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Abstract

Identifying children who are at-risk for developmental delay, so that these children can have

access to interventions as early as possible, is an important and challenging problem in

developmental research. This research aimed to identify latent subgroups of children with

developmental delay, by modelling and clustering developmental milestones. The main

objectives were to (a) create a developmental profile for each child by modelling milestone

achievements, from birth to three years of age, across multiple domains of development,

and (b) cluster the profiles to identify groups of children who show similar deviations from

typical development. The ensemble methodology used in this research consisted of three

components: (1) Bayesian sequential updating was used to model the achievement of mile-

stones, which allows for updated predictions of development to be made in real time; (2) a

measure was created that indicated how far away each child deviated from typical develop-

ment for each functional domain, by calculating the area between each child’s obtained

sequence of posterior means and a sequence of posterior means representing typical devel-

opment; and (3) Dirichlet process mixture modelling was used to cluster the obtained areas.

The data used were 348 binary developmental milestone measurements, collected from

birth to three years of age, from a small community sample of young children (N = 79). The

model identified nine latent groups of children with similar features, ranging from no delays

in all functional domains, to large delays in all domains. The performance of the Dirichlet pro-

cess mixture model was validated with two simulation studies.

Introduction

This research used a three-step ensemble method which incorporated Bayesian sequential

updating and Dirichlet process mixture modelling (DPMM) to identify latent subgroups of

children who have a similar developmental trajectory, from birth to three years of age, in order
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to uncover subgroups of children who are experiencing delays in development during these

early years. The novelty in this approach is the use of Bayesian sequential updating for model-

ling the achievement of developmental milestones, which allows for updated predictions to be

made at the same time as the child develops. The use of Dirichlet process mixture modelling as

the clustering method is also a new approach for this application, which is a more flexible and

adaptive clustering approach compared to the common clustering approaches used in develop-

mental research.

The early identification of children who have a developmental disability or delay can some-

times be challenging, as developmental delays may occur gradually and only become more evi-

dent as a child grows older [1]. As a consequence, children are often referred to intervention

services when they are older than three years of age, which may not coincide with the timing

of the delay [2]. An earlier diagnosis may lead to more prompt access to early intervention.

Therefore, understanding the development of at-risk children prior to three years of age is nec-

essary in order to facilitate diagnosis and access to early intervention [3].

A common approach that is used to identify at-risk children, during these early years, is to

screen and monitor developmental milestones. Developmental milestones are behaviours that

are displayed by children at certain times during their development, from infancy through to

school age. Monitoring developmental milestones can provide a systematic approach in which

to observe the progress of development over time [4, 5]. Developmental milestones have been

used in research to classify children into subgroups that describe their developmental func-

tioning, by using unsupervised clustering methods [6–8]. Unsupervised clustering refers to

a collection of statistical and machine learning methods that divide cohorts into subgroups

based on the structure within the data, when there are no class labels available for classification

[9]. Common unsupervised clustering methods include K-means [10] and finite mixture

modelling [11], which is also known as latent class analysis or growth mixture modelling for

longitudinal data [12].

Unsupervised clustering methods have been applied in retrospective studies to identify sub-

groups of specific developmental disabilities including Attention-Deficit/Hyperactivity Disor-

der [13], Autism Spectrum Disorder(ASD) [14, 15] and Pervasive Developmental Disorders

[16]. Prospective designs have also been used to cluster at-risk infants [17]. However, these

studies often only consider a single developmental disorder, such as ASD [18–20], or focus on

only one domain of development, such as language development [21, 22] or communication

skills [23]. It has been shown that there are many overlapping features among different neuro-

developmental disorders [24], therefore important comorbidities among the disorders can be

missed when studying each disorder in isolation [1]. In order to investigate the similarities

among the many neurodevelopmental disorders during the early years of development, a

diverse community sample of young children was used, which included both typically develop-

ing children and children with a variety of developmental disorders and delays, such as Cere-

bral Palsy and ASD. In addition, to construct a more comprehensive picture of development

during these early years, the data used in this research incorporates milestones collected at 28

measurement occasions from birth to three years of age, and includes measurements from six

domains of functioning.

The purpose of this research is to implement a more personalised approach to modelling

developmental milestones, by first, learning and updating each child’s developmental profile

as the milestones are met over time, second, comparing each child’s developmental profile to

that of a typically developing child and, third, identifying latent subgroups of children with

similar developmental profiles. The first step of the proposed method uses Bayesian sequential

updating to model the probability of milestone achievement. Bayesian sequential updating

provides a prediction of behaviour based on the information obtained at previous trials or
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measurement occasions. This is achieved by incorporating previous information into the

prior, so that past behaviours have some influence on the posterior estimates [25]. This makes

it an ideal method for sequentially analysing data that are collected over time, as the likelihood

needs to only be calculated for the new data in order to update the model parameters [26].

