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Different Neural Mechanisms
Underlie Non-habitual Honesty and
Non-habitual Cheating
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There is a long-standing debate regarding the cognitive nature of (dis)honesty: Is
honesty an automatic response or does it require willpower in the form of cognitive
control in order to override an automatic dishonest response. In a recent study
(Speer et al., 2020), we proposed a reconciliation of these opposing views by showing
that activity in areas associated with cognitive control, particularly the inferior frontal
gyrus (IFG), helped dishonest participants to be honest, whereas it enabled cheating for
honest participants. These findings suggest that cognitive control is not needed to be
honest or dishonest per se but that it depends on an individual’s moral default. However,
while our findings provided insights into the role of cognitive control in overriding a
moral default, they did not reveal whether overriding honest default behavior (non-
habitual dishonesty) is the same as overriding dishonest default behavior (non-habitual
honesty) at the neural level. This speaks to the question as to whether cognitive control
mechanisms are domain-general or may be context specific. To address this, we applied
multivariate pattern analysis to compare neural patterns of non-habitual honesty to non-
habitual dishonesty. We found that these choices are differently encoded in the IFG,
suggesting that engaging cognitive control to follow the norm (that cheating is wrong)
fundamentally differs from applying control to violate this norm.

Keywords: dishonesty, cognitive control, multivariate pattern analysis, fMRI, moral default

INTRODUCTION

In a recent study (Speer et al., 2020), we found that areas associated with cognitive control,
particularly the inferior frontal gyrus (IFG), helped dishonest participants to be honest, whereas it
enabled cheating for those who are generally honest. These findings suggest that honest participants
needed cognitive control to overcome their inclination for being honest in order to cheat, whereas
cheaters had to exert control to override their greedy tendencies in order to be honest. Based on
these findings, we argued that cognitive control is not needed to be honest or dishonest per se but
that it depends on an individual’s moral default.

Our results help reconcile the long-standing debate between proponents of the Will hypothesis
and the Grace hypothesis. Research supporting the Will hypothesis (Mead et al., 2009; Gino et al.,
2011; Welsh and Ordóñez, 2014) suggests that cognitive control is needed to be honest. In direct
opposition to this, a separate stream of research has accumulated evidence in favor of the Grace
hypothesis (for meta-analyses, see Greene and Paxton, 2009; Shalvi et al., 2012; Capraro, 2017;
Suchotzki et al., 2017; Verschuere et al., 2018), advocating that cognitive control is required for
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dishonesty. Our findings suggested that people are distributed
along a continuum, from individuals who are generally honest to
cheaters. Individuals on one end of the continuum are inclined to
be honest, which is associated with more self-referential thinking
when given the opportunity to cheat. In contrast, individuals on
the other end of the spectrum have an inclination for dishonesty,
and their decisions are driven more strongly by rewards. In
order to achieve a subjectively justifiable and desirable balance
where one can occasionally profit from cheating but still maintain
a positive self-image, people on both sides of the spectrum
sometimes need to override their moral default. We showed that
the cognitive control network may orchestrate honesty for people
who can be considered cheaters and dishonesty for the more
honesty inclined and thus provide potential reconciliation for this
long-standing paradox.

In a commentary on our work, Abe (2020) astutely noted that,
while our findings provide insights into the role of cognitive
control, they do not reveal the exact nature of control-related
activity. Although our study demonstrated that activity in the
IFG is required when participants override their moral default,
our analyses did not reveal whether activity in the IFG for a
cheater’s decision to be honest is actually identical to activity
in the IFG for an honest person’s decision to cheat. Therefore,
the question arises whether, on the neural level, overriding the
default to be honest in favor of cheating is identical to overriding
the default to be dishonest in favor of honesty. Answering this
question would substantially improve our understanding about
the nature of the cognitive control processes that enable us to
override our moral default, because it may reveal whether the
IFG has access to the moral valence (overriding the “good” or
“bad” default) of a given decision. To investigate whether neural
patterns of activity associated with non-habitual dishonesty can
be distinguished from neural patterns underlying non-habitual
honesty, Abe suggested the use of multivariate pattern analysis
(MVPA, Norman et al., 2006). In this brief report, we apply
MVPA to compare neural patterns of non-habitual honesty to
non-habitual dishonesty.

