that A. taenior-
hynchus has more contact with avian species than can be demon-
strated so far. Our sample size of A. taeniorhynchus blood-meals
was low with a poor recovery rate (21%) of host DNA. This could
have been due to the blood-meal DNA being degraded (e.g. effect
of time post-ingestion59), or due to primers being sub-optimal for
detecting the DNA of endemic Galápagos avifauna arising from
primer site mismatches.

While the current results suggest that there is a strong likelihood
for the establishment and spread of WNV in Galápagos, several
issues could be assessed to evaluate this further: i) Importantly, evid-
ence of feeding on WNV-competent hosts is needed; either by fur-
ther examination of engorged specimens or by testing the host-
competency of established blood-hosts such as marine iguana. ii)
Whether vertical transmission in A. taeniorhynchus could provide
a mechanism for WNV persistence in Galápagos. iii) How the WNV
competency or feeding patterns of A. taeniorhynchus responds to
seasonal changes in Galápagos (climate, host-availability). In the
USA for example, the vector Cx. pipiens was found to host-switch
in response to bird migration, resulting in temporal variation of
WNV transmission to human beings60. Temperature and viral dose
can influence WNV development within mosquito vectors47,61, and
may have significance for the infection dynamics of WNV in
Galápagos.

Our results indicate that A. taeniorhynchus could act as a compet-
ent WNV vector in Galápagos, emphasizing the need for ongoing
and improved biosecurity in Galápagos to prevent the introduction
of WNV and other pathogens. In particular, there is a continuing
need to focus on managing the risk from human-mediated transport,
as recommended by Kilpatrick et al (2006)26. Over 1300 invasive
species have already arrived to Galápagos, including regular intro-
ductions of arthropods of medical importance62,63. The expanded
knowledge of A. taeniorhynchus ecology presented here aids scient-
ific understanding of a disease vector, but importantly highlights the
need to avoid complacency in ensuring that disease prevention mea-
sures are in place.

Methods
Vector competency. Mosquitoes. Aedes taeniorhynchus were collected in Galápagos
during December 2010. Eggs were obtained using oviposition traps lined with seed
paper (Fisher, UK), lured with mango leaf infusion. Also first-instar larvae were
collected from local pools. Eggs and larvae were transported under USDA (no.47279)
and CDC (no.2010-05-090) permits to the Wadsworth Center Arbovirus Laboratory
(New York State Department of Health, USA). Mosquitoes were reared to adult stage
in a BioSafety Level 2 quarantine insectary maintained at 26 6 1uC with
12 hour[h]:12 h (light:dark) [L:D] photoperiod and 85% relative humidity [RH].
Emerged adults were held in 0.47 L mesh-topped cartons and fed 10% sucrose ad lib.
Experimental infection took place under BioSafety Level 3.

Infection. Mosquitoes were infected with WNV as described by Eastwood et al
(2011)3. Briefly, mosquitoes were presented with a rabbit blood-meal preparation
containing WNV strain WN02-1956, initially isolated from an American Crow
kidney in New York27. The WNV titer was 7.84 – 7.89 log10 PFU/mL. Fed female
mosquitoes were separated from unfed or male mosquitoes under CO2 and were held
at 26uC for an extrinsic incubation period [EIP] of 5, 10 or 14 days; the shortest EIP
was designed to test for evidence of rapid transmissibility. At each time-point,
approximately 25 mosquitoes were immobilised using triethylamine (Sigma, CA)
and mosquito body, legs, and salivary secretions were harvested, as described by
Eastwood et al (2011)3.

Assay. A plaque assay on Vero cell culture was used to screen harvested mosquito
samples for West Nile virus, as described by Eastwood et al (2011) based on Payne et
al. (2006)3,28. Observed rates of infection, dissemination and transmission were
compared across EIPs using a Pearson’s chi-squared test (5% significance level) to
determine any differences over time.

Mosquito abundance and distribution. Population monitoring. A mosquito
sampling program was implemented on Santa Cruz Island between January 2008 and
February 2011. Findings were supplemented by data previously collected in 2006 and
200715,29. CO22baited CDC light-traps (JW Hock, FL) were employed overnight
(approximately from 6 pm to 6 am). Trap contents were sorted at the Galápagos
Genetics, Epidemiology and Pathology Laboratory [GGEPL]. Aedes taeniorhynchus
were identified morphologically, and the number of female individuals recorded. To
assess the distribution of A. taeniorhynchus, additional sampling was conducted over
a wider geographical area using CDC gravid traps (JW Hock) and human catch
landings. The lure used within gravid traps was mango leaf-infused water. Any
engorged or gravid mosquitoes were retained for blood-meal analysis (see below).

Study sites. Thirty-eight sites (listed in supplementary table S1 online) were moni-
tored on Santa Cruz on at least five occasions for abundance modelling. A further 93
sites across the archipelago were visited less intensively to determine mosquito
distribution by recording presence-absence. Environmental and climatic data
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associated with the site and timing of each collection was acquired from the following
sources:

a) Site characteristics: Vegetation zone (one of seven habitat types) was noted, and the
spatial easting, northing and elevation measured using a GPS handset. From a digital
map of the Islands (Galápagos National Park), distance to the nearest urban area, and
distance to the sea, were calculated (shortest direct line) in a geographic information
system [GIS] (ArcGIS 9.2, ESRI), adjusting for slope using Pythagoras theorem.

b) Environmental data: Maximum, minimum and mean temperature, mean RH and
precipitation were recorded using Hobo data loggers (Onset Corporation, MA) with
supplementary data from the Charles Darwin Foundation (www.darwinfoundation.org)
climate stations in Bellavista and Puerto Ayora. High tides were obtained from
Ecuadorian Naval Oceanography [INOCAR] or from www.mobilegeographics.com30.
Moon phase was parameterized using a cosine function which assumed the value of 0 at
new moon31.