Bayesian sequential updating is commonly applied to clinical trials, including the continual

reassessment method for Phase I clinical trials [27, 28] and Bayesian adaptive design for ther-

apy development [29, 30]. However, to the authors’ knowledge, this approach has yet to be

applied to modelling developmental milestones.

In the second step, the proposed method summarises the sequence of posterior probabilities

obtained from each child by calculating the area between the child’s sequence and a reference

sequence representing a theoretical child who had achieved all milestones. Inspired by the

comparison of Kaplan-Meier survival curves, proposed by Chen et al [31], the rescaled area

between the sequences provides a metric that indicates how dissimilar each child is from typi-

cal development. The rescaled areas range from 0 to 1, with values closer to 1 indicating larger

differences between the sequences [31]. The construction of the areas also aids clustering, as it

significantly reduces the dimensionality of the data.

In the third step, Dirichlet process mixture modelling is used as the clustering method.

DPMMs have been applied to numerous clustering problems in health, including stratification

of children’s health [32], classification of Parkinson’s disease [33, 34] and classification of fetal

heart rates [35]. The DPMM is a Bayesian nonparametric model that introduces uncertainty

into the number of clusters through partitioning the data stochastically at each iteration of a

Markov chain Monte Carlo (MCMC) sampler [32]. This approach has a distinct advantage

over traditional clustering methods, such as finite mixture modelling and K-means, as it allows

the number of clusters to be dictated by the data, meaning that the analyst does not need to

specify the number of clusters a priori [32]. This flexibility is important for the current applica-

tion, as the data will increase as children respond to more milestones, or more children join

the program. By using a DPMM, the number of clusters can also increase or merge as new

data are collected and included in the model.

Through using this three-step approach to model the achievement of developmental mile-

stones, this research aimed to identify subgroups of children who were experiencing similar

developmental delays across six functional domains. By applying this modelling approach,

individual predictions of development can be made and updated for each functional domain

and the obtained subgroups can be used to assist treatment planning by targeting the specific

developmental delays that are characteristic of each subgroup.

Materials and methods

Data

The data for this study were provided by The Developing Foundation [36], a Brisbane-based

Australian charity that supports families who are seeking treatment for a family member with

a brain injury or developmental disability. The organisation collected data on developmental

milestones using an online program, Developing Childhood [37]. The program allows parents

and carers to assess and track their child’s achievement of developmental milestones from

birth to three years of age. There are 348 milestones in total, which are categorised into six

functional domains: Vision, Auditory, Tactile, Movement, Speech and Hand function. Fifty-

eight milestones are measured within each of these functional domains. The milestones are

not measured uniformly across time; within each functional domain, there are three ordered

milestones measured per month in the first 12 months, two ordered milestones measured

per month between 13 to 18 months and one milestone measured per month from 19 to 25
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months. The remaining three milestones are measured at 28, 31 and 34 months. The order of

the milestones was determined by developmental experts at The Developing Foundation.

Example milestones for each functional domain are shown in Table 1.

Participants

The original sample consisted of data from 118 children whose parents or carers were volun-

tarily using the program. This sample consists of both typically developing children and chil-

dren with a diverse range of developmental disabilities, including Autism Spectrum Disorder,

Cerebral Palsy, Down Syndrome, and speech and hearing impairments, as well as more general

developmental delays. Although the nature of each child’s developmental status is confidential,

it is assumed that this sample consists of a larger proportion of children with a developmental

disorder or disability than in the general population, as the program was specifically designed

for families who seek assistance from The Developing Foundation. The QUT University

Human Research Ethics committee waived the need for consent from the parents or guardians

for the data used in this research, as the data does not contain any identifiable information. In

order to develop the method, only children with complete data sequences were included in the

analysis. Extensions to accommodate missing data are described in the Discussion. Of the orig-

inal sample, complete data sequences were available for 79 children.