METHODS

Participants
The reported analyses are based on 40 participants (30 females;
age 18 to 35 y; M = 23.7, SD = 3.2) recruited from an online
community for university students. All participants were right-
handed with normal or corrected to normal vision, spoke
English fluently, were not on any psychoactive medication
influencing cognitive function, and had no record of neurological
or psychiatric illness. The study was approved by the Erasmus
Research Institute of Management (ERIM) internal review board
and was conducted according to the Declaration of Helsinki.

Spot-the-Difference Task
Participants were presented with pairs of images and were told
that there were always three differences between the image pairs
(Gai, 2020). Differences consisted of objects that were added
to or removed from an image or objects that differed in color
between images. However, images could actually contain one,

two, or three differences. Participants were asked to find three
differences between the images. Because reward (see below) was
contingent on participants reporting that they had found all
three differences, without having to point them out, this design
encouraged cheating behavior (i.e., reporting having found all
three, even when objectively fewer than three differences were
present in the images).

Participants were told that the purpose of the study was to
investigate the underlying neural mechanisms of visual search
for marketing purposes such as searching for a product in an
assortment or information on a webpage. In order to increase
credibility of this cover story a simple visual search task was
added at the beginning of the experiment which was also
performed in the scanner while participants were undergoing
localizer scans.

Further, participants were instructed that the neurocognitive
effect of motivation, elicited by monetary reward, on speed and
accuracy of visual search was investigated. Although participants
were told that there were three differences in all trials, in 25% of
the trials, there were only two differences, and in 25% of the trials,
there was only one difference. All stimuli were standardized in
size and were presented on a white background on a computer
screen. The ratio of 50 to 50% (three differences vs. fewer than
three differences) was chosen based on the results of pilot studies
that indicated this ratio to be optimal in reducing suspicion that
the pairs did not always contain three differences.

Trials were further categorized into normal (50%), hard
(25%), and very hard trials (25%), for which participants could
receive 5, 20, and 40 cents, respectively. All the trials with three
differences (the filler trials) were categorized as normal trials,
whereas trials with fewer than three differences (the trials of
interest) were randomly categorized as hard or very hard trials.
Consequently, the reward was independent of the number of
differences in the image pair for the trials of interest, which is
important in order to be able to disentangle the effects of reward
and cheating magnitude (the actual number of differences) on
cheating behavior. The different levels of difficulty were added
to reduce suspicion about the real purpose of the task. It was
assumed that if trials are labeled as hard or very hard, it would
be more credible to the participant that the image pair actually
contained three differences, but they were just too hard to spot.

In addition, levels of difficulty were introduced to eliminate
possible demand effects: we wanted participants to cheat for
monetary reward and not to prevent seeming incompetent, which
may be associated with different underlying neural mechanisms
and consequently confound the analysis. To further reduce
suspicion about the purpose of the study, ∼10% of all trials were
point-and-click trials. In these trials, participants had to click
on the location in the images where they spotted the differences
using a joystick. Consequently, cheating was not possible on the
point-and-click trials. Participants always knew prior to the start
of a trial whether it was a point-and-click trial indicated by a
screen requesting participants to click on the image. This ensured
that participants would not refrain from cheating on all other
trials, while still reducing the suspicion about the real purpose
of the study. Participants were told that only 10% of trials were
point-and-click trials because it would take too much time to
point out the differences for every pair. Further, participants were
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instructed that excessive movement by manipulating the joystick
would interfere with the brain signal. In sum, there were 144
regular trials (of which 72 cheatable trials) and 12 point-and-
click trials. The maximum amount of money earned, in case a
participant cheated on all cheatable trials, was ∼ €35, whereas in
case a participant would not cheat at all, he or she would earn ∼

€7.50.
After completion of the full study, participants were debriefed

that the purpose of the study was to investigate the underlying
neural mechanisms of (dis) honest decision-making. They were
informed that the number of differences between pictures
and level of reward were manipulated to encourage cheating.
To be fair to all participants, they were all paid out the
maximum amount, irrespective of their actual cheating behavior.
In addition, participants received a flat fee of €10 for participation
in the scanning session.