Distribution. The extent of A. taeniorhynchus distribution (i.e. where the species was
detected during the five-year monitoring period) was projected in a GIS to create a
basic species distribution map for A. taeniorhynchus in Galápagos. Mean abundance
per sample site was calculated and geo-referenced.

Abundance modelling. The spatio-temporal abundance of A. taeniorhynchus was
modelled against site and climatic variables using R software32. Eight time-lagged
variables were created, under the hypothesis that prior events (such as rainfall trig-
gering egg eclosion) would be influential upon subsequently observed adult abund-
ance; based on an egg - adult development duration of 7 – 14 days (Eastwood,
unpublished data). Where possible, time variables such as ‘month’ were replaced by
climatic variables such as temperature (due to inter-annual variation in Galápagos
monthly climate and sporadic phenomena such as El Niño33). Spatial coordinates
were considered mutually within models, and were afterwards included to form a
geostatistical model, along with variograms, to check for spatial dependency in the
final model. Pearson’s product-moment tests and plots identified any collinearity in
available variables. A zero-inflated generalized linear model [GLM] with negative
binomial error structure was constructed after eliminating collinearity (which also
reduced the number of explanatory variables). This type of regression is flexible for
overdispersed data and incorporates an element to explain excess zeros (e.g. lack of
rain)34. A Vuong test compared model performance against standard negative
binomial regression using Kullback-Liebler criterion35. A backward selection process
(based on p-values) was then applied to determine which factors significantly
explained patterns of abundance. Multi-way interaction effects were examined but
were not adopted due to increased log-likelihood and/or reduced interpretability.

Validation of the model was performed using a set of sampling data from novel
sites in Galápagos (n 5 330 records). The predicted abundance of A. taeniorhynchus
at these sites was compared to abundance observed in the field, using a paired t-test
(95% two-tailed). A relative abundance risk index, constructed arbitrarily based on
the count of mosquitoes, was applied to both observed and model-predicted
abundance. Absolute abundance counts of zero received a risk score of 0 (5 minimal
risk), counts between 0.1 and 5 scored 1 (5 low risk), from 5.01 to 15.0 scored 2
(5 medium risk) and those over 15 scored 3 (5 high risk). We present predicted
seasonal abundance of these potential vectors, compared to observed patterns.

Feeding behaviour. Sample collection. Blood-engorged A. taeniorhynchus were
collected in June 2009, February 2010 and November 2010, at 13 locations. Engorged
mosquitoes were aspirated either from resting traps (high-sided pots placed on their
sides overnight) or opportunistically, or were captured in light traps during the
abundance monitoring. Specimens identified as A. taeniorhynchus were stored in
punctured vial tubes within sealed plastic bags containing silica desiccant
(Silicagelpackets.co.uk) prior to analysis.

Blood-meal analysis. DNA was extracted from the excised abdomen of each engorged
mosquito using Chelex 100 (Bio-Rad, CA) in a protocol adapted from Walsh et al
(1991)36. Briefly, each sample was ground in a 300 mL 10% Chelex solution, held in a
95uC heat block for 10 min, then pulse-vortexed for 10 s before centrifugation at
8000 rpm for 1 min. Polymerase chain reaction [PCR] assays targeting the cyto-
chrome b (cytb) gene were performed using primer sets described by Cupp et al
(2004)37. Cycling conditions were 95uC for 2 minutes, followed by 40 cycles of 94uC
for 20 s, 50uC for 30 s and 72uC for 45 s, ending with 7 minutes at 72uC. To improve
success rate, a second PCR was performed using product from the first amplification
as template. Products were sequenced at a concentration of 25 nM. Edited nucleotide
sequences were compared against sequences available on Genbank to identify
vertebrate hosts on which A. taeniorhynchus had fed38,39.

Host-foraging index. To indicate whether Galápagos A. taeniorhynchus feeding was
representative of the background vertebrate community, we estimated the relative
abundance of fauna in the vicinity of traps using three unlimited distance point-
transects at five Galápagos regions (repeated on four occasions). Surveys took place at
approximately 6 am or 6 pm (dawn and dusk peak feeding times for A. taenior-
hynchus), for a 10-minute period during which each vertebrate detected by sight or
ear was identified to species level, and an estimate of their radial distance from the
monitoring point recorded (in metres). An initial 1-minute settling-down period

allowed for any disturbance created when approaching the point40. We used the
program Distance to estimate the density of key Galápagos vertebrate species at each
location41, which acknowledges differences in species-detectability thus reducing
bias40. We pooled both blood-meal and host data according to Highland or Coastal
criteria, analysing point-survey data within the multiple covariate sampling engine41.
An index of relative abundance was formed from the species density estimates. To
meet normality assumptions, all relative abundance values were log-transformed.
Forage ratios, equation (1), were calculated to indicate if A. taeniorhynchus displayed
any preference or avoidance in feeding behaviour42:

Forage Index,Fi~
fraction of blood�meals from host

relative density of species i within vertebrate community
ð1Þ

If host species i was fed on opportunistically by mosquitoes in proportion to their
abundance, the forage index, Fi, would be 1. Multinomial simulations (of the number
of blood-meals uij from a host species i at site j) and ratio tests compared the observed
distribution of blood-meals with those drawn under the null hypothesis of Fi 5 1. If
no blood-meals were detected of species i present at site j (due to avoidance or lack of
samples), uij 5 0.5 was assumed and for observation probabilities less than 0.05, a
forage index Fi 5 0.5 was reported as a conservative estimate of minimum
avoidance43.
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