Method

Bayesian sequential updating. A child’s achievement of the milestones is represented as a

sequence of Bernoulli trials. The milestones are assumed to be independent, where milestone

achievement is recorded as y = 1 and not achieving a milestone is recorded as y = 0. This is

considered a reasonable assumption as milestone achievement is not necessarily cumulative,

in that some children can achieve later milestones without achieving earlier ones. Moreover,

the dependency between milestones achieved for each child is modelled through the sequential

updating of the prior. However, in order to investigate the independence assumption, a sensi-

tivity analysis was performed, and the results indicated that this assumption is reasonable. This

analysis is addressed in more detail in the Sensitivity analyses section of the Results.

Bayesian sequential updating is a recursive process that can be used for trials that are

observed in a sequence, whereby the posterior distribution for the observation(s) in the first

trial becomes the prior distribution for the observation(s) in the second trial. The sequential

Table 1. Example 1, 12, 18 and 34 month milestones in each functional domain.

Functional

Domain

1 month 12 months 18 months 34 months

Vision Instantly blinks at bright light Television or colourful moving objects

capture attention

Visually aware of close and

distant world

Recognises and points out tiny

details in pictures

Auditory Instantly startles to sudden loud

noise

Listens to speech without distraction

from other sounds

Follows simple two-step

commands

Comprehends three key words in a

sentence

Tactile Negative response to pain,

positive to comfort

Maintains balance with supported

stepping

Begins to identify objects by

touch alone

Aware of body size in relation to

surroundings

Speech Non-specific cry Sound-making with intent Social speech used for

interacting

Regular use of speech to tell stories

and experiences

Movement Unrestricted range of movement

in all limbs

Walks holding on to one hand Attempts to run but without a

lot of control

Can pedal a tricycle with good

control

Hands Hands mostly fisted or slightly

open

Finger feeding with pincer grasp Stacks 4-6 blocks Can dress and undress completely

https://doi.org/10.1371/journal.pone.0233542.t001
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updating of the prior distribution for a series of Bernoulli trials is a simple procedure, as the

posterior distribution for z successes out of N trials using a Beta(θ|a, b) prior has a posterior

distribution of the form Beta(θ|z + a, N − z + b) [38]. Therefore, for sequential data, the poste-

rior distribution can be updated for each new observation by adding 1 to a for each subsequent

success or 1 to b for each subsequent failure. A brief summary of the Bayesian beta-Bernoulli

model is provided in Appendix A of S1 Appendix.

To perform the sequential updating, a Beta(1, 1) prior is used for the first observation for all

participants, as this is a uniform prior with equal probability of success or failure in achieving

a milestone. The sequential updating procedure is then implemented for each individual child,

resulting in a series of posterior means, which represents the probability of achieving each

milestone based on the child’s past milestone achievements.

To visualise the probability of milestone achievement for each child over time, we plotted

the posterior means for the observed milestones across time for each functional domain, along

with their 95% highest posterior density (HPD) intervals. A selection of plots of the posterior

means for six children in the Auditory functional domain are displayed in Fig 1.

Area between posterior probability sequences. In order to compare and cluster the

sequences of posterior means, a child’s sequence of posterior means is compared to a theoreti-

cal typically developing child’s sequence, by calculating the area between the sequences. The

theoretical “gold-standard” sequence of posterior means is created by performing Bayesian

sequential updating on simulated data for a hypothetical child who achieves all milestones.

As the sequences of posterior means are stepwise functions, the area between the sequences

can be calculated as follows

areaðF1; F2Þ ¼
1

w
fjF2ðtnÞ � F1ðtnÞjðw � tnÞ þ

Xn

i¼1

jF2ðtiÞ � F1ðtiÞjðtiþ1 � tiÞg; ð1Þ

Fig 1. Posterior means and 95% HPD intervals for the milestones in the Auditory functional domain for six

children. This figure shows variability among the children in terms of the number of milestones recorded for each

child, as well as the progress of development over time. For example, Child 1 responded to all of the milestones in the

Auditory functional domain, has very high posterior means for most milestones and only starts to show a slight decline

at around the 50th milestone. In contrast, the posterior means for Child 6 are much more variable, with a steeper

decline beginning at the 20th milestone.

https://doi.org/10.1371/journal.pone.0233542.g001
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where F1 is the step function of the child’s posterior means, F2 is the “gold-standard” develop-

ment step function, t denotes the discrete milestone time points ranging from t = 1� i� n
and w corresponds to the number of observed milestones [31]. As the number of observed

milestones varies across children, the areas are rescaled by the total number of milestones

observed by each child, w. This results in a rescaled area between 0 and 1, where scores closer

to 0 indicate children whose posterior means are more similar to the “gold-standard” posterior

means. An example of the area that is calculated is displayed in Fig 2.