Each trial started with a fixation cross which was presented
for a variable amount of time between 1 and 3 s. Subsequently,
the level of difficulty screen was presented for 2 s informing
the participants about the level of difficulty of the upcoming
trial. This screen also displayed how much money could be
earned on that trial. As a result, participants were constantly
aware of the potential gains of cheating. Next, an image pair was
presented for 6 s, a length determined by the behavioral pilots,
and participants engaged in the visual search. Afterward, the
participants were asked whether they spotted all three differences
(yes/no response). On this decision phase screen, again the
potential reward for this trial was presented, in order to make
the reward more salient and increase cheating behavior. After
3 s, the response phase started in which participants’ responses
were recorded. In the decision phase and the response phase the
current balance was also shown, which was done to demonstrate
to the participants that if they stated that they had found the
three differences, their current balance increased immediately.
It was assumed that this direct noticeable effect of behavior
on the increase of the current balance would further motivate
participants to cheat.

The decision phase and response phase were separated to
isolate the decision from motor responses. This was important for
the fMRI analysis as we wanted to isolate the neural mechanisms
underlying decision-making from possible neural confounds
related to button presses. Besides that, the buttons corresponding
to “yes” and “no” were switched across trials to further reduce
confounding effects and to reduce the response bias for the
dominant hand. Once the participants responded, the choice
was highlighted by a blue box for 500 ms to indicate that the
response was recorded, and the trial ended. If no response was
made, the trial ended after 3 s. In addition, there were five
practice trials, in which participants could get acquainted with
the task. Stimulus presentation and behavioral data acquisition
were performed using Presentation software (Version 18.0,
Neurobehavioral Systems, Inc.1).

Stimuli
Stimuli for the task consisted of 144 spot-the-difference image
pairs that were downloaded from the Internet. Cartoon images

1www.neurobs.com

of landscapes containing several objects were selected, to make
them engaging and challenging enough for the participants.
Landscapes were chosen as they generally satisfied the necessary
criterion of containing several different objects. The stimuli
consist of pairs of images that are identical apart from a certain
number (one to three) of differences that were created using
Adobe Photoshop. Differences consisted of objects added to or
removed from the landscape picture or changed colors of objects.
Differences were fully randomized across all pairs of images,
which means that all image pairs could be presented with either
one, two or three differences. To make sure that participants
would be able to find the differences between the images in
a reasonable amount of time and to minimize the chance of
participants believing that they had seen a difference when they
had not (false positives), we ran a pilot study on Amazon’s
Mechanical Turk (n = 205) to test the difficulty to spot the
differences between the images and to determine the optimal
duration of picture presentation.

FMRI Acquisition
The fMRI images were collected using a 3T Siemens Verio
MRI system. Functional scans were acquired by a T2∗-weighted
gradient echo, echo-planar pulse sequence in descending
interleaved order (3.0 mm slice thickness, 3.0 × 3.0 mm in-plane
resolution, 64 × 64 voxels per slice, flip angle = 75◦). TE was
30 ms, and TR was 2,030 ms. A T1-weighted image was acquired
for anatomical reference (1.0 × 0.5 × 0.5 mm resolution, 192
sagittal slices, flip angle = 9◦, TE = 2.26 ms, TR = 1,900 ms).

Preprocessing
The fMRI data were preprocessed using fMRIPrep version 1.0.8,
a Nipype-based tool (Gorgolewski et al., 2011). The reason for
choosing fMRIPrep was that it addresses the challenge of robust
and reproducible preprocessing as it automatically adapts a best-
in-breed workflow to virtually any dataset, enabling high-quality
preprocessing without the need of manual intervention (Esteban
et al., 2019). For more details of the pipeline2.