In this application, all 79 children started their milestone measurements in month 1, but

this may not always be the case. If children do not begin their milestone measurements in the

first month (i.e., there are measurements missing before the beginning of the sequence), the

starting point for the reference sequence can be set equal to the starting point of the child’s

sequence, in order for the reference sequence to remain the same for all children. Six areas are

calculated for each child, one for each functional domain. In this application, the resulting

areas were highly positively skewed with many scores close to 0. In order to assist clustering,

the areas were transformed from the [0, 1] scale to (−1, +1) using the logit transformation.

Dirichlet process mixture model. The Dirichlet process mixture model is a Bayesian

nonparametric method for unsupervised clustering. A general description of the DPMM is

available in Appendix B of S1 Appendix. The stick-breaking representation for drawing samples

from a Dirichlet process was used, which was first established by Sethuraman [39]. In this

representation, the mixing distribution G is represented by an infinite sum of weighted point

masses:

G ¼
X1

k¼1

Ckdyk ; ð2Þ

where dyk represents a point mass of 1 located at θk which is sampled directly from the base dis-

tribution, G0, i.e., θk* G0 [40]. The weights Ck are generated sequentially through the stick-

Fig 2. Example area calculation. The shading represents the absolute area calculated between the theoretical “gold-

standard” posterior means (circles) and the child’s posterior means (triangles), which is then rescaled by the number of

observed milestones. Note that the posterior means are the same for the first three milestones, resulting in an area of 0

for these observations.

https://doi.org/10.1371/journal.pone.0233542.g002
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breaking process:

V1;V2; . . . �
iid Betað1; aÞ

C1 ¼ V1

Ck ¼ Vk
Yk� 1

j¼1

ð1 � VjÞ; k � 2:

ð3Þ

The stick-breaking analogy refers to the generation of the weights, where the stick starts

with a length of one and the first weight is broken off from the stick at length C1. The remain-

ing stick has a length of 1 − C1 and C2 is broken off from this length of stick [41]. This process

continues for each successive break, where the stick can theoretically be broken an infinite

amount of times.

Posterior inference from a DPMM utilises Markov chain Monte Carlo (MCMC) posterior

simulation [42]. A number of different methods have been established that use Gibbs sam-

pling, including blocked sampling [43], retrospective sampling [44] and slice sampling [40].

This research implemented the slice sampling procedure, established by Walker [40]. An out-

line of the slice sampler is provided in Appendix C of S1 Appendix.

Due to the nature of the stick-breaking construction of the Dirichlet process, there is a size-

biased ordering of the expected prior mixture probabilities, e.g., E[Ck]> E[Ck+1] for all k [45].

Therefore, the Gibbs sampler needs to adequately mix over the cluster labels, otherwise clusters

with lower labels will be given higher prior probability [46]. In order to prevent the Gibbs sam-

pler from getting stuck in local modes corresponding to one assignment of cluster labels, label-

switching moves were implemented as outlined by Papaspiliopoulos et al [44].

The Dirichlet process mixture model was implemented, as outlined above, to model a mix-

ture of p-dimensional multivariate normal distributions, whereby, conditional on each cluster

k, the likelihood for yi is

pðyijzi ¼ k;μk;SkÞ ¼ MVNðμk;SkÞ ð4Þ

with mean μk = [μ1k, . . ., μpk] and variance-covariance matrix Sk. A joint prior distribution

p(μk, Sk) = p(μk|Sk)p(Sk) was used, similar to van Havre et al [47], where

pðμkjSkÞ ¼ MVNðb0;Sk=N0Þ

pðSkÞ ¼ IWðc0;C0Þ:
ð5Þ

The prior distribution for the concentration parameter, α (in Eq 3), was Gamma(η1, η2),

which is commonly used for DPMMs [48].

As each iteration of the MCMC Gibbs sampler estimates the number of clusters, post-pro-

cessing methods are required to obtain the optimal number of clusters over all iterations. The

partitioning around medoids (PAM) method [49] was used as the post-processing method,

which is an algorithm that searches for k representative objects, or medoids, and then forms

clusters by assigning each remaining object to the nearest medoid [49]. Due to the label switch-

ing moves, it is not possible to simply assign the most frequent cluster label, across the itera-

tions, for each observation. Alternatively, the posterior similarity matrix, S = P(zi = zj|y), was

calculated, which is an n × nmatrix containing the pairwise proportion of iterations that two

observations were assigned to the same cluster [50]. The dissimilarity matrix, 1 − S, was then

used as input for the PAM algorithm. The algorithm was run for k = 2 to k = 20 medoids and

the different clusterings were compared using the average silhouette width, which describes

how well each object fits to their assigned cluster [51].
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Results

Dirichlet process mixture model

The Bayesian sequential updating and area calculations were performed for the six functional

areas for each child. These areas were then used as input in the Dirichlet process mixture

model. R code for performing the Bayesian sequential updating and area calculation, as well as

an example of using this code on simulated data is available on Github [52].

Before running the model, a grid experiment was performed to observe the effect of differ-

ent hyperparameter specifications on the number of clusters obtained from the model. The

selection of hyperparameters chosen for the grid experiment were guided by the literature,

where similar hyperparameters have been used [48, 53–57]. The details and results of this grid

experiment can be found in S2 Appendix. Based on these results, the optimal hyperparameters

for the prior distributions, outlined in Eq 5, were b0 ¼ �y, N0 = 0.1, c0 = 7, C0 = Sy. In addition,

the prior distribution for α was a Gamma(1, 1) distribution. Three chains of the DPMM slice

sampler were specified for 1,000,000 iterations. The three chains were initialised using K-

means, with the number of clusters defined as K = 5, K = 10 and K = 15, respectively. R statisti-

cal software [58] was used to conduct the slice sampling. The slice sampling code is publicly

available on Github [59].

Convergence was achieved for this model based on a Gelman-Rubin statistic of less than 1.1

for both K and α (GRK = 1.01, GRα = 1). Once the model had converged, the optimal clustering

was determined by calculating the average posterior similarity matrix across the three chains

and finding the optimal partition by using the PAM algorithm. The number of clusters speci-

fied for the PAM algorithm ranged from 2 to 20, and the different clusterings were compared

by calculating the average silhouette width (see S2 Appendix for details). Through this process,

9 clusters were found to be optimal.

The sample means and standard deviations for the areas of each group, as well as the group

sizes can be found in Table 2 and the profiles for each group can be found in Fig 3. The main

characteristics of the nine groups are as follows. Group 1 is the largest group, consisting of 22

children with relatively small areas for each functional domain. This group contains a number

of outlying individuals, whose profiles do not fit with the characteristics of the other groups.

Group 2 contains eight children who have large areas for all functional domains. Group 3 con-

tains nine children and is characterised by larger areas for the auditory domain, some non-typ-

ical development for the speech, tactile and vision domains and close to typical development

for hand function and movement. Group 4 only contains three children, who have larger areas

for the hand function and movement domains. Group 5 consists of nine children and is char-

acterised by some deficits in the auditory, tactile and vision domains, and typical development

Table 2. Group size, mean area and (standard deviation) for each functional domain, per cluster.

Group Group size Auditory Hands Movement Speech Tactile Vision

1 22 0.040 (0.074) 0.012 (0.035) 0.024 (0.059) 0.052 (0.104) 0.024 (0.075) 0.001(0.001)

2 8 0.149 (0.115) 0.142 (0.153) 0.085 (0.063) 0.157 (0.171) 0.077 (0.060) 0.132(0.091)

3 9 0.123 (0.082) 0.034 (0.053) <0.001(<0.001) 0.074 (0.122) 0.030 (0.030) 0.087(0.122)

4 3 0.010 (0.008) 0.081 (0.023) 0.149 (0.118) 0.003 (0.004) <0.001 (0.000) 0.004(0.006)

5 9 0.074 (0.065) 0.008 (0.016) 0.004 (0.006) 0.002 (0.004) 0.063 (0.060) 0.054(0.047)

6 8 0.074 (0.071) 0.001 (0.001) 0.068 (0.059) 0.167 (0.139) 0.065 (0.063) 0.060(0.061)

7 7 0.001(<0.001) 0.002 (0.003) 0.001 (0.001) 0.014 (0.017) 0.015 (0.024) 0.016(0.013)

8 10 0.001 (0.001) 0.001(<0.001) 0.001 (0.001) 0.001(<0.001) <0.001(<0.001) 0.001(0.001)

9 3 0.043 (0.033) <0.001 (0.000) 0.022 (0.055) 0.297 (0.161) <0.001 (0.000) 0.083(0.056)

https://doi.org/10.1371/journal.pone.0233542.t002
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for the remaining domains. Group 6 contains eight children who have larger areas in all

functional domains except for hand function. Group 7 consists of seven children who have

achieved most milestones, across all domains, and they differ from Group 8, containing

ten children, who have achieved all milestones. Finally, Group 9 consists of three individuals

who have very large speech deficits. Additional plots that display the cumulative sum of the

achieved milestones for each group can be found in S1 Fig.