Statistical Analyses
For each participant, we estimated a general linear model
(GLM) using regressors for onsets of the decision phase for
cheated trials and honest trials. The duration of the epoch
for the decision phase was 3 s, and the beginning of the
decision phase was used as onset times. The decision phase was
used as it provides all the necessary information to make the
decision and is free of brain activity related to motor responses.
In addition, regressors for the button presses were added.
Average background, white matter and cerebrospinal fluid (CSF)
signal, framewise displacement, six head motion regressors,
and six aCompCor regressors, all obtained from fMRIprep,
were entered as regressors of no interest. All regressors were
convolved with the canonical hemodynamic response function.
A smoothing kernel of 5 mm (FWHW) was applied. Linear
contrasts were computed between honest and cheating decisions.
Neural patterns were then extracted from the resulting t-maps
(cheat > honest & honest > cheat) using the left IFG mask

2https://fmriprep.org/en/latest/workflows.html
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derived from the conjunction analysis between the neurosynth
map for cognitive control and the results from the second level
analysis investigating the neural mechanisms underlying the
decision to cheat in Speer et al. (2020). Due to the fact that
participants engaged in spontaneous, voluntary, and deliberate
cheating, the ratio of dishonest and honest trials was not perfectly
balanced for most of the participants. In order to account for
potential statistical confounds resulting from this imbalance,
we under-sampled the majority class for each participant
to create a perfect balance when estimating the contrasts
(Liu et al., 2009).

To test whether non-habitual honesty differs from non-
habitual dishonesty on the neural level, we conducted a

classification analysis on the neural patterns in the IFG (Figure 1)
associated with non-habitual honesty in cheaters and non-
habitual dishonesty in honest participants. Specifically, we used
the t-maps derived from contrasting cheated decisions against
honest decisions (cheat > honest) for honest participants
and contrasting honest decisions against cheated decisions
(honest > cheat) for cheaters as input for the classification
analysis. Participants were categorized as cheaters or honest
participants based on a median split (median = 10 cheated
decisions). The choice of using the honest decision as baseline
condition for honest participants and cheated decisions as a
baseline for cheaters was motivated by the fact that these
decisions represent the default behaviors for the two groups of

FIGURE 1 | For honest participants, the neural pattern in the IFG was derived from the contrast cheat > honest and for cheaters the neural pattern was obtained
from the contrast honest > cheat. These patterns were then fed to a logistic lasso regression classifier, which was trained and tested using 4-fold cross-validation to
decode whether a given pattern belonged to a cheater or to an honest participant.

FIGURE 2 | Distribution of classification performance. The blue bars indicate the predictions from the permutation test (N = 1000). The red dashed line represents
the empirical accuracy score of the model (78%).

Frontiers in Neuroscience | www.frontiersin.org 4 February 2021 | Volume 15 | Article 610429

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-610429 February 3, 2021 Time: 11:52 # 5

Speer et al. Cognitive Control and Non-habitual (Dis)Honesty

participants, respectively. We then trained and tested a logistic
lasso regression classifier to decode whether a given contrast map
represented the neural pattern associated with a non-habitual
decision for honesty or dishonesty, using 4-fold cross-validation
(Figure 1). The 4-fold cross-validation refers to training the
classifier on 30 participants and testing on the 10 remaining
participants at each iteration. Importantly, in case the neural
patterns associated with non-habitual honesty and dishonesty are
the same, the classifier should not be able to accurately categorize
cheaters or honest participants based on their neural patterns.

RESULTS

Substantial individual differences in cheating were observed
(mean = 26%, median = 14%, SD = 26%): some participants
cheated only once or twice (17.5% of participants), while others
only missed one or two chances to cheat (5%). Participants who
cheated relatively often are from now on referred to as cheaters
and more honest are referred to as honest individuals.