Groups 4 and 9 have the smallest cluster sizes and therefore could be considered outliers.

Alternatively, these groups could represent emerging clusters that would have a larger repre-

sentation if more data were collected. Similarly, the outlying observations in Group 1 may also

split to form smaller, representative clusters when additional information is collected from

new observations. The uncertainty in the number of clusters is a key feature of DPMMs and

allows for more nuanced groupings to emerge from the data. This is particularly important in

the context of child development, as even small deviations from typical development can have

an impact on future functioning [60, 61].

Additional analyses using two alternative clustering algorithms, namely, k-means and

model-based clustering were undertaken to compare the performance of the DPMM to these

commonly used clustering methods. In summary, K-means was only able to cluster the data

into two groups, representing typical and atypical development. Model-based clustering per-

formed slightly better as it was able to identify two smaller clusters, in addition to the typical/

atypical clusters. These smaller clusters were equivalent to clusters 5 and 8 from the DPMM.

Overall, the DPMM was able to identify smaller, more distinct clusters than these alternative

methods, which is important for the current application where identifying smaller groups for

targeted intervention is the goal. A detailed overview of these methods and the results of these

additional analyses can be found in S3 Appendix.

In addition, we compared the PAM post-processing method to the least-squares clustering

approach [62]. Briefly, this method selects a clustering which minimizes the sum of squared

Fig 3. Cluster profiles and sample size of the nine subgroups. Each panel corresponds to a subgroup’s profile.

Boxplots of the areas between the posterior means for each functional domain are represented within each panel.

Higher scores indicate larger differences between the group’s posterior means and the posterior means representing

typical development.

https://doi.org/10.1371/journal.pone.0233542.g003
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deviations from the posterior similarity matrix. This method returned many more clusters

than the PAM method, with an average of 16 clusters selected. This was the case when examin-

ing each chain separately, as well as combined. Sixteen clusters was considered excessive for

the current application, and many of these clusters had a sample size of N = 1. Therefore, the

clusters obtained from this method were not explored further.

Sensitivity analyses

Two sensitivity analyses were performed to assess different aspects of the model. In the first

sensitivity analysis, two simulation studies were performed to illustrate how the proposed

DPMM performs for (a) well separated, adjacent or overlapping clusters (scenario 1) and (b)

small, medium or large sample sizes (scenario 2). The second sensitivity analysis assessed the

independence assumption of the milestones and is briefly described at the end of this section.

In the first senditivity analysis, for each scenario, three bivariate clusters were simulated

using the clusterlab package in R [63]. For scenario 1, three small clusters, with 50 observations

in each cluster, were simulated and compared under three conditions to assess the DPMM’s

performance when clusters are overlapping. A small sample size was chosen in order to make

comparisons to the application data, which also has a small sample size. In the first condition,

the three clusters were visibly well-separated, in the second condition the three clusters were

adjacent, but not overlapping, and in the third condition, the three clusters were slightly over-

lapping. The simulated data used in scenario 1 are displayed in the first row of Fig 4. The 15

hyperparameter specifications that were used for the models in the grid experiment were also

used in the simulation study (see Table 1 of S4 Appendix). Three chains were specified for

each model and each chain ran for 1,000,000 iterations. The Gelman-Rubin statistic for K and

α, the average silhouette width for three clusters specified using the PAM method, and the clas-

sification accuracy for each model are displayed in Table 2 of S4 Appendix.

For conditions 1 and 2, the DPMM returned exactly the same clusters that were simulated,

regardless of which hyperparameters were used. This was not the case for condition 3, where

Fig 4. Simulated data used for each condition in the sensitivity analysis. The first row contains the data used for

scenario 1 and the second row contains the data used for scenario 2.

https://doi.org/10.1371/journal.pone.0233542.g004
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10 out of the 15 models returned 3 clusters as the optimal number of clusters (based on the

average silhouette widths from the PAM method), and the remaining 5 models returned 2

clusters. For the models that returned 3 clusters, the boundary for the clusters varied, resulting

in some misclassification of cases (range of classification accuracy = 76.67% to 94.00%). This

demonstrates that, even for relatively simple cases, clustering using a DPMM can result in dif-

ferent clustering solutions due to the uncertainty that is introduced into the number of clusters

when the data are small, noisy and overlapping. For this example, there was an improvement

in the classification accuracy when the precision parameter, N0, ranged from 0.1 to 0.5. Values

above or below these cut-offs did not perform as well, as they either returned 2 clusters as the

optimal solution or the classification accuracy reduced. The precision parameter has an influ-

ence on the dispersion of the cluster means and should be considered carefully for each appli-

cation in order to identify the optimal dispersion [54].

The second simulation study was undertaken to identify if the difficulties associated with the

clustering of overlapping, noisy data would remain if more observations were collected. For this

scenario, three slightly overlapping bivariate clusters were sampled, which differed in terms of

sample size for each condition. For condition 1, each cluster consisted of 50 observations, for

condition 2, each cluster contained 500 observations and for condition 3 there were 5000 obser-

vations in each cluster. The sample sizes were selected such that condition 1 was the same size

used in scenario 1 and conditions 2 and 3 increased the sample size by a magnitude of 10. The

simulated data used for scenario 2 is displayed in the second row of Fig 4. For this simulation,

the 15 models ran for 40,000 iterations. The number of iterations were less than those used in

the previous applications as the average run time for the large sample size, using only 10,000

iterations, was 16hr:37min to run the slice sampler. In addition, on average, 55.63GB of RAM

was required to calculate the mean posterior similarity matrix for each model. All models were

run on a HPC cluster, inclusive of Intel E5-2670, E5-2680v2, E5-2680v3 and 6140 CPU models.

Due to the time requirements, the large sample size was assessed by running each chain for seg-

ments of 10,000 iterations. Each segment (except the first) was initialised using the values from

the last iteration of the preceding segment. The chains were assessed for convergence each time

a new segment was added. As the number of iterations used for this analysis was substantially

smaller than that used for the application or the first simulation study, 6 chains were run for

each model (initialised at K = 2, 4, 5, 6, 10 and 15 clusters) in order to be more certain that the

models had converged. The same 15 hyperparameter combinations that were used previously

were also used here. After the chains had run for 40,000 iterations, 8 of the 15 models had

reached convergence for K and all the models had converged for α based on the Gelman-Rubin

statistic. In order to accurately compare the small, medium and large conditions, 6 chains of

40,000 iterations were also specified for the small and medium sample sizes. All the models for

these conditions converged, except for one model for the medium sample size. Only the con-

verged models were processed using the PAM method.

The average silhouette width when K = 3 and the classification accuracy for each model,

within each condition, are displayed in Table 3 of S4 Appendix. All of the converged models

for all conditions returned 3 clusters as the optimal number, based on the average silhouette

width, and the average classification accuracy across all models for all conditions was high

(small = 95.33%, medium = 96.48%, large = 98.59%), despite the time and memory restrictions

associated with processing the largest sample size. There were no major differences across

models for each scenario, indicating that the prior specification does not influence the cluster-

ing when there is only a slight amount of overlap in the clusters, particularly when the sample

size increases. The milestone data is much more complex, resulting in more uncertainty in

the number of clusters. These simulation results indicate that the clustering accuracy slightly

improves with more observations, but with a much larger computational cost.
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A second sensitivity analysis was performed to assess the independence assumption of the

milestone measurements. The order of the milestones within each month was randomised

in order to investigate the impact of rearranging the order of the milestones. The sequential

updating and area calculation were performed on the rearranged milestones, and the results

compared to the original ordering of the milestones. This procedure was repeated 10 times

with new random orders. The results revealed only minor differences between the areas

obtained from the original order and the random order (overall mean difference = −0.00047,

overall mean standard error = 0.00093). The full results of this sensitivity analysis can be found

on the first author’s Github [52].

Discussion

This research used an ensemble method for modelling and clustering developmental mile-

stones which incorporated Bayesian sequential updating and Dirichlet process mixture model-

ling. Using Bayesian sequential updating, the probability of achieving each milestone was

modelled based on each child’s own sequence of milestone measurements. This sequence of

probabilities was summarised by calculating the area between each child’s sequence and a ref-

erence sequence representing “gold-standard” development. The areas were then clustered

using DPMM to identify subgroups of children who were experiencing similar delays in

development.

This detailed method allows for personalised predictions of milestone achievements to be

made, as the updated sequences are constructed using only the child’s measurements. The

model also introduces uncertainty into the predictions, as each probability of milestone

achievement is modelled as a posterior distribution of credible values. This means, in practice,

that more detailed predictions can be communicated to parents regarding their child’s likely

trajectory of development and the certainty associated with each prediction can be conveyed.