The multivariate classification analysis revealed that we can
indeed successfully classify whether a participant engaged in
either non-habitual honest or non-habitual dishonest behavior
(Accuracy = 78%, p < 0.01, Npermute = 1000; Cross-validation
accuracy scores per fold: 70%, 70%, 80%, 90%; Figure 2).
That is, neural patterns of overriding habitual honesty in favor
of cheating differ significantly from the patterns underlying
a cheater’s decision to be honest. The distribution of activity
across voxels within the IFG (Figure 3) suggests that inhibiting
habitual honesty (non-habitual dishonesty) is associated within
relatively high activity in voxels situated more ventrally in
the IFG, while overriding habitual dishonesty (non-habitual
honesty) is associated with relatively high activity in more dorsal
voxels within the IFG.

In order to make sure that the successful classification can be
attributed to differences between non-habitual honesty and non-
habitual dishonesty, we ruled out several alternative explanations.
First, to test whether the classification accuracy was not just
driven by individual differences in honesty irrespective of choice,
we trained and tested a logistic lasso regression model to classify
cheaters and honest participants using the same contrast for
all participants. For both cases, using the honest > cheat and
the cheat > honest contrast, the classification accuracy was not
significant, indicating that the classification accuracy observed
in the previous analysis cannot be attributed to individual
differences in honesty alone. Secondly, we explored whether the
decoding accuracy mostly resulted from simply using a different
contrast (different choices), irrespective of participants’ moral
default (individual differences in honesty). To rule this out,
we randomly assigned half of the participants to one of the
contrasts (honest > cheat) and the other half to the other contrast
(cheat > honest) and then used the logistic lasso regression model
to decode which participants was assigned to which contrast. The
whole procedure was repeated 1000 times. This approach was
adopted as it would ensure that the mean level of honesty in the
two groups would be the same and thus render the classification
of contrasts independent of the participants’ moral default. This
analysis resulted in insignificant classification accuracy, which

FIGURE 3 | Average activation patterns for non-habitual honesty and
non-habitual dishonesty in the left IFG.

shows that the classification accuracy of the main analysis is not
merely driven by the differences in the contrast used.

DISCUSSION

Using the spot-the-difference task to study trial-by-trial cheating
behavior we previously found (Speer et al., 2020) that the effect
of cognitive control depends on a participants’ inclination to be
honest or dishonest, in other words, on their moral default. The
follow-up, analysis presented here revealed that, whereas the level
of average activation across all voxels in the IFG is the same
for honest participants and cheaters when engaging in a non-
habitual (dis)honest decision, the information encoded in the
distributed pattern across voxels differs. Specifically, our results
hint at differential involvement of dorsal and ventral IFG in
non-habitual honesty and dishonesty, respectively.

These results provide deeper insights into the nature of the
cognitive control processes that enable us to override our moral
default, as they may suggest that the IFG has access to the moral
significance of the decision at hand. Engaging cognitive control to
follow the norm that cheating is wrong appears to be represented
differently in the IFG as compared to applying control to violate
this norm. This may suggest that, even though individuals have
idiosyncratic default responses in morally ambiguous situations,
the underlying moral norm, that cheating is wrong, may
nonetheless be universal across individuals. Alternatively, the
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neural patterns may differ because the specific cognitive processes
that need to be inhibited differ. For dishonest participants, the
motivation to obtain (monetary) reward needs to be inhibited,
while for honest participants the motivation to maintain a
positive self-concept needs to be inhibited.

In the field of cognitive neuroscience there has been an
enduring interest to refine the constructs of cognitive control
(Baddeley and Della Sala, 1996; Cuthbert and Insel, 2013;
Diamond, 2013). Particularly, it has been a long-standing
challenge to determine which cognitive control processes should
be considered domain-general, thus commonly engaged by
different types of tasks, and which cognitive control processes
are domain or even context specific. The current results provide
some initial answers to this question in the context of cognitive
control in the form of response inhibition applied to moral
decisions. Our findings suggest that, at least in the context of
moral choice, inhibiting prepotent responses to cheat are indeed
different from inhibiting a default of behaving honestly.
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