To develop the method, a static data set was used and the method was implemented retrospec-

tively, however, by using Bayesian sequential updating, this method could be implemented

prospectively, where predictions could be made as the child develops, as the method allows for

predictions to be easily updated with the collection of new data. By clustering the probability

sequences, children who are experiencing similar delays are able to be identified, meaning that

early interventions can be tailored to meet the needs of each group, allowing for more person-

alised treatment planning.

By using this approach, in the present application, nine groups were identified that differed

in terms of their level of deviation from typical development, across six functional domains.

Although some of the cluster sizes were considered small, these groups represented children

that did not have the same developmental pattern as the larger groups. Instead of being placed

with the most likely group, which is typical for other unsupervised clustering methods (e.g., K-

means), these children were placed in their own emerging cluster group. This is important for

clinical practice, as these children can have treatments tailored to meet the unique characteris-

tics of the emerging cluster, rather than have tailored treatments based on clusters that they are

“most alike”, which may not adequately address the needs of the child.

Despite the practical advantages of using this modelling approach, there are a number of

methodological limitations that need to be taken into consideration. Firstly, the developmental

milestones within each month were assumed to be sequential, based on information elicited

from a domain expert. However, the milestones may not be met in this exact order for every

child. A sensitivity analysis assessing the independence assumption revealed only small differ-

ences in the outcome if the milestones were rearranged within each month. Given this small

difference, it is reasonable to assume independence for the milestones within each month and
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a more general model could use the binomial distribution to model the milestones, but this

approach was not considered here.

Another limitation is that this model did not incorporate any covariates. Covariate infor-

mation was not available for the sample that was used in this study, but there are a number of

covariates that could have an influence on milestone achievement. Past studies have found sig-

nificant environmental and prenatal predictors of developmental delay, including birth com-

plications and maternal education [64], poverty and caregiver cognitive impairment [65], and

low birth weight [66]. The method developed in this paper could benefit from incorporating

this type of covariate information into the model, to create more accurate predictions. Finally,

the method developed in this paper is most effective with complete data sequences, as it can

overestimate the degree of delay when there are missing data points. Imputation or functional

data approaches could be explored to rectify this problem, but these approaches were outside

the scope of this research. Modelling the milestones using a functional data approach will be

explored in future work.

Additional considerations need to be made when using DPMM. Despite its advantages

over other clustering methods, several modelling decisions need to be made in order to obtain

the most efficient results, including hyperparameter choice, method for sampling from the

posterior and technique used for post-processing the MCMC chains. Each one of these aspects

of modelling using a DPMM needs to be carefully considered, as different choices can have an

influence on the clusters.

In this paper, the slice sampler was selected as the method for sampling from the posterior

distribution of the Dirichlet process. There are, however, several alternative samplers that can

be used, for example, the truncated sampler [43] and the retrospective sampler [44]. The slice

sampler was used in this application as it adaptively selects the number of mixture components

[67] and easily updates them at each iteration [68]. Also, unlike the truncated methods, it tar-

gets the true posterior rather than an approximation [69]. However, this method does have

some limitations. Due to the high correlation between each slice from the slice sampler and

the mixture weights, the number of components sampled at each iteration can be large if the

slice is small [69, 70]. This can result in slow mixing and high autocorrelations [67], as was the

case in this research. However, as these samplers are often developed and illustrated on simu-

lated or low-dimensional datasets, it is likely that similar problems would be encountered

using alternative samplers when applied to complex data, such as that used in the current

application [45].

The final aspect of DPMM that requires consideration is the choice of method for post-pro-

cessing the MCMC chains to obtain the optimal number of clusters. The PAM method was

used in this paper, however, alternative methods have been proposed that also use the posterior

similarity matrix, including Binder’s loss function [71], the Posterior Expected Adjusted Rand

index [50], and hierarchical clustering [72]. The PAM method was chosen as it consistently

assigns individuals to clusters based on the structure of the posterior similarity matrix [73],

and has been found to perform better than alternative methods, such as k-medoids [51]. How-

ever, this method can be computationally intensive when applied to large datasets.

Conclusion

Overall, the DPMM approach presented here allows for flexibility in modelling and does not

require the specification of the number of clusters a priori. Additionally, the DPMM takes into

account emerging clusters, which makes it ideal for the current application, as it is expected

that the clusters will grow or merge as more data are collected. When combined with the

Bayesian sequential updating and the calculation of the area between the posterior probability
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sequences, this ensemble method demonstrates a new approach to modelling developmental

milestones, which can provide detailed information regarding a child’s development. This will

be able to assist in the formulation of personalised early interventions targeted for develop-

mental delays that occur throughout the early, most critical, years of development.
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